
This document is issued within the frame and for the purpose of the SEDIMARK project. This project has

received funding from the European Union’s Horizon Europe Framework Programme under Grant Agreement

No.101070074. and is also partly funded by UK Research and Innovation (UKRI) under the UK government’s

Horizon Europe funding guarantee. The opinions expressed and arguments employed herein do not

necessarily reflect the official views of the European Commission or UKRI.

The dissemination of this document reflects only the authors’ view, and the European Commission or UKRJ are not responsible

for any use that may be made of the information it contains.

This document and its content are the property of the SEDIMARK Consortium. The content of all or parts of this document can

be used and distributed provided that the SEDIMARK project and the document are properly referenced.

Each SEDIMARK Partner may use this document in conformity with the SEDIMARK Consortium Grant Agreement provisions.

SEcure Decentralised Intelligent Data

MARKetplace

D4.2 Decentralized Infrastructure and Access

Management - Final version

Keywords:

Decentralisation, Identity, SSI, Authentication, Tokenisation, Catalogue, Connectors

Document Identification
Contractual delivery date: 31/07/2025

Actual delivery date: 30/09/2025

Responsible beneficiary: LINKS

Contributing beneficiaries: LINKS, UC, SURREY

Dissemination level: PU

Version: 1.0

Status: Final

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 2 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors

Name Partner

Alberto Carelli

Michele Festa

LINKS

Pablo Sotres

Juan Ramón Santana

Víctor González

Jorge Lanza

Luis Sánchez

UC

Tarek Elsaleh

Sneha Hanumanthaiah,

Anuroop Keshav

SURREY

Document History

Version Date Change editors Change

0.1 14/03/2025 LINKS First version of document (Table of Content)

0.2 04/06/2025 LINKS Initial contributions in Sect. 2

0.3 12/06/2025 LINKS Update Sect. 3, 4, 5

0.4 18/06/2025 UC Contribution in Sect. 3.3

0.5 25/06/2025 SURREY Contribution in Sect. 3.4

0.6 15/07/2025 LINKS Update Sect. 6

0.7 28/08/2025 SURREY Update Sect. 3, 4

0.8 03/09/2025 UC Update Sect. 2, 4, 5

Document Identification

Related WP WP4 Related Deliverables(s): SEDIMARK_D4.1

Document

reference:

SEDIMARK_D4.2 Total number of pages: 54

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 3 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

Document History

0.92 16/09/2025 LINKS Version ready for Technical Reviews

0.95 30/09/2025 LINKS Version ready for Quality Review

0.97 30/09/2025 ATOS Quality Review Form

1.0 30/09/2025 ATOS FINAL VERSION TO BE SUBMITTED

Quality Control

Role Who (Partner short name) Approval date

Reviewer 1 Nikolaos Babis (MYT) 30/09/2025

Reviewer 2 Thomas Bousselin (EGM) 19/09/2025

Quality manager María Guadalupe Rodríguez (ATOS) 30/09/2025

Project Coordinator Miguel Ángel Esbrí (ATOS) 30/09/2025

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 4 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information .. 2

Table of Contents ... 4

List of Figures ... 6

List of Acronyms ... 7

Executive Summary ... 9

1 Introduction ... 10

1.1 Purpose of the document .. 10

1.2 Structure of the document ... 10

2 Interactions in a Secure and Decentralized Marketplace ... 11

2.1 Foundations: Decentralization in the Marketplace ... 11

2.2 Entities and Interactions in the Marketplace .. 11

3 Core Technologies for Decentralization .. 21

3.1 IOTA DLT .. 21

3.2 IOTA Smart Contract (ISC) chain .. 22

3.3 Dataspace Protocol ... 23

3.4 Distributed Triple Stores Protocol .. 23

3.4.1 Decentralised Offering Management ...24

3.4.2 Decentralised Query Resolution ..28

3.4.3 Node Dynamics and Resilience ...28

4 Implementation Perspectives .. 30

4.1 Connector ... 30

4.2 Catalogue .. 32

4.3 Issuer .. 35

4.4 Verifier ... 36

4.5 DLT-Booth ... 37

4.6 Main Libraries .. 38

5 Digital Identity and Access Management... 40

5.1 Background: Self-Sovereign Identity (SSI) .. 40

5.2 Identity Data Models – Final Version ... 41

5.2.1 DID Document ...41

5.2.2 Verifiable Credentials ...42

5.3 Authentication ... 45

5.4 Authorization and Access Policies ... 46

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 5 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

6 Tokenization ... 49

6.1 Types of Tokens and Standards .. 49

6.2 Smart Contracts Overview and Token Creation ... 50

6.3 Token usage and available operations .. 51

7 Conclusions .. 52

8 References ... 53

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 6 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1: Marketplace - core entities and interactions .. 12

Figure 2: Architecture of onboarding stage ... 15

Figure 3: Architecture of offering lifecycle in the marketplace................................... 16

Figure 4: Overview of catalogue architecture in the marketplace 17

Figure 5: Architecture of offering negotiation, agreement tokenization and asset

exchange .. 19

Figure 6: Anchoring between the DLT layers.. 22

Figure 7: Interaction Sequence for Centralised Mode .. 25

Figure 8: Interaction Sequence for Decentralised Mode ... 26

Figure 9: Triple Store Distribution Mechanism .. 27

Figure 10: Decentralised Query Resolution .. 28

Figure 11: Contract Negotiation Protocol [19] (a) and Transfer Process Protocol [20]

(b) FSMs ... 31

Figure 12: Detail of the IDS transfer data plane interactions between connectors ... 32

Figure 13: Centralised Catalogue Deployment ... 33

Figure 14: Decentralised Catalogue Deployment using BIF-sharded Local

Catalogues ... 34

Figure 15: Decentralised Deployment using Federated Local Catalogues at Provider

Domains ... 34

Figure 16: Decentralised Deployment using Local Catalogues at Provider Domains

 ... 35

Figure 17: Example of DID Document .. 42

Figure 18: VC data model and VP data model ... 42

Figure 19: Application-layer Holder authentication process. 45

Figure 20: Example of SEDIMARK offering ODRL policy ... 48

Figure 21: Digital asset tokenization ... 49

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 7 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation / acronym Description

