

This document is issued within the frame and for the purpose of the SEDIMARK project. This project has

received funding from the European Union’s Horizon Europe Framework Programme under Grant Agreement

No.101070074. and is also partly funded by UK Research and Innovation (UKRI) under the UK government’s

Horizon Europe funding guarantee. The opinions expressed and arguments employed herein do not

necessarily reflect the official views of the European Commission or UKRI.

The dissemination of this document reflects only the authors’ view, and the European Commission or UKRJ are not responsible

for any use that may be made of the information it contains. . This deliverable is subject to final acceptance by the European

Commission.

This document and its content are the property of the SEDIMARK Consortium. The content of all or parts of this document can

be used and distributed provided that the SEDIMARK project and the document are properly referenced.

Each SEDIMARK Partner may use this document in conformity with the SEDIMARK Consortium Grant Agreement provisions.

SEcure Decentralised Intelligent Data

MARKetplace

D4.4 Edge data processing and service

certification – Final version

Keywords:

Tools, Data processing

Document Identification
Contractual delivery date: 31/07/2025

Actual delivery date: 28/08/2025

Responsible beneficiary: EGM

Contributing beneficiaries: NUID UCD, SURREY

Dissemination level: PU

Version: 1.0

Status: Final

Document name: D4.4 Edge data processing and service certification – Final version Page: 2 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors

Name Partner

Gilles Orazi, Franck Le Gall, Léa Robert, Iheb Khelifi, Thomas Bousselin EGM

Diarmuid O’Reilly Morgan, Erika Duriakova, Honghui Du

Elias Tragos, Qinqin Wang, Aonghus Lawlor, Neil Hurley

NUID UCD

Tarek Elsaleh SURREY

Document History

Version Date Change editors Change

0.1 19/03/2025 EGM First version of document structure (table of

content)

0.2 25/06/2025 NUID UCD,

SURREY, EGM

Contributions in different sections

0.3 15/07/2025 EGM Finalisation and preparation for review.

0.4 31/07/2025 EGM, SURREY Integrated reviewers comments

0.9 08/08/2025 ATOS Quality Format Review

1.0 28/08/2025 ATOS FINAL VERSION TO BE SUBMITTED

Document Identification

Related WP WP4 Related Deliverables(s): D3.2, D3.4

Document reference: SEDIMARK_D4.4 Total number of pages: 32

Document name: D4.4 Edge data processing and service certification – Final version Page: 3 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

Quality Control

Role Who (Partner short name) Approval date

Reviewer 1 Luis Sanchez (UC) 29/07/2025

Reviewer 2 Stefan Jarcau, Gabriel Danciu (SIE) 17/07/2025

Quality manager María Guadalupe Rodríguez (ATOS) 28/08/2025

Project Coordinator Miguel Ángel Esbrí (ATOS) 28/08/2025

Document name: D4.4 Edge data processing and service certification – Final version Page: 4 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information .. 2

Table of Contents ... 4

List of tables ... 5

List of figures .. 6

List of Acronyms ... 7

Executive Summary ... 9

1 Introduction ... 10

1.1 Purpose of the document .. 10

1.2 Relation to another project work .. 10

1.3 Structure of the document ... 10

2 Report contributions to SEDIMARK environment .. 11

3 Architecture for Edge data processing .. 12

3.1 Introduction ... 12

3.2 Edge-Cloud Orchestration tools... 12

3.3 WebAssembly on MCU ... 14

3.4 Fine timestamping on the edge ... 15

3.5 Energy optimisation on the edge ... 18

4 Framework-agnostic ML model description ... 20

5 Certification Services .. 22

5.1 Data Assets ... 22

5.2 Service Assets .. 23

5.3 AI Model Assets .. 28

5.4 Other Artefacts .. 29

6 Conclusions .. 30

7 References ... 31

Document name: D4.4 Edge data processing and service certification – Final version Page: 5 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

List of tables

Table 1: Impact of correction periodicity over battery life ___________________________ 18

Table 2: Average current consumption depending on number of detected pulses _______ 19

Document name: D4.4 Edge data processing and service certification – Final version Page: 6 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

List of figures

Figure 1: Positioning of distributed processing in SEDIMARK architecture _____________ 10

Figure 2: The SEDIMARK functional architecture. Orange highlights functional components

that are being part of this deliverable. ___ 11

Figure 3: The architecture of the EdgeSpot software architecture to support some user

scripts in WASM. ___ 15

Figure 4: Time drift per minute vs temperature __________________________________ 16

Figure 5: Temperature of the EdgeSpot deployed in a field for RTC bias algorithm testing. 17

Figure 6: The "temperature part" of the bias, with the computed uncertainty. ___________ 18

Figure 7: Model formatting process within SEDIMARK. ____________________________ 21

Figure 8: Taxonomy of Certification services for Assets within SEDIMARK. ____________ 22

Figure 9: Test Case Template ___ 25

Figure 10: Execution log of a query test case in the NGSI-LD test suite _______________ 26

Figure 11: Summary view of NGSI-LD Test Suite results __________________________ 27

Figure 12: Example of configuration from the NGSI-LD Plug Test event _______________ 28

Document name: D4.4 Edge data processing and service certification – Final version Page: 7 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation / acronym Description

AI Artificial Intelligence

API Application Programming Interface

AUC Area Under ROC curve

CPU Central Processing Unit

Dx.y Deliverable number y belonging to WP x

ETSI European Telecommunications Standards Institute

EU European Union

HTTP(S) HyperText Transfer Protocol (Secure)

HTML HyperText Markup Language

IoT Internet of Things

ISO/IEC International Organization for Standardization / International

Electrotechnical Commission

JSON-LD JavaScript Object Notation for Linked Data

KPI Key Performance Indicator

MAE Mean Absolute Error

MCU MicroController Unit

ML Machine Learning

MLOps Machine Learning Operations

NiFi NiagaraFiles (Apache Software Foundation)

