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Executive Summary 

This report details the final architecture and tools developed within the SEDIMARK project for 

edge processing and services certification. The work focuses on providing the foundational 

components for managing the entire lifecycle of data and AI assets, from their creation and 

processing at the edge to their certification and exchange in the marketplace. The key 

contributions establish a framework for AI-driven modules that can be deployed at the data 

source, adhering to MLOps principles while managing complex edge-cloud interactions. 

A primary achievement of this work is the development of an edge processing 

framework designed for resource-constrained environments. Key innovations include: 

• WebAssembly (WASM) on MCUs: A secure and sandboxed architecture was 

implemented to allow user-defined code to run on low-power microcontrollers, enabling 

flexible and frequent updates without compromising the core firmware's stability. 

• Fine Timestamping and Energy Optimization: A novel algorithm was developed to 

calibrate the on-device Real-Time Clock (RTC) by compensating for temperature-induced 

drift. This significantly improves data timestamp accuracy and dramatically reduces the 

need for energy-intensive network synchronizations, extending the operational battery life 

of edge devices to meet a target of over four years. 

• Edge-Cloud Orchestration: An analysis of open-source tools led to the selection and 

deployment of platforms like Mage.ai and Apache NiFi to manage distributed data 

processing flows between edge devices and the cloud. 

To address the challenges of managing AI models in a diverse ecosystem, the project has 

established a comprehensive MLOps strategy and a solution for model interoperability. By 

adopting MLFlow, SEDIMARK provides a standardized framework for the entire machine 

learning lifecycle. A critical innovation is the use of Keras Core to create framework-agnostic 

model descriptions. This allows models to be defined once and then seamlessly trained or 

used for inference across different backends like TensorFlow, PyTorch, and JAX, which is 

essential for fostering collaboration in federated learning scenarios where participants may use 

different tools. 

Finally, to build a foundation of trust within the marketplace, a multi-faceted conformity 

evaluation Service has been designed. This service provides validation for all marketplace 

assets: 

• Data Assets are certified for conformance with standards like NGSI-LD and Smart Data 

Models, ensuring interoperability. 

• Service Assets are validated for API compliance, leveraging and contributing to the official 

ETSI NGSI-LD Test Suite. 

• AI Model Assets undergo a two-fold assessment, verifying not only 

their performance against quantitative KPIs but also their trustworthiness based on 

principles of fairness, transparency, and security, in alignment with emerging regulations 

like the EU AI Act. 

Together, these advancements in edge computing, MLOps, and certification provide the core 

technical infrastructure for a robust, transparent, and efficient decentralized data marketplace. 
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1 Introduction 

1.1 Purpose of the document 

This document is the final version of a reporting of the work in WP4 about tools and processes 

for enabling data processing and sharing in an interoperable way at the data sources.  

1.2 Relation to another project work  

The work in SEDIMARK_WP2, reported in SEDIMARK_D2.1 [1] and  D2.3 [2] so far, showed 

that the topics of edge computing for data quality, ML models and MLOps especially linked to 

federated learning are of special interest in this project. This has driven the work of 

SEDIMARK_T4.2, reported in this deliverable.  

 

Figure 1: Positioning of distributed processing in SEDIMARK architecture  

As one can see in the Figure 1, this task is at the heart of the SEDIMARK platform, in the layer 

dedicated to distributed processing and artificial intelligence. Its primary objective is to create 

a framework for the deployment of AI-driven modules that process and share data at edge 

data sources. It considers the interactions between edge and cloud systems while adhering to 

MLOps principles. It is thus in tight relationship with SEDIMARK_WP3. 

1.3 Structure of the document 

After a short introduction to the document (the current part) and a quick overview of the 

SEDIMARK platform (chapter 2), this document explores two aspects of the management of 

these data. In chapter 3, the aspects related to the Edge/Cloud interactions are explored by 

first exposing the challenges and requirements for Edge computing (3.2) and then by looking 

at how they can be managed by using specific orchestration tools (3.3.1), or how dynamic 

processing can be implemented even at far edge (3.3.2), where networking and computing 

resources are very limited. Section 4 quickly review the options investigated for managing 

interoperability of Machine learning frameworks. Finally, chapter 5 describes a core 

contribution of the WP4 in relation to the delivery of certification services within the SEDIMARK 

marketplace components and services. 
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2 Report contributions to SEDIMARK environment  
This deliverable presents the work achieved in Task 4.2, presenting the architecture that has 

been developed within SEDIMARK to enable data processing and sharing at the edge. 

SEDIMARK is a decentralised system that allows data providers to collect, clean and process 

their data at various stages, including at edge devices. This is helpful in cases where large 

amounts of data are gathered at edge devices, so that once they are cleaned and processed, 

the communication and storage costs at the provider server is significantly reduced. 