API Application Programming Interface

CRUD Create, Read, Update, Delete

DCAT Data Catalogue Vocabulary

DT Datatoken

DTSC Datatoken Smart Contract

DID Decentralize Identifier

Dx.y Deliverable number y belonging to WP x

DAG Directed Acyclic Graph

DKG Distributed Key Generation

DLT Distributed Ledger Technology

DTS Distributed Triple Store

EC European Commission

EDC Eclipse Dataspace Components

EVM Ethereum VM

FRESC Fixed-Rate Exchange Smart Contract

FT Fungible Token

GSP Graph Store Protocol

IDSA International Data Spaces Association

IPFS InterPlanetary File System

ISC IOTA Smart Contract

JWT JSON Web Token

L1 Layer 1

L2 Layer 2

ML Machine Learning

MVM Minimum Viable Marketplace

NFTSC NFT Smart Contract

NFT Non-Fungible Token

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 8 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

Abbreviation / acronym Description

ODRL Open Digital Rights Language

P2P Peer-to-Peer

PDP Policy Decision Point

PEP Policy Enforcement Point

RDF Resource Description Framework

REST REpresentational State Transfer

SC Smart Contract

SDK Software Development Kit

SSI Self-Sovereign Identity

TLS Transport Layer Security

UCs Use Cases

UTXO Unspent Transaction Output

VC Verifiable Credential

VM Virtual Machine

VP Verifiable Presentation

WP Work Package

W3C World Wide Web Consortium

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 9 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

In response to the growing demand for secure and transparent data exchange, the

infrastructure of SEDIMARK Marketplace leverages cutting-edge technologies to establish a

resilient network.

The decentralization approach ensures increased security, transparency, and user-centric

control both over different types of assets and user identity information. The SEDIMARK

Marketplace leverages distributed ledger technologies to establish a resilient and scalable

infrastructure. The decentralized architecture of the marketplace is built on a robust distributed

ledger employed for user identity management, as well as blockchain foundation, fostering

tamper-resistant contracts.

This deliverable presents the final version of the Decentralized Infrastructure employed for the

SEDIMARK Marketplace and the APIs that enable the functionalities satisfying the

requirements and the objectives for the Project. It represents an important capstone for every

stakeholder that plans to use the Marketplace for offering assets and consuming data and

services. Here, after a careful examination and design process across all the partners of the

project, the final version of the SEDIMARK Marketplace is shaped and consolidated. This

document stems from the previous capstone realized with Deliverable SEDIMARK_D4.1 [26]

and Deliverable SEDIMARK_D3.4 [25] in December 2023. The current deliverable builds upon

the previous version, extending its scope and functionality. This document highlights the key

differences, changes, and additions made since the last iteration, providing a clear overview

of the enhancements and improvements implemented in this version. Additionally, each

section of the current deliverable includes context and rationale for the updates, ensuring a

comprehensive understanding of the project's evolution.

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 10 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

This document serves as a comprehensive exploration of the final version of the decentralized

infrastructure and access management framework implemented within the SEDIMARK

Marketplace.

The main goal is to consolidate, update and describe the underlying architecture that enables

the decentralisation in the SEDIMARK Marketplace. The aim is to provide a clear

understanding of the design principles, functionalities, and benefits associated with the

decentralized infrastructure that leads to an improved trustworthiness of the Marketplace.

Additionally, the aspects related to the access management of users of the platform are

considered in the framework of Self-Sovereign Identity (SSI). Moreover, the mechanisms and

the components that implement the core business logic of the Marketplace are mapped onto

these features.

Finally, this document also aims to provide the details about how the tokenization of the assets

exchanged together with Smart Contracts chains enable SEDIMARK as a secure and

decentralized marketplace.

1.2 Structure of the document

The document is organized as follows:

Section 1 introduces the objective of the document.

Section 2 presents the updated interactions considered taking place in a marketplace and how

those are mapped in the final SEDIMARK architecture.

Section 3 reviews the decentralised infrastructure, i.e., the foundation of the Marketplace, and

the decentralized offering management providing the related relevant updates.

Section 4 describes the final version of the realized components involved in the infrastructure

according to an implementation point-of-view.

Section 5 focuses on the access management mechanisms that regulate and control Users’

capabilities into the marketplace.

Section 6 analyses the tokenization framework that allows the assets to be traded in the

marketplace.

Section 7 concludes and summarizes the document.

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 11 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

2 Interactions in a Secure and Decentralized

Marketplace
This section defines the core entities and explores the various interactions that take place in

the marketplace. In the SEDIMARK Marketplace there are different participants who move the

assets of interest: from the providers who generate and sell valuable assets to the consumers

who seek valuable insights. The target of the SEDIMARK marketplace is to foster

collaborations and facilitate the seamless exchange of data relying onto a secure and

decentralized infrastructure.

2.1 Foundations: Decentralization in the Marketplace

The key objectives of the project require a decentralised, intelligent, trustworthy and

interoperable data and services marketplace. The SEDIMARK Marketplace provides such

decentralized environment for the exchange of data and other assets between different parties.

The core of the SEDIMARK Marketplace is a fully decentralized solution that eliminates any

single point of data collection or failure. This approach empowers data providers to retain their

data locally, on their own premises, and only share it with the desired consumers. The

decentralized architecture of SEDIMARK facilitates peer-to-peer communication among

various participating nodes (providers, consumers, etc.), avoiding the need for intermediate

nodes. This in turn allows consumers to access providers' assets directly.

The Marketplace's architecture utilizes IOTA Distributed Ledger Technology (DLT), which

ensures seamless application interactions, protects users from intermediary value extraction,

and efficiently manages high transaction volumes. Additionally, IOTA supports parallel

transaction processing and, combined with tokenization and Layer 2 Ethereum VM-compatible

(EVM) chains, fosters new types of interoperable digital economies. Unlike traditional

blockchains, IOTA employs a particular data structure that permits interactions at any time,

enabling operations to occur simultaneously rather than relying on linear blocks processed at

fixed intervals.

From an architectural point-of-view, the employed technology can be partitioned in two

interacting layers: Layer 1 (L1) – IOTA Tangle and Layer 2 (L2) – IOTA Smart Contract

Framework (ISC). The information in these layers is distributed across a network of nodes.

Together, these layers compose the logic of the decentralized infrastructure and help enforce

access policies of the Marketplace. In particular, L1 is responsible for managing participant

identities. These two layers have the role of defining the decentralised infrastructure as well as

contribute to enforcing access policies. L1 is employed for the management of the identity of

the participants, while L2 is implements the core business logic of the Marketplace, i.e.,

enables the discovery and trading of assets.