NIST National Institute of Standards and Technology

NGSI-LD Next Generation Service Interface – Linked Data

OECD Organisation for Economic Co-operation and Development

ONNX Open Neural Network Exchange

QoS Quality of Service

RDF Resource Description Framework

RDFS RDF Schema

RMSE Root Mean Square Error

Document name: D4.4 Edge data processing and service certification – Final version Page: 8 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

Abbreviation / acronym Description

ROC Receiver Operating Characteristic

RTC Real-Time Clock

SHACL Shapes Constraint Language

SQL Structured Query Language

UI User Interface

URI/URN Uniform Resource Identifier / Uniform Resource Name

UART Universal Asynchronous Receiver-Transmitter:

W3C World Wide Web Consortium

WP Work Package

WASM WebAssembly

YAML YAML Ain't Markup Language

http://encyclopedia2.thefreedictionary.com/Structured+Query+Language

Document name: D4.4 Edge data processing and service certification – Final version Page: 9 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

This report details the final architecture and tools developed within the SEDIMARK project for

edge processing and services certification. The work focuses on providing the foundational

components for managing the entire lifecycle of data and AI assets, from their creation and

processing at the edge to their certification and exchange in the marketplace. The key

contributions establish a framework for AI-driven modules that can be deployed at the data

source, adhering to MLOps principles while managing complex edge-cloud interactions.

A primary achievement of this work is the development of an edge processing

framework designed for resource-constrained environments. Key innovations include:

• WebAssembly (WASM) on MCUs: A secure and sandboxed architecture was

implemented to allow user-defined code to run on low-power microcontrollers, enabling

flexible and frequent updates without compromising the core firmware's stability.

• Fine Timestamping and Energy Optimization: A novel algorithm was developed to

calibrate the on-device Real-Time Clock (RTC) by compensating for temperature-induced

drift. This significantly improves data timestamp accuracy and dramatically reduces the

need for energy-intensive network synchronizations, extending the operational battery life

of edge devices to meet a target of over four years.

• Edge-Cloud Orchestration: An analysis of open-source tools led to the selection and

deployment of platforms like Mage.ai and Apache NiFi to manage distributed data

processing flows between edge devices and the cloud.

To address the challenges of managing AI models in a diverse ecosystem, the project has

established a comprehensive MLOps strategy and a solution for model interoperability. By

adopting MLFlow, SEDIMARK provides a standardized framework for the entire machine

learning lifecycle. A critical innovation is the use of Keras Core to create framework-agnostic

model descriptions. This allows models to be defined once and then seamlessly trained or

used for inference across different backends like TensorFlow, PyTorch, and JAX, which is

essential for fostering collaboration in federated learning scenarios where participants may use

different tools.

Finally, to build a foundation of trust within the marketplace, a multi-faceted conformity

evaluation Service has been designed. This service provides validation for all marketplace

assets:

• Data Assets are certified for conformance with standards like NGSI-LD and Smart Data

Models, ensuring interoperability.

• Service Assets are validated for API compliance, leveraging and contributing to the official

ETSI NGSI-LD Test Suite.

• AI Model Assets undergo a two-fold assessment, verifying not only

their performance against quantitative KPIs but also their trustworthiness based on

principles of fairness, transparency, and security, in alignment with emerging regulations

like the EU AI Act.

Together, these advancements in edge computing, MLOps, and certification provide the core

technical infrastructure for a robust, transparent, and efficient decentralized data marketplace.

Document name: D4.4 Edge data processing and service certification – Final version Page: 10 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

This document is the final version of a reporting of the work in WP4 about tools and processes

for enabling data processing and sharing in an interoperable way at the data sources.

1.2 Relation to another project work

The work in SEDIMARK_WP2, reported in SEDIMARK_D2.1 [1] and D2.3 [2] so far, showed

that the topics of edge computing for data quality, ML models and MLOps especially linked to

federated learning are of special interest in this project. This has driven the work of

SEDIMARK_T4.2, reported in this deliverable.

Figure 1: Positioning of distributed processing in SEDIMARK architecture

As one can see in the Figure 1, this task is at the heart of the SEDIMARK platform, in the layer

dedicated to distributed processing and artificial intelligence. Its primary objective is to create

a framework for the deployment of AI-driven modules that process and share data at edge

data sources. It considers the interactions between edge and cloud systems while adhering to

MLOps principles. It is thus in tight relationship with SEDIMARK_WP3.

1.3 Structure of the document

After a short introduction to the document (the current part) and a quick overview of the

SEDIMARK platform (chapter 2), this document explores two aspects of the management of

these data. In chapter 3, the aspects related to the Edge/Cloud interactions are explored by

first exposing the challenges and requirements for Edge computing (3.2) and then by looking

at how they can be managed by using specific orchestration tools (3.3.1), or how dynamic

processing can be implemented even at far edge (3.3.2), where networking and computing

resources are very limited. Section 4 quickly review the options investigated for managing

interoperability of Machine learning frameworks. Finally, chapter 5 describes a core

contribution of the WP4 in relation to the delivery of certification services within the SEDIMARK

marketplace components and services.

Document name: D4.4 Edge data processing and service certification – Final version Page: 11 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

2 Report contributions to SEDIMARK environment
This deliverable presents the work achieved in Task 4.2, presenting the architecture that has

been developed within SEDIMARK to enable data processing and sharing at the edge.

SEDIMARK is a decentralised system that allows data providers to collect, clean and process

their data at various stages, including at edge devices. This is helpful in cases where large

amounts of data are gathered at edge devices, so that once they are cleaned and processed,

the communication and storage costs at the provider server is significantly reduced.

Additionally, clean data at the edge allows a more efficient machine learning technique, both

for training and for inference purposes. Techniques for data anonymisation at the edge are

also exploited to hide or remove sensitive information, thus either creating anonymised

datasets that can be shared in the marketplace without privacy issues or training ML models

that don’t reveal or leak private data.

Considering that there are many available frameworks used for training ML models,

SEDIMARK also provides a framework for ML model interoperability, exploiting existing well-

known platforms. This helps providers to continue to use the frameworks they are familiar with,

while at the same time being able to download/purchase models from the SEDIMARK

marketplace and use them converting them into their preferred format/framework.