Additionally, clean data at the edge allows a more efficient machine learning technique, both 

for training and for inference purposes. Techniques for data anonymisation at the edge are 

also exploited to hide or remove sensitive information, thus either creating anonymised 

datasets that can be shared in the marketplace without privacy issues or training ML models 

that don’t reveal or leak private data.  

Considering that there are many available frameworks used for training ML models, 

SEDIMARK also provides a framework for ML model interoperability, exploiting existing well-

known platforms. This helps providers to continue to use the frameworks they are familiar with, 

while at the same time being able to download/purchase models from the SEDIMARK 

marketplace and use them converting them into their preferred format/framework.  

Figure 1 presents the SEDIMARK functional architecture that is described in deliverable 

SEDIMARK_D2.3 [2] in detail. With orange highlights are the functional components that are 

part of this deliverable. These components are part of three different layers of SEDIMARK, 

security, data and intelligence layer 

 

Figure 2: The SEDIMARK functional architecture. Orange highlights functional components 

that are being part of this deliverable. 
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3 Architecture for Edge data processing 

3.1 Introduction 

Edge processing, also known as edge computing, refers to the practice of processing data 

near the source of generation rather than relying on a centralized cloud-based system. In 

traditional computing models, data is sent to a remote datacentre or cloud for processing and 

analysis. However, edge processing brings computational capabilities closer to the "edge" of 

the network, which is typically where data is generated. In the context of SEDIMARK, this 

paradigm is in use for distributed AI as well as for potential delocalization of some of the data 

processing pipeline processes. 

The environment in which Edge data processing is performed raises multiple constraints that 

need to be handled, such as privacy preservation, response time, throughput, and resource 

consumption (e.g., CPU, memory, energy, bandwidth), while the latter may influence the 

monetary cost. In the following, some of these requirements are to be considered for the 

SEDIMARK assets (e.g., Artificial intelligence (AI) model and service assets). 

• Bandwidth: While edge data processing reduces the need for transmitting all data to the 

cloud (federated learning) or between nodes (gossip learning), there is still a need for 

network connectivity. Limited bandwidth can affect data and synopsis transmission to and 

from the edge. 

• Computing resources: Edge devices often have constrained processing capabilities (e.g., 

memory and storage). Therefore, running complex and massive data processing tasks on 

such devices can be challenging. 

• Privacy: In the SEDIMARK decentralized environment, privacy naturally arises since 

personal and sensitive data will be processed, from which real insights about individual 

behaviour, health, or relationships can be inferred.  

• Data quality: The data provided within SEDIMARK can be noisy, duplicated, or 

incomplete. Ensuring data quality and extracting knowledge from potentially imperfect 

data is a challenge that needs to be handled. To do so, SEDIMARK provides curation 

techniques to address imperfect data and improve its quality. 

These aspects depend on the framework used to handle the processing distribution as well as 

the way processes are implemented. In this report, focus is on the tooling which is investigated 

in the following section. This updated version reports on the evaluation of the tools made in 

the context of ultra-low power edge devices, as well as algorithms tested to increase data 

quality on the edge. 

3.2 Edge-Cloud Orchestration tools 

There exist many edge-cloud orchestration platforms. Identified open-source platforms have 

been analysed to evaluate how they could support the handling of a data pipeline distributed 

over cloud and edge. They are the following: 

• FogFlow:  FogFlow is a FIWARE enabler to orchestrate data processing flows between 

cloud and edge. It uses intent-based programming. For example, for service consumers, 

they can specify which type of results are expected under which type of Quality of Service 

(QoS) within which geo-scope; for data providers, they can specify how their data should 

be utilized by whom. In FogFlow, orchestration decisions are made to meet those user-

https://fogflow.readthedocs.io/en/latest/
https://github.com/smartfog/fogflow
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definable objectives during the runtime. It became NGSI-LD compliant in September 

2022. 

• Apache Airflow: Apache Airflow is a platform to programmatically author, schedule and 

monitor workflows. It uses Python language to batch processing workflow run at regular 

intervals. It does not aim at processing event streams. However, coupling with a service 

bus having storage capabilities such as Apache Kafka allows for periodic processing of 

stream fragments. Airflow interface is mainly provided for workflows activation and 

monitoring. Coding in python remain mandatory for workflows definition. It builds on 

Kubernetes to provide auto-scaling. Apache Airflow 3.0 was released in April 2025, 

introducing significant architectural changes: 

o Service-Oriented Architecture with a new Task Execution API enabling task execution 

in remote environments 

o Edge Executor supporting distributed, event-driven, and edge-compute workflows 

o Asset-Based Scheduling with redesigned dataset model for event-driven DAG 

definition 

o Enhanced ML and AI Workflow Support with logical_date=None capability for model 

inference and hyperparameter tuning 

o Modern React UI with complete overhaul built on React and FastAPI 

• Mage AI: Mage AI aims at simplifying the Apache Airflow experience. It remains coding 

based, allowing Python, R and SQL in the same data pipeline while the User Interface 