The layers are detailed in Section 3 in the past SEDIMARK_D4.1 deliverable [26]. The actual

implementation, together with the final physical architecture is described in SEDIMARK_D3.4

deliverable [25].

2.2 Entities and Interactions in the Marketplace

The SEDIMARK Marketplace is composed of various entities that interact to facilitate the

exchange of data and services. The entities and their interactions are crucial to understand the

Marketplace functionalities provided to its users. This section provides an overview of the

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 12 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

entities involved, their roles, and the dynamics of their interactions in the final version of the

Marketplace, building upon the foundational concepts established in the previous version of

the deliverable SEDIMARK_D4.1 [26]. From a high-level perspective, the core entities and

their interactions remain consistent with the previous version of this deliverable, ensuring

continuity with the functionalities already defined and developed in the first part of the project.

The high-level view of the entities and their interactions is reported in Figure 1.

Figure 1: Marketplace - core entities and interactions

The key entities in the SEDIMARK Marketplace are its users (or participants). Users are the

main actors in the ecosystem that provide and/or consume services. More specifically, a user

can be a Consumer or a Provider.

Consumers are individuals or organizations that purchase and utilize data and services for a

variety of own purposes. The main activities of consumers in the Marketplace are:

• Asset Acquisition (Purchase): Consumers look at the offerings, evaluate the ones(s)

desired and based on its own subjective criteria decide whether to complete the purchase.

• Asset Utilization (Access): Once assets are acquired, consumers can use them by

accessing them. They might also integrate them into workflows, analyses, or applications,

leveraging insights to make careful decisions.

Providers are entities that supply data, access to data, or services such as machine learning

(ML) models to Consumers within the marketplace. They play a crucial role in the ecosystem

complementary to the Consumers. Their main activities are related to the Offerings Publication:

Providers can offer a variety of assets, including structured and unstructured data, as well as

pre-trained machine learning models and tools. The Consumers create the respective offerings

of the assets (e.g., data, ML models, etc.) they are willing to sell.

Also, the Providers are essential to the ecosystem, offering valuable assets that meet the

various need of the Consumers. They can supply a range of data types, encompassing both

structured and unstructured data. This may include datasets related to demographics, financial

transactions, weather patterns, social media activity, and more. It has to be pointed out that in

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 13 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

the context of SEDIMARK, Providers will deliver datasets covering the four specific Use Cases

(UCs) outlined in SEDIMARK_D2.1 [14]. Moreover, beyond selling raw data, some providers

may also offer access to pre-trained machine learning models or other analytical tools. This

diversification enhances the variety of the SEDIMARK Marketplace's offerings.

The issuer is another crucial entity within the SEDIMARK Marketplace, particularly in the

context of Self-Sovereign Identity (SSI). The main activity is the provisioning of Verifiable

Credentials (VCs) to the external users who wants to join the Marketplace. It can be considered

as the main point of entrance to the Marketplace. More details are reported in Section 4.3.

After completing the onboarding operation with the Issuer, the users can employ the

Catalogue. The Catalogue is another key entity of the Marketplace. It allows the users to

browse existing offerings in the SEDIMARK Marketplace. Additional details on the operations

enabled by the catalogue are given in Section 4.2.

The different operations needed for the communications among the entities in the Marketplace

are enabled through a special component, named Connector. It is a software tool to enable

secured peer-to-peer information exchange between Participants. It relies on the Registry (i.e.,

the DLT) for trust purposes through a sub-component named DLT-Booth. The DLT-Booth is

deployed on each participant domain and, therefore, is part of a decentralized network of

peers. Further details related to the Connector are reported in Section 4.1, while the newly

added component DLT-Booth is considered in Section 4.5.

The various entities interact with each other employing different communication channels. In

this deliverable, the on-ledger communication and off-ledger communication are distinguished

for the scope the deliverable and to provide a clear separation of the functionalities related to

the underlying decentralized infrastructure. In any case, every communication channel set up

for the sake of the interaction is protected through security mechanisms that guarantee the

confidentiality and authenticity (i.e., resorting to HTTPS) of information exchanged.

All the interactions are mediated by the Connector, which acts as an interface at the Participant

side to access the SEDIMARK domain.

The off-ledger interactions are instead common direct connections between a couple of

Connectors following a P2P (Peer-to-Peer) paradigm. The communications do not rely onto

the DLT. The off-ledger interactions are employed, for instance, to establish the initial

connection with the Issuer of the SEDIMARK Marketplace for a user who does not yet own a

credentials allowing him to interact with the SEDIMARK ecosystem. On the other hand, a

SEDIMARK user can establish a direct connection with a Catalogue, relying onto an off-ledger

interaction, to easily browse the offerings available on the Marketplace.

The on-ledger interactions, also shown in Figure 1, employ both L1 and L2 of the decentralized

DLT infrastructure. The summary of the background functionalities of the infrastructure from

logical point of view is reported Section 3, while the final physical instance is reported in

SEDIMARK_D3.4 deliverable [25]. These kinds of interactions are communications between

entities that directly rely on the distributed ledger. Therefore, the communications on this

means allows the immutability of the information exchanged and leverages an additional layer

of trust of the parties involved. Moreover, the information are permanently stored, enabling

monitoring and transparency of the transactions as well as future auditing capabilities.

Referring to Figure 1, consider as example a Consumer who after reviewing the Catalogue

desire to purchase an asset. The Connector facilitates this operation interfacing with the (IOTA)

Smart Contract architecture (outlined in Section 3.2 and Section 6). For the sake of clarity,

Figure 1 omits the on-ledger interactions happening with L1, which is mostly employed for

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 14 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

storage and retrieval of public elements associated with the Self-Sovereign Identity (SSI) of

the involved entities. Further details are reported in Section 5.

The business logic of the marketplace is realized through different actions involving the entities

described above. Such actions reflect the series of fundamental procedures and events that

the SEDIMARK platform supports through the decentralized infrastructure and APIs provided

in this deliverable. The operational framework is structured into five core stages:

• Participant Onboarding, which manages identity creation and credential issuance

according to the SSI paradigm;

• Offering Tokenization, which enables the registration and publication of data offerings

within the Marketplace;

• Offering Discovery, which allows participants to browse, identify, and evaluate available

data assets prior to initiating negotiations;

• Offering Negotiation and Agreement Tokenization, which supports secure and verifiable

contract establishment between participants; and

• Asset Exchange, which ensures compliant, auditable, and traceable delivery of data

assets.