Figure 1 presents the SEDIMARK functional architecture that is described in deliverable

SEDIMARK_D2.3 [2] in detail. With orange highlights are the functional components that are

part of this deliverable. These components are part of three different layers of SEDIMARK,

security, data and intelligence layer

Figure 2: The SEDIMARK functional architecture. Orange highlights functional components

that are being part of this deliverable.

Document name: D4.4 Edge data processing and service certification – Final version Page: 12 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

3 Architecture for Edge data processing

3.1 Introduction

Edge processing, also known as edge computing, refers to the practice of processing data

near the source of generation rather than relying on a centralized cloud-based system. In

traditional computing models, data is sent to a remote datacentre or cloud for processing and

analysis. However, edge processing brings computational capabilities closer to the "edge" of

the network, which is typically where data is generated. In the context of SEDIMARK, this

paradigm is in use for distributed AI as well as for potential delocalization of some of the data

processing pipeline processes.

The environment in which Edge data processing is performed raises multiple constraints that

need to be handled, such as privacy preservation, response time, throughput, and resource

consumption (e.g., CPU, memory, energy, bandwidth), while the latter may influence the

monetary cost. In the following, some of these requirements are to be considered for the

SEDIMARK assets (e.g., Artificial intelligence (AI) model and service assets).

• Bandwidth: While edge data processing reduces the need for transmitting all data to the

cloud (federated learning) or between nodes (gossip learning), there is still a need for

network connectivity. Limited bandwidth can affect data and synopsis transmission to and

from the edge.

• Computing resources: Edge devices often have constrained processing capabilities (e.g.,

memory and storage). Therefore, running complex and massive data processing tasks on

such devices can be challenging.

• Privacy: In the SEDIMARK decentralized environment, privacy naturally arises since

personal and sensitive data will be processed, from which real insights about individual

behaviour, health, or relationships can be inferred.

• Data quality: The data provided within SEDIMARK can be noisy, duplicated, or

incomplete. Ensuring data quality and extracting knowledge from potentially imperfect

data is a challenge that needs to be handled. To do so, SEDIMARK provides curation

techniques to address imperfect data and improve its quality.

These aspects depend on the framework used to handle the processing distribution as well as

the way processes are implemented. In this report, focus is on the tooling which is investigated

in the following section. This updated version reports on the evaluation of the tools made in

the context of ultra-low power edge devices, as well as algorithms tested to increase data

quality on the edge.

3.2 Edge-Cloud Orchestration tools

There exist many edge-cloud orchestration platforms. Identified open-source platforms have

been analysed to evaluate how they could support the handling of a data pipeline distributed

over cloud and edge. They are the following:

• FogFlow: FogFlow is a FIWARE enabler to orchestrate data processing flows between

cloud and edge. It uses intent-based programming. For example, for service consumers,

they can specify which type of results are expected under which type of Quality of Service

(QoS) within which geo-scope; for data providers, they can specify how their data should

be utilized by whom. In FogFlow, orchestration decisions are made to meet those user-

https://fogflow.readthedocs.io/en/latest/
https://github.com/smartfog/fogflow

Document name: D4.4 Edge data processing and service certification – Final version Page: 13 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

definable objectives during the runtime. It became NGSI-LD compliant in September

2022.

• Apache Airflow: Apache Airflow is a platform to programmatically author, schedule and

monitor workflows. It uses Python language to batch processing workflow run at regular

intervals. It does not aim at processing event streams. However, coupling with a service

bus having storage capabilities such as Apache Kafka allows for periodic processing of

stream fragments. Airflow interface is mainly provided for workflows activation and

monitoring. Coding in python remain mandatory for workflows definition. It builds on

Kubernetes to provide auto-scaling. Apache Airflow 3.0 was released in April 2025,

introducing significant architectural changes:

o Service-Oriented Architecture with a new Task Execution API enabling task execution

in remote environments

o Edge Executor supporting distributed, event-driven, and edge-compute workflows

o Asset-Based Scheduling with redesigned dataset model for event-driven DAG

definition

o Enhanced ML and AI Workflow Support with logical_date=None capability for model

inference and hyperparameter tuning

o Modern React UI with complete overhaul built on React and FastAPI

• Mage AI: Mage AI aims at simplifying the Apache Airflow experience. It remains coding

based, allowing Python, R and SQL in the same data pipeline while the User Interface

(UI) focuses on monitoring workflows execution. Both batch and stream processing are

allowed. Pipelines can be configured through the set of global variables. Distributed

processing is part of the roadmap, considering Ray as a distributed execution framework

layer for parallel processing and Dask as Python parallel computing library. Mage AI has

expanded its capabilities during the second period of the project:

o AI-Powered Pipeline Generation from simple prompts, handling setup, code, and

configuration automatically

o Hybrid and Private Cloud Deployment options with cloud control plane and private data

processing

o Enhanced Data Integration with embedded Python logic directly in syncs for data

cleaning and enrichment

• Apache NiFi: Apache NiFi also aims at implementing workflow defined as DAG. However,

in contrast to Airflow, it provides aa highly configurable web-based interface to define the

workflow which can consider either stream or batch processing. Hundreds of existing

connectors enable the ingesting of data from almost any kind of source. External scripts

or executables can be called thus making Apache NiFi completely customizable. NiFi

continues to evolve with recent improvements:

o NiFi 2.0+ Features including stateless mode support and Python custom processor

capabilities

o Enhanced Cloud-Friendly Architecture with stateless flows easier to scale and deploy

in containers

o Improved Real-Time Processing capabilities for streaming data from IoT devices and

AI applications

https://airflow.apache.org/
https://kafka.apache.org/
https://www.mage.ai/
https://www.ray.io/
https://www.dask.org/
https://nifi.apache.org/

Document name: D4.4 Edge data processing and service certification – Final version Page: 14 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

• MiNiFi: Apache MiNiFi is a sub project of Apache Apache NiFi meant to collect data and

process data on the edge. Java (heavier) and C++ (lighter) flavours are provided. Both

are however too large to be executed on a low power, microcontroller based far edge

device.