(UI) focuses on monitoring workflows execution. Both batch and stream processing are 

allowed. Pipelines can be configured through the set of global variables. Distributed 

processing is part of the roadmap, considering Ray as a distributed execution framework 

layer for parallel processing and Dask as Python parallel computing library.  Mage AI has 

expanded its capabilities during the second period of the project: 

o AI-Powered Pipeline Generation from simple prompts, handling setup, code, and 

configuration automatically 

o Hybrid and Private Cloud Deployment options with cloud control plane and private data 

processing 

o Enhanced Data Integration with embedded Python logic directly in syncs for data 

cleaning and enrichment 

• Apache NiFi: Apache NiFi also aims at implementing workflow defined as DAG. However, 

in contrast to Airflow, it provides aa highly configurable web-based interface to define the 

workflow which can consider either stream or batch processing. Hundreds of existing 

connectors enable the ingesting of data from almost any kind of source. External scripts 

or executables can be called thus making Apache NiFi completely customizable. NiFi 

continues to evolve with recent improvements: 

o NiFi 2.0+ Features including stateless mode support and Python custom processor 

capabilities 

o Enhanced Cloud-Friendly Architecture with stateless flows easier to scale and deploy 

in containers 

o Improved Real-Time Processing capabilities for streaming data from IoT devices and 

AI applications 

https://airflow.apache.org/
https://kafka.apache.org/
https://www.mage.ai/
https://www.ray.io/
https://www.dask.org/
https://nifi.apache.org/
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• MiNiFi: Apache MiNiFi is a sub project of Apache Apache NiFi meant to collect data and 

process data on the edge. Java (heavier) and C++ (lighter) flavours are provided. Both 

are however too large to be executed on a low power, microcontroller based far edge 

device. 

• StarlingX: StarlingX is an edge cloud infrastructure targeting security, ultra-low latency, 

and extremely high service uptime which are requirements from the industrial Internet of 

Things (IoT). The underlying hardware layer is expected to run Yocto Linux, whereas 

scalability and orchestration are managed by Kubernetes and OpenStack frameworks, 

making StarlingX an heavy player. 

• OpenNebula: OpenNebula is an open-source framework made to create multi-provider 

hybrid & edge clouds. It focuses on the virtual infrastructure layer and while deployment 

of containers and microVMs, it does not address the data processing layer. 

• EdgeXFoundry: EdgeXFoundry focuses on IoT related use cases. It abstracts IoT 

protocols (sensors, actuators and others) and provides device management 

(administration and maintenance of IoT devices deployed on the field) capabilities. While 

there are still developments on-going, the number of tested devices and protocol adapters 

is relatively limited. 

Based on this thorough analysis, two main options have been used within the SEDIMARK 

project: 

• Mage AI, with the identified need to provide an additional customised user interface to 

ease management and configuration of pipeline.  

• NiFi, deployed as part of the water use case to handle data driven orchestration of the 

data service processing flows. 

3.3 WebAssembly on MCU 

WebAssembly (Wasm) is a binary instruction format that acts as a portable compilation target 

for high-level programming languages, enabling efficient execution across a wide range of 

platforms, including web browsers and embedded systems. When applied to microcontroller 

units (MCUs) WebAssembly unlocks new opportunities for modular, portable, and secure edge 

computing because it allows to upload some “user code” to be run and controlled by the 

validated firmware. The user code can then be less secured and robust and changed frequently 

while the firmware is kept unchanged, robust and fully validated. Using WebAssembly for this 

task allows for safe and sandboxed execution of algorithms, simplifies updates and integration 

across different MCU-based devices, and promotes code reuse across projects. This makes it 

a compelling solution for scalable, low-power edge computing in sensor networks. 

We have designed and tested a firmware architecture to support such a scheme. It is depicted 

in Figure 3. 

 

https://nifi.apache.org/minifi/
https://www.starlingx.io/
https://opennebula.io/
https://www.edgexfoundry.org/
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Figure 3: The architecture of the EdgeSpot software architecture to support some user scripts 

in WASM. 

3.4 Fine timestamping on the edge 

In many data-driven applications, such as MCU-based monitoring systems, transmitting data 

with a precise timestamp is crucial. Accurate timestamps ensure that events can be properly 

sequenced, correlated, and analysed (especially when data is collected from multiple sources). 