The following list details the steps required by the processes that are iterated among different

users to implement the core functionalities of the marketplace.

Participant Onboarding

The onboarding procedure is a prerequisite for any external entity wishing to interact with the

SEDIMARK Marketplace. It serves as the gateway to all subsequent functionalities and

ensures that participants are securely and uniquely identified within the ecosystem. The

entities involved in this procedure are illustrated in Figure 2.

In the final implementation of the Marketplace, the onboarding process is initiated by the

participant through the DLT-Booth component embedded in its Connector. This module is

responsible for generating a digital identity in line with the Self-Sovereign Identity (SSI)

framework. The identity creation process involves generating a cryptographic keypair, a

Decentralized Identifier (DID), and a corresponding DID Document. The public key is published

on Layer 1 (L1), while the private key is securely stored on the participant’s side using a newly

integrated key management feature within the DLT-Booth.

Once the DID is registered in the Verifiable Data Registry, the DLT-Booth proceeds to request

a Verifiable Credential (VC) from a trusted Issuer within the SEDIMARK platform. To validate

ownership of the DID, the Issuer issues a cryptographic challenge, which the participant must

sign using its private key. A successful signature confirms control over the identity and

authorizes the Issuer to issue the VC.

The Issuer then uses its own SSI credentials to interact with the Identity Smart Contract (SC),

registering the participant’s VC as active. Upon completion, the VC is returned to the participant

and stored locally within its domain. The DLT-Booth also maintains a secure database of VCs

and manages private keys using a dedicated key management library.

Holding a valid VC enables the participant to access the secure and decentralized services of

the SEDIMARK Marketplace. For Customers, the VC grants access to marketplace content,

while for Providers, it implicitly authorizes the publication of offerings. When interacting with

other components, the VC is encapsulated within a Verifiable Presentation (VP), which serves

as proof of identity and authorization. Verifiers that trust the Issuer will accept the VP and rely

on its embedded claims for access control decisions.

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 15 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 2: Architecture of onboarding stage

To ensure trust and interoperability, the Issuer’s public key must be publicly accessible. This

is achieved by hosting the Issuer at a predefined web endpoint, where secure TLS

communication ensures confidentiality and integrity during identity-related operations.

A comprehensive analysis of identity management under the SSI model, along with updated

examples of DID, VC, and VP, is provided in Section 5.2 of this deliverable.

Offering Tokenization

This operation allows a Provider to declare its willingness to trade a specific asset, either data

or services, by advertising offerings that will later be indexed by catalogues within the

SEDIMARK platform. This procedure is exclusive to Providers and requires prior completion

of the onboarding process.

REGISTRY

Smart Contracts Platform
IOTA Wasp Network (DLT L2)

IDENTITY SC

FACTORY SC

Service Access Token

ROUTER SC

Fixed-Rate

Exchange

Other Exchanges

Verifiable Data Registry
IOTA Hornet Network (DLT L1)

[did:iota:lnk:…]

DLT Booth

Identity/DID
management

IOTA
Stronghold

Booth API

Offering
tokenization

Crypto
operations

ISSUERS

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 16 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 3: Architecture of offering lifecycle in the marketplace

In the current version of the Marketplace, the DLT-Booth component within the Provider’s

toolbox is responsible for interacting with the ISC infrastructure at Layer 2 (L2) to publish

offerings related to its own assets. Once a participant is onboarded, it can proceed to configure

and publish data offerings. As illustrated in Figure 3, this process begins with the local setup

of the offering via the provider-facing interface, where metadata, access policies, and technical

endpoints are defined. The Offering Manager, integrated within the participant’s Connector,

orchestrates the tokenization process. It communicates with the DLT-Booth to initiate

interaction with the Registry’s Factory Smart Contract, triggering the conversion of the offering

into a verifiable digital asset anchored on the distributed ledger.

Within the participant’s domain, the Offering Manager oversees the entire lifecycle of the

offering from creation to publication. On-chain, the Factory SC ensures that the token and its

metadata are securely stored and registered, guaranteeing integrity, traceability, and non-

repudiation. Once registered, the offering becomes discoverable via the Registry and

technically accessible through the Self-Listing interface, governed by the access conditions

defined by the Provider.

Tokenization is achieved by minting a non-fungible token (NFT) via the ServiceBase SC (see

Figure 4), compliant with the ERC-721 standard. This ensures each token is uniquely

identifiable and interoperable across platforms supporting ERC-721. The token is owned by

the Provider’s identity and includes a reference to the offering description document,

accessible through the Self-Listing interface. It also embeds a cryptographic hash of the

document, allowing any participant to verify its integrity and authenticity. This mechanism

prevents tampering and reinforces trust and transparency. The offering is also converted into

a set of datatokens, one of which will be returned to Consumers upon asset purchase. Both

the NFT and datatokens are derived from the original asset to make it tradable within the

Marketplace. The technical details of the tokenization operations are further elaborated in

Section 6 of this deliverable.

Offering Discovery

The offering discovery stage is enabled through an extensible catalogue architecture, as

depicted in Figure 3. This stage plays a crucial role in allowing participants to explore and

identify relevant offerings advertised in the SEDIMARK Marketplace before initiating any

Discovery

Population
Creation

Modification
Withdrawal

Registration

Registry
(L2 - Factory SC)

Offerings Cache

Data
Provider

Data
Consumer

Self-Listing

Interoperability
enabler

Crawls needed providers

Self-Catalogue(s)

DLT Booth

Global
Catalogue

Connector (Provider)

UI/API

Catalogue
Coordinator

UI/API

Recommender

Offering
Manager

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 17 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

negotiation process. Each catalogue operates independently and exposes offerings through

solution-specific search endpoints. These catalogues are curated by their respective

coordinators, who populate them using the offerings registered in the authoritative Registry as

a reference point.

Figure 4 showcases how the catalogue architecture works and, as an example, how the

centralized catalogue coordinator interacts with the Factory SC and the different participant

self-listing to populate a triple-store database that can later be used by the GUI to discover

available offerings.

Figure 4: Overview of catalogue architecture in the marketplace

While catalogues may differ in their internal design and indexing strategies, this diversity allows

for tailored optimizations that suit specific use cases or domains. The responsibility for

deploying, maintaining, and operating each catalogue lies entirely with its owner, who

contributes a value-added discovery service to the broader Marketplace ecosystem. It is

important to highlight that catalogues are not considered core components of the Marketplace

itself. By externalizing their implementation, the architecture remains open and flexible,

encouraging third-party stakeholders to innovate and integrate specialized discovery

mechanisms.