• StarlingX: StarlingX is an edge cloud infrastructure targeting security, ultra-low latency,

and extremely high service uptime which are requirements from the industrial Internet of

Things (IoT). The underlying hardware layer is expected to run Yocto Linux, whereas

scalability and orchestration are managed by Kubernetes and OpenStack frameworks,

making StarlingX an heavy player.

• OpenNebula: OpenNebula is an open-source framework made to create multi-provider

hybrid & edge clouds. It focuses on the virtual infrastructure layer and while deployment

of containers and microVMs, it does not address the data processing layer.

• EdgeXFoundry: EdgeXFoundry focuses on IoT related use cases. It abstracts IoT

protocols (sensors, actuators and others) and provides device management

(administration and maintenance of IoT devices deployed on the field) capabilities. While

there are still developments on-going, the number of tested devices and protocol adapters

is relatively limited.

Based on this thorough analysis, two main options have been used within the SEDIMARK

project:

• Mage AI, with the identified need to provide an additional customised user interface to

ease management and configuration of pipeline.

• NiFi, deployed as part of the water use case to handle data driven orchestration of the

data service processing flows.

3.3 WebAssembly on MCU

WebAssembly (Wasm) is a binary instruction format that acts as a portable compilation target

for high-level programming languages, enabling efficient execution across a wide range of

platforms, including web browsers and embedded systems. When applied to microcontroller

units (MCUs) WebAssembly unlocks new opportunities for modular, portable, and secure edge

computing because it allows to upload some “user code” to be run and controlled by the

validated firmware. The user code can then be less secured and robust and changed frequently

while the firmware is kept unchanged, robust and fully validated. Using WebAssembly for this

task allows for safe and sandboxed execution of algorithms, simplifies updates and integration

across different MCU-based devices, and promotes code reuse across projects. This makes it

a compelling solution for scalable, low-power edge computing in sensor networks.

We have designed and tested a firmware architecture to support such a scheme. It is depicted

in Figure 3.

https://nifi.apache.org/minifi/
https://www.starlingx.io/
https://opennebula.io/
https://www.edgexfoundry.org/

Document name: D4.4 Edge data processing and service certification – Final version Page: 15 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

Figure 3: The architecture of the EdgeSpot software architecture to support some user scripts

in WASM.

3.4 Fine timestamping on the edge

In many data-driven applications, such as MCU-based monitoring systems, transmitting data

with a precise timestamp is crucial. Accurate timestamps ensure that events can be properly

sequenced, correlated, and analysed (especially when data is collected from multiple sources).

Without precise timing, it becomes difficult to synchronize actions, detect anomalies, or

maintain data integrity. To achieve this level of precision, a calibrated Real-Time Clock (RTC)

is essential. The RTC maintains the system’s internal clock and provides consistent, reliable

timekeeping. However, RTCs can drift over time due to various factors, including

manufacturing tolerances and environmental influences, particularly temperature. Changes in

external temperature can affect the oscillator inside the RTC, causing it to run slightly faster or

slower. This drift, if left uncorrected, results in increasingly inaccurate timestamps.

Document name: D4.4 Edge data processing and service certification – Final version Page: 16 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

For example, a one-year outdoor deployment of a STM32 L4 based IoT box revealed a drift of

approximately 15 minutes. Calibration helps compensate for these variations, aligning the RTC

with actual time standards and ensuring that data is logged and transmitted with high temporal

accuracy.

EGM has developed a Low-Power Pulse Counter from its EdgeSpot platform. It is designed to

detect and count pulses at one-minute intervals. The primary goal of this sensor is to estimate

flow rate by counting pulses each minute. The device is made from the minimal design of the

EdgeSpot hardware platform, paired with a LoRa-E5 module, a LoRaWAN antenna, and a

high-capacity battery. To minimize power consumption, pulse counting is synchronized using

the MCU’s RTC. Every minute, the RTC triggers an alarm indicating the end of the counting

period, prompting the system to store the pulse data. If pulses have been detected during a

15-minute window, a packet containing 15 minutes of pulse data, along with a timestamp, is

transmitted to the cloud via LoRaWAN. The accuracy of the Low-Power Pulse Counter

depends on the precision of the RTC. Although the RTC can be synchronized with the

LoRaWAN server to maintain accurate timing, this operation results in a temporary increase in

power consumption and introduces a dependency on network connectivity, both of which we

aim to minimize.

A study was conducted on the temperature-induced drift of the RTC in EdgeSpot. The

EdgeSpot is equipped with an HTU21D sensor, which provides internal temperature

measurements of the board. During the study, the EdgeSpot’s timestamps were recorded

alongside temperature data and transmitted in real time to a computer via UART serial

communication. This allowed a direct comparison with the computer’s reference time.

Figure 4: Time drift per minute vs temperature

Several tests were conducted at stable, controlled temperatures to estimate the time drift and

generate a curve resembling the temperature-frequency characteristic of a crystal oscillator.

In an RTC, the crystal oscillator serves as the precise timekeeping element, generating a

consistent frequency (typically 32.768 kHz) to count seconds accurately. However, the

frequency of the quartz crystals is sensitive to temperature changes, exhibiting a parabolic drift

centred around their turnover point usually near 25°C. As temperature deviates from this point,

the oscillator’s frequency shifts, causing time to drift in the RTC.

Using the measured data, we fitted a quadratic model which allows us to calculate a

temperature-dependent offset to correct the RTC timestamp in real time. The quadratic model

provides a derivative of the bias as a function of time (in ppm or μs.s-1):

𝑑𝐵

𝑑𝑡
= 𝑎 + 𝑏𝑇 + 𝑐𝑇2 (eq.1)

Document name: D4.4 Edge data processing and service certification – Final version Page: 17 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

Where a, b and c are the parameters of the model, T is the temperature of the oscillator and B

is the estimate of the bias between the RTC time and the real time t.

Since the measurement of the temperature is provided with a given precision by the sensor,

we have also derived uncertainty on the computed value of the bias. So, the estimated bias

value can be used to fix the value given by the RTC and the uncertainty can be used as a

trigger to initiate a network query to reset the internal clock.