Without precise timing, it becomes difficult to synchronize actions, detect anomalies, or 

maintain data integrity. To achieve this level of precision, a calibrated Real-Time Clock (RTC) 

is essential. The RTC maintains the system’s internal clock and provides consistent, reliable 

timekeeping. However, RTCs can drift over time due to various factors, including 

manufacturing tolerances and environmental influences, particularly temperature. Changes in 

external temperature can affect the oscillator inside the RTC, causing it to run slightly faster or 

slower. This drift, if left uncorrected, results in increasingly inaccurate timestamps. 
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For example, a one-year outdoor deployment of a STM32 L4 based IoT box revealed a drift of 

approximately 15 minutes. Calibration helps compensate for these variations, aligning the RTC 

with actual time standards and ensuring that data is logged and transmitted with high temporal 

accuracy. 

EGM has developed a Low-Power Pulse Counter from its EdgeSpot platform. It is designed to 

detect and count pulses at one-minute intervals. The primary goal of this sensor is to estimate 

flow rate by counting pulses each minute. The device is made from the minimal design of the 

EdgeSpot hardware platform, paired with a LoRa-E5 module, a LoRaWAN antenna, and a 

high-capacity battery. To minimize power consumption, pulse counting is synchronized using 

the MCU’s RTC. Every minute, the RTC triggers an alarm indicating the end of the counting 

period, prompting the system to store the pulse data. If pulses have been detected during a 

15-minute window, a packet containing 15 minutes of pulse data, along with a timestamp, is 

transmitted to the cloud via LoRaWAN. The accuracy of the Low-Power Pulse Counter 

depends on the precision of the RTC. Although the RTC can be synchronized with the 

LoRaWAN server to maintain accurate timing, this operation results in a temporary increase in 

power consumption and introduces a dependency on network connectivity, both of which we 

aim to minimize.  

A study was conducted on the temperature-induced drift of the RTC in EdgeSpot. The 

EdgeSpot is equipped with an HTU21D sensor, which provides internal temperature 

measurements of the board. During the study, the EdgeSpot’s timestamps were recorded 

alongside temperature data and transmitted in real time to a computer via UART serial 

communication. This allowed a direct comparison with the computer’s reference time.

 

Figure 4: Time drift per minute vs temperature 

Several tests were conducted at stable, controlled temperatures to estimate the time drift and 

generate a curve resembling the temperature-frequency characteristic of a crystal oscillator. 

In an RTC, the crystal oscillator serves as the precise timekeeping element, generating a 

consistent frequency (typically 32.768 kHz) to count seconds accurately. However, the 

frequency of the quartz crystals is sensitive to temperature changes, exhibiting a parabolic drift 

centred around their turnover point usually near 25°C. As temperature deviates from this point, 

the oscillator’s frequency shifts, causing time to drift in the RTC. 

Using the measured data, we fitted a quadratic model which allows us to calculate a 

temperature-dependent offset to correct the RTC timestamp in real time. The quadratic model 

provides a derivative of the bias as a function of time (in ppm or μs.s-1): 

 
𝑑𝐵

𝑑𝑡
= 𝑎 + 𝑏𝑇 + 𝑐𝑇2 (eq.1) 
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Where a, b and c are the parameters of the model, T is the temperature of the oscillator and B 

is the estimate of the bias between the RTC time and the real time t. 

Since the measurement of the temperature is provided with a given precision by the sensor, 

we have also derived uncertainty on the computed value of the bias. So, the estimated bias 

value can be used to fix the value given by the RTC and the uncertainty can be used as a 

trigger to initiate a network query to reset the internal clock. 

The algorithm for computing the bias is based on the numerical integration of this model, where 

a measurement of the temperature is provided at regular intervals (typically 1 hour).  

We applied this algorithm in an EdgeSpot deployed in an open field. It was thus exposed to 

the sun, wind and some cold nights (Figure 5).  

 

Figure 5: Temperature of the EdgeSpot deployed in a field for RTC bias algorithm testing. 

The Figure 6 show the bias due to temperature fluctuations computed during the experiment 

(integration of equation (1) without a term. Additionally (not shown on picture), there is a 

continuous drift of 9.0 sec/day. One can see that, without temperature correction, the bias can 

fluctuate within a range of few seconds. 

The grey area, on the Figure 6, represents the uncertainty of this correction. It equals 0.05 

seconds after 150 days of experiment. This shows that using this simple temperature 

measurement and edge computing strategy, that consumes a very low power, we are thus 

able to maintain a very good time keeping accuracy, suitable for autonomous IoT operations. 

This contributes to a power-saving strategy, as analysed in the following section. 
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Figure 6: The "temperature part" of the bias, with the computed uncertainty. 

3.5 Energy optimisation on the edge 

In the case of the Low-Power Pulse Counter, we analysed the device’s power consumption 

with the goal of enabling operation for at least 4 years. To achieve this, the sensor’s firmware 

was carefully designed to minimize energy usage. The STM32L4 microcontroller can operate 

in a low-power mode, where most peripherals are disabled except for RTC. In this mode, 

comparable to a sleep state, the MCU halts execution and remains inactive until it is awakened, 

typically by the RTC. While in this state, the Pulse Counter consumes approximately 3µA. The 

sensor is only awakened to count pulses via a fast interrupt and to package data once per 

minute. Pulse detection raises the consumption to 0.1mA during several milliseconds. The 

device transmits the data to the server only if there is enough information to justify a 

transmission (every 15 minutes if pulses were detected). 