Despite their external nature, catalogues maintain alignment with the Marketplace’s trust

model by referencing the Registry for offering validation. This ensures that all offerings

presented through catalogue interfaces are consistent, verifiable, and anchored to the

authoritative source of truth, preserving the integrity and reliability of the discovery process.

A more detailed analysis of the offering discovery mechanisms is provided in Sections 3.4 and

4.2 of this deliverable.

Smart Contracts Platform
IOTA Wasp Network (DLT L2)

IDENTITY SC

FACTORY SC

Service Access Token

ROUTER SC

Fixed-Rate

Exchange

Other Exchanges

SEDIMARK

EDC Connector
(provider-1)

SEDIMARK

EDC Connector
(provider-2)

SEDIMARK

EDC Connector
(consumer-3)

Self-listing

Self-listing

Self-listing

SEDIMARK

Catalogues

Architecture

CATALOGUE

COORDINATORS

SELF-CATALOGUES

Cat. A Cat. B Cat. C

Self-cat. A

Self-cat. C

Self-cat. A

Self-cat. B

(Distributed)

Catalogue A

Coordinator

(Distributed)

Catalogue B

Coordinator

(Distributed)

Catalogue C

Coordinator

(Centralized)

Catalogue SED.

Coordinator

Self-cat. A

Self-cat. B

Triple Store

Database

SPARQL endpoint

SEDIMARK GUIs

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 18 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

Offering negotiation and agreement tokenization

The operation realizes the buy-and-sell functionality of the Marketplace. This procedure is

twofold and represents an indirect interaction between the Consumer and the Provider,

mediated with on-ledger interactions happening on the Layer 2.

Once an offering has been identified, the Consumer may initiate a negotiation to request

access under specific terms. This process is conducted between the DataSpace Connectors

of the involved parties, following a peer-to-peer communication model based on the DSP

protocol. The negotiation logic is governed by a finite state machine (FSM), as defined in the

DSP Contract Negotiation specification, which structures the exchange of contract proposals,

counter-offers, and confirmations (see Figure 11a in Section 4.1). As illustrated in Figure 3, the

negotiation architecture includes the Connectors, the DLT-Booth, and the relevant Smart

Contracts (SCs). The architecture supporting this functionality, illustrated in Figure 5, includes

the Connector components, the DLT-Booth, and the relevant Smart Contracts (SCs).

The outcome of a successful negotiation is formalized through agreement tokenization,

implemented via a dual-token model. As already explained, each offering is represented by a

non-fungible token (NFT), which guarantees its uniqueness and immutability. In parallel, a set

of fungible Data Tokens (DTs) is generated to manage access rights. These DTs are minted

by a dedicated DataToken Smart Contract (DTSC), compliant with the ERC-20 standard, and

linked to the offering’s NFT. The Provider receives a predefined supply of DTs, which serve as

verifiable proofs of purchase and are required to access the asset. To enable trading, the

Provider deposits the DTs into a Fixed-Rate Exchange Smart Contract (FRESC), part of the

Router SC. This contract acts as the default decentralized exchange, although additional

exchange mechanisms may coexist. Each DT is associated with a unique exchange instance,

where the Provider sets the price in native tokens. The instance maintains essential metadata,

(such as token address, ownership, and pricing) and supports efficient token swaps and

transaction traceability.

While the NFT ensures the uniqueness and immutability of the offering, the associated DTs

provide a flexible and fungible mechanism for access control. The combination of both token

types enables a clear separation between offering representation and access rights, while

ensuring that each purchase is recorded on-chain and can be independently verified. This

dual-token model strengthens the trust, auditability, and operability of the Marketplace.

During the execution of the DSP state machine, once the negotiation reaches the agreed state,

the Consumer’s Connector interacts with the Router SC via the DLT-Booth to finalize the

agreement and complete its tokenization. The Consumer acquires the DT by exchanging

native tokens through the corresponding FRESC instance. The DT address is then included in

the DSP’s ContractAgreementVerificationMessage, allowing the Provider to verify token

ownership. If verification succeeds, the FSM transitions to the finalized state. If verification fails

or inconsistencies are detected, the FSM moves to the terminated state, and the DT acquisition

may be rolled back accordingly.

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 19 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 5: Architecture of offering negotiation, agreement tokenization and asset exchange

As mentioned, the DT acquired through this process acts as an on-chain, verifiable proof of

purchase and is required to unlock access to the asset. This mechanism ensures that only

Consumers who have successfully negotiated and paid for access can retrieve the asset.

Additionally, it enables third-party Verifiers to confirm the existence and integrity of the

agreement without accessing its full content, preserving confidentiality while ensuring

accountability.

A more detailed explanation of the tokenization mechanisms is provided in Section 6.

Asset Exchange

Once the contract negotiation process has successfully concluded and a formal agreement is

in place, the Consumer may initiate the asset exchange phase. This stage is also governed by

the Dataspace Protocol, which defines the message flows and verification mechanisms

required to securely transfer the agreed digital asset. While the core logic of the exchange is

protocol-driven, its concrete implementation depends on the underlying data plane technology.

Therefore, this section focuses on the generic security features integrated into the proposed

framework to ensure robustness and compliance.

To begin the DSP Transfer Process FSM (see Figure 11b in Section 4.1), the Consumer issues

a TransferRequestMessage that includes the identifier of the established agreement along with

a Verifiable Presentation (VP). This VP encapsulates the credential issued during the

onboarding phase and indirectly confirms the Consumer’s right to access the asset. This

entitlement is inferred from the existence of a valid Data Token (DT) linked to the NFT

representing the offering and held by the Consumer.