The algorithm for computing the bias is based on the numerical integration of this model, where

a measurement of the temperature is provided at regular intervals (typically 1 hour).

We applied this algorithm in an EdgeSpot deployed in an open field. It was thus exposed to

the sun, wind and some cold nights (Figure 5).

Figure 5: Temperature of the EdgeSpot deployed in a field for RTC bias algorithm testing.

The Figure 6 show the bias due to temperature fluctuations computed during the experiment

(integration of equation (1) without a term. Additionally (not shown on picture), there is a

continuous drift of 9.0 sec/day. One can see that, without temperature correction, the bias can

fluctuate within a range of few seconds.

The grey area, on the Figure 6, represents the uncertainty of this correction. It equals 0.05

seconds after 150 days of experiment. This shows that using this simple temperature

measurement and edge computing strategy, that consumes a very low power, we are thus

able to maintain a very good time keeping accuracy, suitable for autonomous IoT operations.

This contributes to a power-saving strategy, as analysed in the following section.

Document name: D4.4 Edge data processing and service certification – Final version Page: 18 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

Figure 6: The "temperature part" of the bias, with the computed uncertainty.

3.5 Energy optimisation on the edge

In the case of the Low-Power Pulse Counter, we analysed the device’s power consumption

with the goal of enabling operation for at least 4 years. To achieve this, the sensor’s firmware

was carefully designed to minimize energy usage. The STM32L4 microcontroller can operate

in a low-power mode, where most peripherals are disabled except for RTC. In this mode,

comparable to a sleep state, the MCU halts execution and remains inactive until it is awakened,

typically by the RTC. While in this state, the Pulse Counter consumes approximately 3µA. The

sensor is only awakened to count pulses via a fast interrupt and to package data once per

minute. Pulse detection raises the consumption to 0.1mA during several milliseconds. The

device transmits the data to the server only if there is enough information to justify a

transmission (every 15 minutes if pulses were detected).

The RTC is responsible for waking up the MCU at one-minute intervals to count pulses. When

active, the MCU consumes at least 1mA, although this value may fluctuate depending on

processing load and peripheral activity. The most energy-intensive operations involve the

LoRaWAN module. For example, establishing a connection with the LoRaWAN server (a Join

request), which must be performed at least once during boot, can cause a current spike of up

to 80mA for about one second depending on the signal quality. A similar spike occurs during

RTC time synchronization, which is performed once per week to prevent significant clock drift.

We selected a weekly synchronization interval to minimize the impact on average power

consumption and consequently, battery life. More frequent corrections could drastically reduce

battery longevity. For example, performing a daily synchronization (lasting up to 20 seconds in

poor signal condition) would raise average current draw to 21.5 µA, while weekly correction

maintains it at 5.6 µA (Table 1).

Table 1: Impact of correction periodicity over battery life

Number of corrections Average consumption Battery life

Once per day 21.5 µA 100 years

Every other day 12.2 µA 176 years

Document name: D4.4 Edge data processing and service certification – Final version Page: 19 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

Number of corrections Average consumption Battery life

Once per week 5.6 µA 383 years

Once per day 21.5 µA 100 years

Number of corrections Average consumption Battery life

However, when accounting for pulse detection and data transmission, the actual battery life is

more realistically estimated between 4 to 10 years. As previously mentioned, enabling pulse

detection increases the current consumption to approximately 0.1 mA. According to

STMicroelectronics specifications, the MCU requires a maximum of 13.3 µs to wake from low-

power mode. Following this, it executes processes to count and store pulses, which we have

experimentally determined to take approximately 5 ms. During data transmission, the device

consumes around 20 mA for at least 20 seconds under poor network conditions. Table 2

provides the computation of the average current consumption.

Table 2: Average current consumption depending on number of detected pulses

Number of pulses per minute Average consumption Battery life

400 443.2 µA 4.9 years

150 441.3 µA 4.9 years

50 440.5 µA 4.9 years

As shown, the number of detected pulses has a minimal impact on battery life. The primary

factor influencing power consumption is data transmission, which occurs every 15 minutes, but

only if pulses have been detected during that interval. Therefore, it is network communication

that significantly affects battery longevity and should be optimized wherever possible.

To further reduce the frequency of energy-intensive time synchronization, the RTC calibration

module offers a promising solution. By leveraging temperature data to estimate and correct

drift locally, the system can maintain accurate timing with fewer network interactions. In

comparison, the energy required for a temperature measurement is negligible. The HTU21D

sensor, for instance, consumed just 0.02 µA in idle mode and up to 450 µA during a brief

measurement. Integrating local time correction based on temperature could significantly

improve pulse timing accuracy while reducing overall power consumption.

Document name: D4.4 Edge data processing and service certification – Final version Page: 20 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

4 Framework-agnostic ML model description
Interoperability of neural network models between frameworks is a key development area

within the ML research community. A plethora of frameworks exist for defining and training

neural network models, with PyTorch [3], Tensorflow [4], and JAX [5] being the most popular

from a research and development perspective. There are two broad modes of framework

interoperability. On the one hand, a user might wish to deploy a model defined and trained in

a framework optimized for inference at scale. On the other hand, it might be preferable to

distribute a model definition in a common format that enables continued training within a

framework of choice. This is especially the case within distributed or federated learning, where

the sharing of raw Python code can present a security risk.

In general code written using the syntax and abstractions of one framework cannot be easily

ported to another framework. As shown in [6], there are many converters between individual

frameworks, but still the picture is incomplete, since there are many cases where no converter

exists between two frameworks (i.e. between Theano [7] and caffe2 [8]). Additionally, there

can be converters from i.e. framework 1 to framework 2, but no converters for the opposite

conversion from framework 2 to framework 1, as in the case of ONNX to torch using

onnx2torch, but no converter from torch to ONNX. Given the rapid pace of development,

maintaining converters is a problem, and many frameworks may lack equivalent operators,

and thus they will have to be re-implemented by the converter developer [9]. Small differences

in the implementation of neural network components between frameworks might also result in

differing model behaviour when models are ported from one framework to another, while it is

noted by [9] that these converters can often introduce subtle bugs and security problems.