The RTC is responsible for waking up the MCU at one-minute intervals to count pulses. When 

active, the MCU consumes at least 1mA, although this value may fluctuate depending on 

processing load and peripheral activity. The most energy-intensive operations involve the 

LoRaWAN module. For example, establishing a connection with the LoRaWAN server (a Join 

request), which must be performed at least once during boot, can cause a current spike of up 

to 80mA for about one second depending on the signal quality. A similar spike occurs during 

RTC time synchronization, which is performed once per week to prevent significant clock drift. 

We selected a weekly synchronization interval to minimize the impact on average power 

consumption and consequently, battery life. More frequent corrections could drastically reduce 

battery longevity. For example, performing a daily synchronization (lasting up to 20 seconds in 

poor signal condition) would raise average current draw to 21.5 µA, while weekly correction 

maintains it at 5.6 µA (Table 1).   

Table 1: Impact of correction periodicity over battery life 

Number of corrections Average consumption Battery life 

Once per day 21.5 µA 100 years 

Every other day 12.2 µA 176 years 
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Number of corrections Average consumption Battery life 

Once per week 5.6 µA 383 years 

Once per day 21.5 µA 100 years 

Number of corrections Average consumption Battery life 

However, when accounting for pulse detection and data transmission, the actual battery life is 

more realistically estimated between 4 to 10 years. As previously mentioned, enabling pulse 

detection increases the current consumption to approximately 0.1 mA. According to 

STMicroelectronics specifications, the MCU requires a maximum of 13.3 µs to wake from low-

power mode. Following this, it executes processes to count and store pulses, which we have 

experimentally determined to take approximately 5 ms. During data transmission, the device 

consumes around 20 mA for at least 20 seconds under poor network conditions. Table 2 

provides the computation of the average current consumption. 

Table 2: Average current consumption depending on number of detected pulses 

Number of pulses per minute Average consumption Battery life 

400 443.2 µA 4.9 years 

150 441.3 µA 4.9 years 

50 440.5 µA 4.9 years 

As shown, the number of detected pulses has a minimal impact on battery life. The primary 

factor influencing power consumption is data transmission, which occurs every 15 minutes, but 

only if pulses have been detected during that interval. Therefore, it is network communication 

that significantly affects battery longevity and should be optimized wherever possible. 

To further reduce the frequency of energy-intensive time synchronization, the RTC calibration 

module offers a promising solution. By leveraging temperature data to estimate and correct 

drift locally, the system can maintain accurate timing with fewer network interactions. In 

comparison, the energy required for a temperature measurement is negligible. The HTU21D 

sensor, for instance, consumed just 0.02 µA in idle mode and up to 450 µA during a brief 

measurement. Integrating local time correction based on temperature could significantly 

improve pulse timing accuracy while reducing overall power consumption. 
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4 Framework-agnostic ML model description 
Interoperability of neural network models between frameworks is a key development area 

within the ML research community. A plethora of frameworks exist for defining and training 

neural network models, with PyTorch [3], Tensorflow [4], and JAX [5] being the most popular 

from a research and development perspective. There are two broad modes of framework 

interoperability. On the one hand, a user might wish to deploy a model defined and trained in 

a framework optimized for inference at scale. On the other hand, it might be preferable to 

distribute a model definition in a common format that enables continued training within a 

framework of choice. This is especially the case within distributed or federated learning, where 

the sharing of raw Python code can present a security risk.  

In general code written using the syntax and abstractions of one framework cannot be easily 

ported to another framework. As shown in [6], there are many converters between individual 

frameworks, but still the picture is incomplete, since there are many cases where no converter 

exists between two frameworks (i.e. between Theano [7] and caffe2 [8]). Additionally, there 

can be converters from i.e. framework 1 to framework 2, but no converters for the opposite 

conversion from framework 2 to framework 1, as in the case of ONNX to torch using 

onnx2torch, but no converter from torch to ONNX. Given the rapid pace of development, 

maintaining converters is a problem, and many frameworks may lack equivalent operators, 

and thus they will have to be re-implemented by the converter developer [9]. Small differences 

in the implementation of neural network components between frameworks might also result in 

differing model behaviour when models are ported from one framework to another, while it is 

noted by [9] that these converters can often introduce subtle bugs and security problems. 