The credential itself does not contain explicit proof of DT ownership. Instead, ownership is

verified through the cryptographic relationship between the VP and the Consumer’s

Decentralized Identifier (DID). The Verifier component resolves the DID and confirms that the

VP was issued by its legitimate holder, thereby validating DT possession without exposing

REGISTRY BASELINE INFRASTRUCTURE

PARTICIPANT-3 DOMAIN

PARTICIPANT-2 DOMAIN

PARTICIPANT-1 DOMAIN

Smart Contracts Platform

IOTA Wasp Network (DLT L2)

IDENTITY SC

FACTORY SC

ServiceBase DataToken

ROUTER SC

Fixed-Rate

Exchange

Other Exchanges

DataSpace

Connector
(provider-2)

DataSpace

Connector
(consumer-3)

Backends

DLT Booth

Backends

DLT Booth

Verifiable Data Registry
IOTA Hornet Network (DLT L1)

[did:iota:lnk:…]

MKT

Frontend

MKT

Fronten

Marketplace

Frontend

Distributed AI

services

MinIO (S3)

NGSI-LD

Context Broker

…

DataSpace

Connector
(provider-1)

DLT Booth

data plane

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 20 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

sensitive token data. The DID also embeds the Consumer’s public EVM address, enabling on-

chain verification of token ownership.

Access to the asset is not solely determined by DT possession. It is also subject to policy-

based controls defined at the offering level. These controls are expressed using ODRL

policies, which specify permissions, constraints, and obligations associated with asset usage.

The evaluation of these policies is performed by Policy Decision Points (PDPs), with the

Verifier acting as a specialized PDP optimized for on-chain validation. The PDPs assess the

VP and its embedded claims (cryptographically signed during onboarding stage) against the

defined policy rules. These may include conditions such as the Consumer’s role, intended use,

or time-based restrictions. DT ownership itself is also modelled as an ODRL constraint,

allowing it to be seamlessly integrated into the broader access control logic. More details

regarding available ODRL policies are discussed in Section 5.4.

Once the PDP returns a positive authorization decision, a Policy Enforcement Point (PEP)

ensures that access is granted in accordance with the evaluated policy. If authorization is

successful, the Transfer Process FSM transitions from the "requested" to the "started" state.

Otherwise, it moves to the "terminated" state, and the exchange is aborted.

The actual delivery of the asset is performed through a secure data transfer mechanism that

complies with DSP specifications. This mechanism typically relies on a pre-established data

plane between Connectors, tailored to the specific technology stack in use. Within this

framework, DataSpace Connectors act as PEPs, enforcing access decisions and ensuring that

the asset is transmitted strictly under the agreed conditions. To protect confidentiality and

integrity, the data transfer process may incorporate additional safeguards such as encryption,

integrity checks, and secure session protocols.

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 21 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

3 Core Technologies for Decentralization
The following subsections outline the background of the different technologies that serve as

foundation from the logic point-of-view for the decentralized infrastructure of the SEDIMARK

Marketplace.

The initial two subsections describe the working principles of IOTA DLT and IOTA Smart

Contract Chain, which together form the SEDIMARK Registry. In this final version of the

technical deliverable for the data marketplace, the usage of IOTA's decentralized infrastructure

is confirmed. It introduces several key improvements while maintaining the existing

architecture based on the Tangle and Smart Contract Framework of the previous version of

the deliverable. The primary enhancements focus on the physical infrastructure, consolidating

multiple Docker Compose files into a single, configurable file that allows for the seamless

activation of various services and ease of deployment. Additionally, an extra server has been

integrated into the decentralized infrastructure, provided by a project partner, to further

enhance performance and scalability. Additional information related to the final version of the

implementation supporting the decentralized infrastructure are reported in SEDIMARK_D3.4

[25].

After that, basic principles of the Dataspace Protocol and Distributed Triple Stores, which

enable Connectors and the SEDIMARK Catalogue, are also presented.

3.1 IOTA DLT

The IOTA DLT overcomes known scalability bottlenecks in its distributed ledger by using a

Directed Acyclic Graph (DAG) [6]. The DAG structure is used in both the ledger and the

consensus layers. Therefore, the IOTA DLT can be conceptually divided into two components

as defined in [3]:

IOTA Ledger: is the ledger technology that is based on the principle of unspent transactions,

named UTXO (Unspent Transaction Output). In this context, an unspent transaction output

refers to cryptocurrency that remains unused or is left over after a transaction has been

completed. Any output that is left and is not spent immediately is an Unspent Transaction

Output that can be later spent (i.e., used as an input) in a future transaction. The adoption of

UTXO model is the key condition for enhancing scalability and throughput within IOTA. It

makes possible to have many parallel writes onto the ledger [3], increasing the system’s

efficiency. In fact, enabling numerous transactions to be processed simultaneously, the UTXO

ledger can supports a high volume of transactions without the bottlenecks typically associated

with traditional blockchain architectures. Additionally, since each output must be referenced in

future transactions, it creates a clear and traceable history of all transactions, which helps

prevent issues such as double-spending. This design choice not only optimizes transaction

processing but also promote a robust framework for the secure and decentralized data

marketplace, ensuring that users can confidently perform transactions with transparency.

IOTA Tangle: the Tangle is a permissionless and feeless consensus protocol based on a

Directed Acyclic Graph (DAG). This DAG structure itself is called Tangle [6]. This data structure

is replicated across a decentralized network of computers, known as nodes. When a node

initiates a transaction, it must also validate and approve previous transactions, thereby

enhancing the overall security of the network. Each node is responsible for ensuring that the

transactions it approves do not conflict with the existing history in the Tangle. If a node detects

a conflict with the Tangle's history, it will reject the conflicting transaction.

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 22 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

As a transaction accumulates more approvals from other nodes, its acceptance within the

system increases, leading to a higher level of confidence in its validity. This mechanism makes

it increasingly difficult for double-spending transactions to be accepted.

Consequently, the IOTA Tangle facilitates a global consensus on the state of the UTXO ledger

without necessitating a linear ordering of transactions. This approach enhances the scalability

and also allows for a high throughput, making it an appropriate infrastructure for a

decentralized data marketplace.

3.2 IOTA Smart Contract (ISC) chain

The IOTA Smart Contract (ISC) chain serves as an additional framework that enhances the

Layer 1 capabilities of the IOTA DLT. It introduces multiple programmable ledgers as Layer 2,

creating a multi-chain ecosystem where each chain anchors its state to the IOTA Ledger at L1.

This architecture allows each ISC chain to function as an independent blockchain, offering

functionality similar to that of Ethereum smart contracts. As shown in Figure 6, the anchoring

mechanism between the two layers ensures the integration of L1 and L2 layers and state

consistency between the chain and the Tangle.