In the case of model deployment and inference, most of the popular frameworks contain a

module or method for porting code to Open Neural Network Exchange (ONNX) [10], a common

intermediary depiction which represents the network as a language agnostic graph, that can

then be compiled and deployed in one of several inference run-times. SEDIMARK will allow

for the export of models to ONNX format for the purpose of inference. However, ONNX does

not fully support the retraining of models.

As seen in the table from [6], most conversions between frameworks are based on the MMdNN

project [11], which is an attempt to define a “Universal Converter” for deep learning models to

allow both inference and re-training of ML models across different frameworks. MMdNN

converts model formats to an “Intermediate Representation”, and from that, converts the model

to the target platform format. However, MMdNN is only focusing on a subset of deep learning

models and currently is not maintained on GitHub, with its latest commit more than 3 years

ago.

There are ongoing attempts to remedy this problem in a more holistic manner - for instance

the commercial effort Ivy [12] from unify.ai aims to offer code transpiration between

frameworks, though requires an Application Programming Interface (API) key for use and did

not appear to work out of the box when tested. There is currently not fully inclusive, open-

source solution to the problem of transferring models between frameworks for continued

training.

A recent update to the popular framework Keras [13] will support code written in Keras being

run with either Jax, Pytorch or Tensorflow as a backend. Both inference and continued model

training are supported. Though the Keras API imposes limitations on the class of models that

can be defined within it, for most general use-cases it proves sufficient.

https://github.com/microsoft/MMdnn
https://github.com/microsoft/MMdnn

Document name: D4.4 Edge data processing and service certification – Final version Page: 21 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

SEDIMARK builds upon the newly released Keras Core Python package to offer a degree of

interoperability for the purpose of further training models in distributed settings (see Figure 7).

Models defined in this format can be seamlessly exported to either JAX, Tensorflow or Pytorch,

though the reverse is not true. While allowing for a choice of back-end and providing a common

format for participants in the SEDIMARK distributed learning ecosystem, this does effectively

restrict users to the Keras syntax and abstractions when defining their models.

Figure 7: Model formatting process within SEDIMARK.

Going forward SEDIMARK explored alternatives, such as the ONNX training-runtime, which is

still undergoing development. Keras-core has already been implemented as the model format

within both SEDIMARK distributed training components (Fleviden and deFlight), and

performance has been tested with nodes running each of the three underlying frameworks it

supports.

Document name: D4.4 Edge data processing and service certification – Final version Page: 22 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

5 Certification Services
Assets advertised through offerings made available through the Marketplace vary in terms of

quality and performance. Although, it is mandatory to pass a minimum set of requirements for

them to be minimally viable and exchangeable assets. This involves checking for compliance:

• Assets with standards specified by the Marketplace.

• Connectors with the minimal set of operations.

• Use of Assets in accordance with license or policy restrictions.

Figure 8 illustrates the categorization of certification services for a particular type of Asset.

Figure 8: Taxonomy of Certification services for Assets within SEDIMARK.

The services for certification are contained within a dedicate suite service exposed via RESTful

interface [14].

5.1 Data Assets

For data assets, their formatting, annotation, and enrichment need to comply with the

information model standards specified by SEDIMARK. Information regarding both metadata

and data needs to be assessed for consistency. This involves checks for quality and

compliance within domain-specific parameters. With regards to information consistency, a

subset of generic data quality metrics defined in SEDIMARK deliverable D3.2 are used, as well

as metric governed by domain-specific restrictions or ranges.

Data Assets are certified based on Standard Conformance and Information Consistency

Document name: D4.4 Edge data processing and service certification – Final version Page: 23 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

Standard Conformance

The SEDIMARK Marketplace allows Participants to provide Data Assets at different

conformance, although SEDIMARK recommends that Participants to provide the highest level

to maximize its streamlining with Consumer data and AI workflows. The different levels are as

follows:

• L1 Conformance = Proprietary

• L3 Conformance = Proprietary + NGSI-LD Mapping (Entity, Specific Properties, Generic

Properties)

• L3 Conformance = NGSI-LD + JSON-LD

• L4 Conformance = NGSI-LD + JSON-LD + Smart Data Model

Level 1 is the lowest level of conformance, in which the Data Asset format is purely proprietary.

Most Data Assets in this format will not be generated through the generic workflows supported

by the SEDIMARK Orchestrator and will be provisioned as is from the original data source.

Level 2 involves providing a mapping configuration whereby entities in the proprietary Data

Asset are mapped to NGSI-LD model concepts.

Level 3 ensure Data Asset are modelled in NGSI-LD and serialised in the JSON-LD format.

Level 4 is the highest level of conformance, whereby a Data Asset complies also with a

standard that provides a thematic vocabulary in relation to domains of interest, entity types

and special properties such as units of measurement. The reference theme vocabulary that is

used in SEDIMARK is the Smart Data Model standard which is detailed in SEDIMARK

deliverable D3.4 [15].

Information Consistency

Consistency is determined by the quality of the Data Asset, and its compliance with domain-

specific boundaries. This stage of certification is secondary to the Standard Conformance

stage.

Data Assets also have metadata that captures data quality metrics, mainly based on those

identified in SEDIMARK deliverable D3.2. This information is generated as a by-product of the

Asset generation process within the Orchestrator and represented as a

DataQualityAssessment Entity in NGSI-LD, which is also a model originating from the Smart

Data Model standard. This will be retrieved by the certification suite when a Data Asset is being

assessed.

In relation to domain-specific assessment, Data Assets covering a particular theme require

that values for thematic properties are within the boundaries or limits relative to that domain.

For examples, temperature values in a Weather-based use case will have different range of

values, as opposed to the temperature values captured from a Vehicle’s engine.