In the case of model deployment and inference, most of the popular frameworks contain a 

module or method for porting code to Open Neural Network Exchange (ONNX) [10], a common 

intermediary depiction which represents the network as a language agnostic graph, that can 

then be compiled and deployed in one of several inference run-times. SEDIMARK will allow 

for the export of models to ONNX format for the purpose of inference. However, ONNX does 

not fully support the retraining of models.  

As seen in the table from [6], most conversions between frameworks are based on the MMdNN 

project [11], which is an attempt to define a “Universal Converter” for deep learning models to 

allow both inference and re-training of ML models across different frameworks. MMdNN 

converts model formats to an “Intermediate Representation”, and from that, converts the model 

to the target platform format. However, MMdNN is only focusing on a subset of deep learning 

models and currently is not maintained on GitHub, with its latest commit more than 3 years 

ago. 

There are ongoing attempts to remedy this problem in a more holistic manner - for instance 

the commercial effort Ivy [12] from unify.ai aims to offer code transpiration between 

frameworks, though requires an Application Programming Interface (API) key for use and did 

not appear to work out of the box when tested. There is currently not fully inclusive, open-

source solution to the problem of transferring models between frameworks for continued 

training.   

A recent update to the popular framework Keras [13] will support code written in Keras being 

run with either Jax, Pytorch or Tensorflow as a backend. Both inference and continued model 

training are supported. Though the Keras API imposes limitations on the class of models that 

can be defined within it, for most general use-cases it proves sufficient.  

https://github.com/microsoft/MMdnn
https://github.com/microsoft/MMdnn
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SEDIMARK builds upon the newly released Keras Core Python package to offer a degree of 

interoperability for the purpose of further training models in distributed settings (see Figure 7). 

Models defined in this format can be seamlessly exported to either JAX, Tensorflow or Pytorch, 

though the reverse is not true. While allowing for a choice of back-end and providing a common 

format for participants in the SEDIMARK distributed learning ecosystem, this does effectively 

restrict users to the Keras syntax and abstractions when defining their models.  

 

Figure 7: Model formatting process within SEDIMARK. 

Going forward SEDIMARK explored alternatives, such as the ONNX training-runtime, which is 

still undergoing development. Keras-core has already been implemented as the model format 

within both SEDIMARK distributed training components (Fleviden and deFlight), and 

performance has been tested with nodes running each of the three underlying frameworks it 

supports.  
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5 Certification Services 
Assets advertised through offerings made available through the Marketplace vary in terms of 

quality and performance. Although, it is mandatory to pass a minimum set of requirements for 

them to be minimally viable and exchangeable assets. This involves checking for compliance: 

• Assets with standards specified by the Marketplace. 

• Connectors with the minimal set of operations. 

• Use of Assets in accordance with license or policy restrictions. 

Figure 8 illustrates the categorization of certification services for a particular type of Asset. 

 

Figure 8: Taxonomy of Certification services for Assets within SEDIMARK. 

The services for certification are contained within a dedicate suite service exposed via RESTful 

interface [14]. 

5.1 Data Assets 

For data assets, their formatting, annotation, and enrichment need to comply with the 

information model standards specified by SEDIMARK. Information regarding both metadata 

and data needs to be assessed for consistency. This involves checks for quality and 

compliance within domain-specific parameters. With regards to information consistency, a 

subset of generic data quality metrics defined in SEDIMARK deliverable D3.2 are used, as well 

as metric governed by domain-specific restrictions or ranges. 

Data Assets are certified based on Standard Conformance and Information Consistency 
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Standard Conformance 

The SEDIMARK Marketplace allows Participants to provide Data Assets at different 

conformance, although SEDIMARK recommends that Participants to provide the highest level 

to maximize its streamlining with Consumer data and AI workflows. The different levels are as 

follows:  

• L1 Conformance = Proprietary 

• L3 Conformance = Proprietary + NGSI-LD Mapping (Entity, Specific Properties, Generic 

Properties) 

• L3 Conformance = NGSI-LD + JSON-LD 

• L4 Conformance = NGSI-LD + JSON-LD + Smart Data Model 

Level 1 is the lowest level of conformance, in which the Data Asset format is purely proprietary. 

Most Data Assets in this format will not be generated through the generic workflows supported 

by the SEDIMARK Orchestrator and will be provisioned as is from the original data source. 

Level 2 involves providing a mapping configuration whereby entities in the proprietary Data 

Asset are mapped to NGSI-LD model concepts. 

Level 3 ensure Data Asset are modelled in NGSI-LD and serialised in the JSON-LD format. 

Level 4 is the highest level of conformance, whereby a Data Asset complies also with a 

standard that provides a thematic vocabulary in relation to domains of interest, entity types 

and special properties such as units of measurement. The reference theme vocabulary that is 

used in SEDIMARK is the Smart Data Model standard which is detailed in SEDIMARK 

deliverable D3.4 [15]. 