Figure 6: Anchoring between the DLT layers

Validator nodes play a crucial role in securing the ISC chain by participating in a distributed

consensus process alongside other validators. The implementation of these validator nodes is

facilitated through a software application named IOTA Wasp (IOTA's WebAssembly Smart

Contracts Platform). Each ISC chain operates under the “governance” of a group of validator

nodes, collectively referred to as the "Committee of Validators". This committee is responsible

for managing the associated L1 account and executing a consensus protocol for state updates

and block validations [3].

The design of the ISC chain ensures fault tolerance and distributed computing capabilities,

requiring only ⌊2N/3⌋ + 1 non-faulty validators to achieve valid state updates. This resilience is

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 23 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

a key feature of the ISC framework. Validator nodes employ threshold signatures to control the

L1 account, providing proof of consensus among the committee members [3].

Each validator holds a part of the private key, which is used to generate a partial signature for

transactions. To create a valid threshold signature, a minimum set validator node must

collaborate (at least of ⌊2N/3⌋ + 1, where N is the number of nodes), with the process of

cooperation and signature aggregation embedded into the consensus mechanism. Such key

is generated during the deployment of the chain, through a Distributed Key Generation (DKG)

process, allowing each validator to securely generate and retain its private key share. The

DKG mechanism together with the committee of validators ensure that the ISC chain operates

with a high level of security and integrity [3].

3.3 Dataspace Protocol

According to the International Data Spaces Association (IDSA) [17], the Dataspace Protocol

outlines a collection of specifications aimed at enabling interoperable data sharing between

entities, all governed by usage control principles and standard Web technologies. These

specifications define how data is published, usage agreements are negotiated, and data is

accessed within a federation of interconnected systems known as a dataspace.

The protocol serves as the technical blueprint for the International Data Spaces Reference

Architecture Model (IDS-RAM), detailing how components interact within the system. Its

current version addresses four main thematic areas, each described in separate documents,

which together establish the core interactions among participants in a dataspace:

• Data Space Model and Terminology: Establishes common ontologies and taxonomies to

ensure interoperability between different participants.

• Catalogue Protocol: Describes the mechanisms for publishing and accessing datasets

using shared interfaces. It adopts the Data Catalogue Vocabulary (DCAT) ontology for

dataset representation.

• Contract Negotiation Protocol: Specifies the procedures for negotiating agreements

between participants, ensuring mutual consent on data usage terms, modelled using the

Open Digital Rights Language (ODRL) ontology.

• Transfer Process Protocol: Details the process of exchanging data post-agreement.

Unlike earlier IDS-G specifications, it doesn’t define specific transfer protocols but rather

focuses on managing the transfer process itself.

At the heart of these interactions is the Connector, a central component that provides secure

interfaces across all protocols. The architecture also distinguishes between two operational

planes: the control plane, governed by the Dataspace Protocol Specification, and the data

plane, which handles the actual exchange of data.

Within the SEDIMARK project, we integrate IOTA’s Distributed Ledger Technology (DLT) and

ISC chain with data space Connectors to enhance the functionality of the Catalogue and

Contract Negotiation protocols. This integration adds trust and transparency to these

operations.

3.4 Distributed Triple Stores Protocol

A Distributed Triple Store (DTS) is a means of storing and retrieving triple statements modelled

using RDF (Resource Description Framework) in a distributed manner. The RDF model is

based on the concept of triple statements, which consist of a subject, predicate, and object,

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 24 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

and forms the basic data entities in the Semantic Web, enabling the representation of

information in a machine-readable manner. This also enables the linked data paradigm,

whereby DTSs are linked through shared ontological concepts, towards co-creating knowledge

graphs that provide more context relating to a particular entity.

In a centralized triple store, all data management operations occur in a single instance, which

typically introduces resource and performance bottlenecks as the triple count significantly

increases. To overcome this problem, distributed triple stores employ a decentralized

architecture where triples are maintained by individual stakeholders across different locations.

This approach potentially allows for more efficient storage and retrieval of triples.

The main query language for the DTS, is the SPARQL Protocol and RDF Query Language

(SPARQL). It allows for federated queries whereby a query can be executed on multiple

SPARQL endpoints as well as the local endpoint, and in turn merge all results from different

remote sources. It is important to note that this feature is employed in a manner whereby the

DTS can overcome performance issues related to:

• Network latency

• Bandwidth consumption

• Dynamic availability and varying reliability of remote endpoints

• Restrictions imposed by endpoints

• Handling of complex queries

A set of optimisation techniques need to be applied to address these issues and handle the

recovery of the Catalogue as soon as possible when a remote node(s) become unavailable or

unreliable.

For implementation, a number of tools can be adopted for building that DTSs, such as the

open-source Jena TDB (Triple Database Benchmark) by Apache Jena, Sesame, and Virtuoso.

For SEDIMARK, Jena TDB is used as the database technology for the triple store, and is

accessed through a customised version of the Jena Fuseki server which provides the standard

interfaces for CRUD (Create, Read, Update, Delete) via the REST-based Graph Store Protocol

(GSP) and graph querying via the REST-based SPARQL endpoint.

A DTS will mainly be used to store instances of a particular information entity. In the case of

the Catalogue, the Offering Description is the entity, which is based on the SEDIMARK

Information Model. As Offering Descriptions are published to the Catalogue, each Offering is

represented as a separate named graph. It is done in this manner to facilitate the complete

removal of Offering Descriptions once they have expired or become void.

3.4.1 Decentralised Offering Management

To enable the distribution of Offerings among different nodes, a coordination module called

the Catalogue Coordinator is required to retrieve Offering Descriptions from all Participants

Self-Listing and then distribute the Offering Descriptions.

The Coordinator is a core component of the decentralised marketplace infrastructure that

orchestrates the discovery, retrieval, validation, storage, and serving of offerings provided by

participants. It interacts with the DLT Booth to fetch offerings from the underlying Distributed

Ledger Technology (DLT) and manages a catalogue of offerings that can operate in either a

centralised or decentralised mode.

The Coordinator also functions as a server responding to consumer search queries, effectively

acting as a mediator between participants and the global or distributed catalogue.

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 25 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

Key responsibilities of the Coordinator include:

1. Polling the DLT for updated offerings.

2. Fetching offering metadata and full descriptions.

3. Validating and storing offerings.

4. Maintaining a local or distributed catalogue.

5. Serving consumer queries.

6. Monitoring node health and redistributing data as needed.

Figure 7: Interaction Sequence for Centralised Mode

In centralised mode (Figure 7), all offerings fetched from the DLT are stored locally in a single

Global Catalogue. For Query resolution, Consumer queries are resolved directly from the

Global Catalogue. The advantage of this mode is Simpler implementation, easier

monitoring. The limitations are that it can be a single point of failure, and a generally lower

resilience.