5.2 Service Assets

For Service Assets, the set of operations available through their corresponding interfaces are

checked to ensure that they conform to the standards adopted for data sharing interfaces. For

example, NGSI-LD is currently the main interface for Data Sharing, therefore the technical

specification on validating NGSI-LD platforms is used as a reference. For that purpose,

contributions have been made to the on-going development at ETSI of a test specification [16]

and a testing environment [17] to ensure that various NGSI-LD implementations comply with

the ETSI NGSI-LD API specification. The tool is developed with Robot Framework, which is

Document name: D4.4 Edge data processing and service certification – Final version Page: 24 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

an open-source test automation framework. Written in Python, Robot Framework uses

versatile syntax that helps in creating readable and maintainable test cases. It also provides

embedded servers for HTTP and Mock requests.

The Test Suite focuses on verifying the compliance of different key functionalities defined in

the NGSI-LD specification such as:

• Context Information Provision: which tests the creation, update and deletion of context

information

• Context Information Consumption: which tests the retrieval and query of context

information

• Context Information Subscription: which tests subscribing to context information changes

and receiving notifications

• Context Source Registration: which tests registration and discovery of context information

• Distributed Operations: which tests interoperability between different implementations.

The Test Suite is organized into several modules corresponding to each key functionality

described above. In addition to these, it includes modules for configuration files, reusable test

data, libraries, and scripts used to generate documentation of the test cases. This modular

organization ensures that the Test Suite is maintainable, easy to navigate, and scalable as the

NGSI-LD specification evolves.

Each test case begins by creating the necessary test entities in a Suite Setup. After execution,

the Test Suite performs a clean-up in Suite Teardown. The test case includes clear

documentation and tags referencing the NGSI-LD specification section. The Figure 9 shows

the template used for defining test cases.

Figure 10 shows an example of a test case execution from the NGSI-LD test suite.

To execute the Test Suite, the environment must be set up by downloading a configuration file

and executing the scripts inside. These scripts install different software requirements and

create a Python Virtual Environment where the test cases can be launched.

The Test Suite is available on GitLab [18] and it includes comprehensive documentation

covering installation, configuration, and usage instructions.

Document name: D4.4 Edge data processing and service certification – Final version Page: 25 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

Figure 9: Test Case Template

Document name: D4.4 Edge data processing and service certification – Final version Page: 26 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

Figure 10: Execution log of a query test case in the NGSI-LD test suite

The NGSI-LD Test Suite generates a detailed HTML report after execution, summarizing the

outcome of each test case. The Figure 11 shows a sample report highlighting:

• The total number of test cases executed

• How many passed, failed, or were skipped

• Execution time per test group

• A breakdown of results grouped by specification tag (e.g., 4_5_5), referring to the NGSI-

LD specification chapters.

Document name: D4.4 Edge data processing and service certification – Final version Page: 27 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

Figure 11: Summary view of NGSI-LD Test Suite results

We also contributed to the Plug Test event organized in Sophia Antipolis, Nice by ETSI, which

brought together multiple teams and implementations of the NGSI-LD standard. This event

served as a practical interoperability test, where different NGSI-LD-compatible platforms and

components were integrated and tested in real-time scenarios. The main objective was to

verify that these implementations can exchange data, perform context operations (such as

queries and updates), and comply with the NGSI-LD specification. Interoperability testing plays

a critical role in ensuring that all implementations behave consistently and predictably when

communicating with each other. The following Figure 12 illustrates a representative

configuration used during the Plug Test.

Document name: D4.4 Edge data processing and service certification – Final version Page: 28 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

Figure 12: Example of configuration from the NGSI-LD Plug Test event

5.3 AI Model Assets

In the context of the SEDIMARK platform, AI model assets are critical functional components

that deliver predictive insights across multiple domains, including energy forecasting and

customer churn. As such, their inclusion in the SEDIMARK Marketplace demands rigorous

certification processes to ensure that they meet operational performance standards and exhibit

trustworthy behaviour. The certification of AI model assets is two-fold; verification of

performance-related KPIs, and evaluation of the trustworthiness of the AI model in alignment

with international standards and ethical AI guidelines.

AI models must demonstrate acceptable levels of accuracy and reliability in the tasks for which

they are certified. As part of their onboarding and validation into the SEDIMARK ecosystem,

models are required to include a performance profile derived from test datasets (either

synthetic or real, if available and permitted). The following quantitative KPIs are assessed:

Classification Models (e.g., for churn prediction):

• Accuracy: Percentage of correct predictions over total predictions.

• Precision/Recall/F1-score: Measures of relevance and completeness.

• Confusion Matrix: Breakdown of true/false positives/negatives.

• Area Under ROC Curve (AUC): Sensitivity-specificity trade-off.

AI/ML models Regression Models (e.g., for energy forecasting):

• Mean Absolute Error (MAE): Average magnitude of errors.

Document name: D4.4 Edge data processing and service certification – Final version Page: 29 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

• Root Mean Square Error (RMSE): Penalizes larger errors.

• R² (Coefficient of Determination): How well data fits the model.

These metrics are expected to meet minimum quality thresholds depending on the domain of

use and training context. For example, a churn model may be expected to achieve at least

85% F1-score on test datasets, while an energy forecasting model may require an RMSE

below a sector-defined baseline.

In practice, performance metrics are collected and attached as metadata to each AI model

asset within the Toolbox registry or Marketplace catalogue, supporting transparency and

reuse.

Furthermore, AI model assets promote the inclusion of trustworthy AI practices, which are

necessary to ensure ethical use, user confidence, and regulatory compliance. The certification

process therefore includes a trust assessment, inspired by frameworks from NIST, OECD, and

ISO/IEC 24028. Key pillars of AI trustworthiness include:

• Validity and Reliability: The model produces consistent and correct outputs under varying

conditions.

• Transparency & Provenance: Certification requires traceability of the training dataset

origin, data quality assessment, and clear documentation of model structure and

hyperparameters.

• Fairness and Bias Mitigation: Providers must submit fairness testing results across

protected variables (e.g., gender, age) and describe any bias mitigation techniques

applied.

• Security and Resilience: Models must be tested against adversarial vulnerabilities (e.g.,

via robustness testing) and demonstrate fallback mechanisms.

• Privacy Compliance: Models trained on personal data must document anonymization

techniques and comply with GDPR obligations. Edge deployments must ensure local

processing where necessary.