Information Consistency 

Consistency is determined by the quality of the Data Asset, and its compliance with domain-

specific boundaries. This stage of certification is secondary to the Standard Conformance 

stage.  

Data Assets also have metadata that captures data quality metrics, mainly based on those 

identified in SEDIMARK deliverable D3.2. This information is generated as a by-product of the 

Asset generation process within the Orchestrator and represented as a 

DataQualityAssessment Entity in NGSI-LD, which is also a model originating from the Smart 

Data Model standard. This will be retrieved by the certification suite when a Data Asset is being 

assessed. 

In relation to domain-specific assessment, Data Assets covering a particular theme require 

that values for thematic properties are within the boundaries or limits relative to that domain. 

For examples, temperature values in a Weather-based use case will have different range of 

values, as opposed to the temperature values captured from a Vehicle’s engine. 

5.2 Service Assets  

For Service Assets, the set of operations available through their corresponding interfaces are 

checked to ensure that they conform to the standards adopted for data sharing interfaces. For 

example, NGSI-LD is currently the main interface for Data Sharing, therefore the technical 

specification on validating NGSI-LD platforms is used as a reference. For that purpose, 

contributions have been made to the on-going development at ETSI of a test specification [16] 

and a testing environment [17] to ensure that various NGSI-LD implementations comply with 

the ETSI NGSI-LD API specification. The tool is developed with Robot Framework, which is 
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an open-source test automation framework.  Written in Python, Robot Framework uses 

versatile syntax that helps in creating readable and maintainable test cases. It also provides 

embedded servers for HTTP and Mock requests. 

The Test Suite focuses on verifying the compliance of different key functionalities defined in 

the NGSI-LD specification such as:  

• Context Information Provision: which tests the creation, update and deletion of context 

information 

• Context Information Consumption: which tests the retrieval and query of context 

information  

• Context Information Subscription: which tests subscribing to context information changes 

and receiving notifications 

• Context Source Registration: which tests registration and discovery of context information 

• Distributed Operations: which tests interoperability between different implementations. 

The Test Suite is organized into several modules corresponding to each key functionality 

described above. In addition to these, it includes modules for configuration files, reusable test 

data, libraries, and scripts used to generate documentation of the test cases. This modular 

organization ensures that the Test Suite is maintainable, easy to navigate, and scalable as the 

NGSI-LD specification evolves. 

Each test case begins by creating the necessary test entities in a Suite Setup. After execution, 

the Test Suite performs a clean-up in Suite Teardown. The test case includes clear 

documentation and tags referencing the NGSI-LD specification section. The Figure 9 shows 

the template used for defining test cases. 

Figure 10 shows an example of a test case execution from the NGSI-LD test suite. 

To execute the Test Suite, the environment must be set up by downloading a configuration file 

and executing the scripts inside. These scripts install different software requirements and 

create a Python Virtual Environment where the test cases can be launched.  

The Test Suite is available on GitLab [18] and it includes comprehensive documentation 

covering installation, configuration, and usage instructions. 
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Figure 9: Test Case Template 
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Figure 10: Execution log of a query test case in the NGSI-LD test suite 

The NGSI-LD Test Suite generates a detailed HTML report after execution, summarizing the 

outcome of each test case. The Figure 11 shows a sample report highlighting:  

• The total number of test cases executed  

• How many passed, failed, or were skipped 

• Execution time per test group 

• A breakdown of results grouped by specification tag (e.g., 4_5_5), referring to the NGSI-

LD specification chapters.  
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Figure 11: Summary view of NGSI-LD Test Suite results 

We also contributed to the Plug Test event organized in Sophia Antipolis, Nice by ETSI, which 

brought together multiple teams and implementations of the NGSI-LD standard. This event 

served as a practical interoperability test, where different NGSI-LD-compatible platforms and 

components were integrated and tested in real-time scenarios. The main objective was to 

verify that these implementations can exchange data, perform context operations (such as 

queries and updates), and comply with the NGSI-LD specification. Interoperability testing plays 

a critical role in ensuring that all implementations behave consistently and predictably when 

communicating with each other. The following Figure 12 illustrates a representative 

configuration used during the Plug Test. 
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Figure 12: Example of configuration from the NGSI-LD Plug Test event 

5.3 AI Model Assets  

In the context of the SEDIMARK platform, AI model assets are critical functional components 

that deliver predictive insights across multiple domains, including energy forecasting and 

customer churn. As such, their inclusion in the SEDIMARK Marketplace demands rigorous 

certification processes to ensure that they meet operational performance standards and exhibit 

trustworthy behaviour. The certification of AI model assets is two-fold; verification of 

performance-related KPIs, and evaluation of the trustworthiness of the AI model in alignment 

with international standards and ethical AI guidelines. 

AI models must demonstrate acceptable levels of accuracy and reliability in the tasks for which 

they are certified. As part of their onboarding and validation into the SEDIMARK ecosystem, 

models are required to include a performance profile derived from test datasets (either 

synthetic or real, if available and permitted). The following quantitative KPIs are assessed: 

Classification Models (e.g., for churn prediction): 

• Accuracy: Percentage of correct predictions over total predictions. 

• Precision/Recall/F1-score: Measures of relevance and completeness. 

• Confusion Matrix: Breakdown of true/false positives/negatives. 

• Area Under ROC Curve (AUC): Sensitivity-specificity trade-off. 

AI/ML models Regression Models (e.g., for energy forecasting): 

• Mean Absolute Error (MAE): Average magnitude of errors. 
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• Root Mean Square Error (RMSE): Penalizes larger errors. 

• R² (Coefficient of Determination): How well data fits the model. 

These metrics are expected to meet minimum quality thresholds depending on the domain of 

use and training context. For example, a churn model may be expected to achieve at least 

85% F1-score on test datasets, while an energy forecasting model may require an RMSE 

below a sector-defined baseline. 

In practice, performance metrics are collected and attached as metadata to each AI model 

asset within the Toolbox registry or Marketplace catalogue, supporting transparency and 

reuse. 

Furthermore, AI model assets promote the inclusion of trustworthy AI practices, which are 

necessary to ensure ethical use, user confidence, and regulatory compliance. The certification 

process therefore includes a trust assessment, inspired by frameworks from NIST, OECD, and 

ISO/IEC 24028. Key pillars of AI trustworthiness include: 

• Validity and Reliability: The model produces consistent and correct outputs under varying 

conditions. 

• Transparency & Provenance: Certification requires traceability of the training dataset 

origin, data quality assessment, and clear documentation of model structure and 

hyperparameters. 

• Fairness and Bias Mitigation: Providers must submit fairness testing results across 

protected variables (e.g., gender, age) and describe any bias mitigation techniques 

applied. 

• Security and Resilience: Models must be tested against adversarial vulnerabilities (e.g., 

via robustness testing) and demonstrate fallback mechanisms. 

• Privacy Compliance: Models trained on personal data must document anonymization 

techniques and comply with GDPR obligations. Edge deployments must ensure local 

processing where necessary. 

This certification framework ensures that only responsible, performant, and transparent AI 

models are made available as assets in the SEDIMARK platform. It fosters user confidence, 

supports the reusability and auditability of AI components, and aligns with emerging EU AI 

regulatory frameworks such as the AI Act. 

5.4 Other Artefacts 

The certification suite also contains the validation of Offerings as detailed in SEDIMARK 

deliverable D3.4. The assessment of Offering is based on graph-based data representation is 

SHACL (Shapes Constraint Language) [19] which is a W3C specification aimed at validating 

the compliance of a graph by checking its “shape” comply to the expectation. 
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6 Conclusions 
This document details the architecture, tools, and processes developed to enable intelligent 

and distributed data processing within the SEDIMARK platform. The work provides the 

foundational components for managing the entire lifecycle of data and AI assets, from their 

creation at the edge to their certification and exchange in the marketplace. 

A contribution has been the evaluation of edge data processing approaches for low power (far 

edge) devices. By investigating and implementing solutions for resource-constrained 

environments, the project has demonstrated the feasibility of deploying advanced 

functionalities on low-power devices. The use of WebAssembly (WASM) on MCUs allows for 

secure and flexible execution of user code but lacks developer support in some MCUs while 

new frameworks such as µpython seem to offer wider appropriation. The development of a 

RTC calibration algorithm ensures precise data timestamping by compensating for 

environmental factors like temperature. These innovations, combined with energy 

optimization techniques, enable long-term, autonomous operation of edge devices, which is 

critical for the project's use cases. The analysis and selection of orchestration tools 

like Mage.ai and Apache NiFi provide the necessary mechanisms to manage these distributed 

data flows between the edge and the cloud. 

The establishment of a multi-faceted Certification Service represents a cornerstone of the 

SEDIMARK platform's commitment to trust and quality. This service provides a systematic 

methodology for validating all marketplace assets: 

• Data Assets are certified against multiple conformance levels, ensuring they comply with 

the NGSI-LD standard and domain-specific information models. 

• Service Assets are validated for API compliance, leveraging and contributing to 

standardized test suites like the ETSI NGSI-LD Test Suite to guarantee interoperability. 

• AI Model Assets undergo a two-fold assessment, verifying not only 

their performance through quantitative KPIs but also their trustworthiness against key 

principles such as fairness, transparency, and security. 

Collectively, these advancements provide the essential technical infrastructure for a truly 

decentralized and intelligent data marketplace. By enabling interoperable data processing at 

the edge and ensuring all assets are certified for quality and compliance, this work lays the 

groundwork for a trusted ecosystem where data and AI models can be shared and monetized 

securely and efficiently. 
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