This certification framework ensures that only responsible, performant, and transparent AI

models are made available as assets in the SEDIMARK platform. It fosters user confidence,

supports the reusability and auditability of AI components, and aligns with emerging EU AI

regulatory frameworks such as the AI Act.

5.4 Other Artefacts

The certification suite also contains the validation of Offerings as detailed in SEDIMARK

deliverable D3.4. The assessment of Offering is based on graph-based data representation is

SHACL (Shapes Constraint Language) [19] which is a W3C specification aimed at validating

the compliance of a graph by checking its “shape” comply to the expectation.

Document name: D4.4 Edge data processing and service certification – Final version Page: 30 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

6 Conclusions
This document details the architecture, tools, and processes developed to enable intelligent

and distributed data processing within the SEDIMARK platform. The work provides the

foundational components for managing the entire lifecycle of data and AI assets, from their

creation at the edge to their certification and exchange in the marketplace.

A contribution has been the evaluation of edge data processing approaches for low power (far

edge) devices. By investigating and implementing solutions for resource-constrained

environments, the project has demonstrated the feasibility of deploying advanced

functionalities on low-power devices. The use of WebAssembly (WASM) on MCUs allows for

secure and flexible execution of user code but lacks developer support in some MCUs while

new frameworks such as µpython seem to offer wider appropriation. The development of a

RTC calibration algorithm ensures precise data timestamping by compensating for

environmental factors like temperature. These innovations, combined with energy

optimization techniques, enable long-term, autonomous operation of edge devices, which is

critical for the project's use cases. The analysis and selection of orchestration tools

like Mage.ai and Apache NiFi provide the necessary mechanisms to manage these distributed

data flows between the edge and the cloud.

The establishment of a multi-faceted Certification Service represents a cornerstone of the

SEDIMARK platform's commitment to trust and quality. This service provides a systematic

methodology for validating all marketplace assets:

• Data Assets are certified against multiple conformance levels, ensuring they comply with

the NGSI-LD standard and domain-specific information models.

• Service Assets are validated for API compliance, leveraging and contributing to

standardized test suites like the ETSI NGSI-LD Test Suite to guarantee interoperability.

• AI Model Assets undergo a two-fold assessment, verifying not only

their performance through quantitative KPIs but also their trustworthiness against key

principles such as fairness, transparency, and security.

Collectively, these advancements provide the essential technical infrastructure for a truly

decentralized and intelligent data marketplace. By enabling interoperable data processing at

the edge and ensuring all assets are certified for quality and compliance, this work lays the

groundwork for a trusted ecosystem where data and AI models can be shared and monetized

securely and efficiently.

Document name: D4.4 Edge data processing and service certification – Final version Page: 31 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

7 References

[1] SEDIMARK, “D2.1 Use cases definition and initial requirement analysis,” 2023, June.

[2] SEDIMARK, “D2.3 SEDIMARK Architecture and Interfaces. Final version,” 2024,

September.

[3] [Online]. Available: https://pytorch.org/.

[4] [Online]. Available: https://www.tensorflow.org/.

[5] [Online]. Available: https://jax.readthedocs.io/en/latest/.

[6] ysh329, “Deep learning model convertors,” [Online]. Available:

https://github.com/ysh329/deep-learning-model-convertor.

[7] [Online]. Available: https://github.com/Theano/Theano.

[8] [Online]. Available: https://caffe2.ai.

[9] Z. M. G. C. K. L. T. X. L. &. C. C. Deng, “Differential Testing of Cross Deep Learning

Framework {APIs}: Revealing Inconsistencies and Vulnerabilities,” in 32nd USENIX

Security Symposium, 2023.

[10] [Online]. Available: https://onnx.ai/.

[11] Y. C. C. Z. R. Q. T. J. X. L. H. &. Y. M. Liu, “Enhancing the interoperability between

deep learning frameworks by model conversion. In Proceedings of the 28th ACM

Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering,” in Proceedings of the 28th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the Foundations

of Software Engineering, 2020.

[12] D. P. F. F. F. J. S. &. C. R. I. Lenton, “Templated deep learning for inter-framework

portability,” [Online]. Available: https://doi.org/10.48550/arXiv.2102.02886.

[13] [Online]. Available: https://keras.io/.

[14] SEDIMARK, “Certification suite source code,” [Online]. Available:

https://github.com/Sedimark/certification-suite.

[15] SEDIMARK, “D3.4 - Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version,” 2025.

[16] ETSI, “ETSI GS CIM 014 V3.1.1 - NGSI-LD Test Suite,” 07 2025. [Online]. Available:

https://www.etsi.org/deliver/etsi_gs/CIM/001_099/014/03.01.01_60/gs_CIM014v030

101p.pdf .

Document name: D4.4 Edge data processing and service certification – Final version Page: 32 of 32

Reference: SEDIMARK_D4.4 Dissemination: PU Version: 1.0 Status: Final

[17] ETSI, “NGSI-LD Test Suite,” [Online]. Available: https://forge.etsi.org/rep/cim/ngsi-ld-

test-suite.

[18] ETSI, “NGSI-LD Test Suite,” [Online]. Available: https://forge.etsi.org/rep/cim/ngsi-ld-

test-suite.

[19] W3C, “Shapes Constraint Language (SHACL),” [Online]. Available:

https://www.w3.org/TR/shacl/.

	Document Information
	Table of Contents
	List of tables
	List of figures
	List of Acronyms
	Executive Summary
	1 Introduction
	1.1 Purpose of the document
	1.2 Relation to another project work
	1.3 Structure of the document

	2 Report contributions to SEDIMARK environment
	3 Architecture for Edge data processing
	3.1 Introduction
	3.2 Edge-Cloud Orchestration tools
	3.3 WebAssembly on MCU
	3.4 Fine timestamping on the edge
	3.5 Energy optimisation on the edge

	4 Framework-agnostic ML model description
	5 Certification Services
	5.1 Data Assets
	5.2 Service Assets
	5.3 AI Model Assets
	5.4 Other Artefacts

	6 Conclusions
	7 References