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 26 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 8: Interaction Sequence for Decentralised Mode

In decentralised mode (Figure 8), Offerings are distributed among nodes that provide a

catalogue service. The Provider Self-Description endpoint is used to identify nodes offering

catalogue functionality. The Coordinator maintains node list in RedisDB. For query resolution,

Consumer queries are resolved across the distributed nodes. The Advantages of this mode is

High availability, resiliency and improved scalability. The limitations would be a more complex

implementation and the needs for a node health monitoring.

The method applied to distribute the Offering Description graphs data across multiple nodes

efficiently is based on consistent hashing. It supports scalable storage, dynamic node

management, and flexible querying while minimizing redistribution.

Figure 9 illustrates the distribution mechanism for the triple store handled by the Coordinator,

which undergoes the following steps:

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 27 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 9: Triple Store Distribution Mechanism

1. The Coordinator triggers a timely function call to fetch the offering IDs from the DLT using

DLT-Booth.

2. The list of offering IDs is compared with the cached ones to determine new offerings

registered with the DLT.

3. The Coordinator then fetches offering metadata (including the offering description URI)

for each new offering from the DLT.

4. The flow bifurcates into two processes here. Process 4a describes about maintaining a

list of nodes for offering distribution in decentralised manner; Process 4b explains the

distribution of newly retrieves offerings.

a) The domain address from the new offerings metadata (using OfferingURI) is extracted

to identify if the entity hosts a catalogue service using its Self-Description endpoint. If it

does, the catalogue endpoint is then appended to the Redis DB consisting of a list of

nodes.

b) The full offering descriptions are retrieved from the participants’ Self Listing endpoint

(OfferingURI) and posted to selected catalogues retrieved from the Redis DB. The

selection criterion implemented is Consistent Hashing—a technique that ensures the

data is distributed equally and minimal data redistribution takes place in case of node

failures.

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 28 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

3.4.2 Decentralised Query Resolution

In a decentralised setting, a query is sent to the endpoint hosting the Global Catalogue. The

queries are processed based on their type, either offering-specific or theme-based properties.

It will then modify the query into a federated query, which will then allow the SPARQL Query

resolver to target other DTS nodes that have the relevant Offerings stored. Figure 10 illustrates

this process of query resolution, which can be summarized in three steps:

Figure 10: Decentralised Query Resolution

1. Query Based on Offering ID: The Coordinator determines the node the relevant offering

is hosted on using consistent hashing. The SPARQL query is simply forwarded to the

node and the offering description is retrieved.

2. Query Based on Themes: If the consumer query references a general theme, the nodes

corresponding to the theme are filtered using reverse indexing sets in Redis. The query

is then broadcasted, and all the relevant offering descriptions are retrieved and returned

to the consumer.

3. Fallback Query Execution: If the query does not match any offering ID or theme, it is

broadcast to all nodes. The query is adjusted accordingly to include each node in the

execution plan.

3.4.3 Node Dynamics and Resilience

The Coordinator monitors the health of distributed nodes. If a node becomes unavailable,

Offerings stored on that node are redistributed to active nodes. This ensures Catalogue

availability and consistency. It applies the consistent hashing method specified in section 3.4.1

to minimise disruption and maintain data distribution.

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 29 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

The advantage of Consistent Hashing is that when a node is added or removed, consistent

hashing ensures that only a small subset of the data needs to be redistributed. Most of the

data remains unaffected, significantly reducing operational overhead.

For addressing node failure, a Redis assisted redistribution approach is adopted whereby

Redis stores a backup of the node-to-service offering mappings. Upon node failure, this

mapping helps reassign only the affected offerings to new nodes without scanning the entire

dataset. This approach ensures a fault-tolerant, scalable RDF storage and querying system,

capable of handling dynamic infrastructure changes with minimal disruption.

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 30 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

4 Implementation Perspectives
In this section the implementation aspects of the developments in the context of the

decentralized infrastructure are presented. This section presents for each of the developed

modules an overview from the technical point-of-view of the inner workings and the

functionalities provided. The aim is to highlight the key components that have been developed

in the course of the project, highlighting their role in the SEDIMARK Marketplace and how they

contribute to the overall objective of the secure and decentralized data marketplace.

4.1 Connector

Connectors facilitate secure peer-to-peer information exchange between participants in the

Marketplace. In this sense, the processes of offering tokenization, contract negotiation, and

asset exchange are primarily orchestrated by Connectors, which act as the participant’s main

interface to the data space environment. SEDIMARK Connectors are based on the Eclipse

Dataspace Components (EDC) one [18].

Each participant operates at least one Connector within their own domain, serving as the

primary gateway to the distributed SEDIMARK marketplace. The Connector enables secure,

policy-compliant peer-to-peer interactions and asset transfers, functioning as a control plane

for contract execution and ensuring that asset access requests are handled securely and in

accordance with agreed terms. It supports Dataspace Protocol-based communication between

Connectors and integrates with the DLT-Booth to delegate cryptographic operations and

interact with the underlying smart contract infrastructure. Concerning the DLT plane, the IOTA

software components available through the DLT-Booth enable interactions with both L1 and

L2 to issue data and value transactions, handling SSI-based identity and interact with the smart

contracts in a seamless manner.

Beyond its role in negotiation and exchange, the Connector also incorporates internal

components that manage the lifecycle of data offerings. Among these, the Offering Manager

plays a central role in coordinating the creation, registration, and tokenization of offerings. It

exposes a Self-Listing interface through which other participants can access the published

offerings of a given Provider. This component interacts with the DLT-Booth API to carry out

tokenization and to register offerings in the Registry. It also acts as a bridge between the

participant-facing configuration interface of the Marketplace Frontend and the internal

mechanisms of the Connector.

The Offering Manager validates the offering format using the tools provided by the

Interoperability Enabler based on the Marketplace Information Model. Upon correct validation,

offering is locally stored and appended to the connector’s offering Self-listing, making it

individually addressable through the connector via a secured REST API. After that, the

Connector interacts with the smart contracts to register the offerings in the form of NFT

addressed in Section 6. The NFT contains a pointer to the full offering in the Self-listing for

performance reasons. This way, offerings are registered in the Registry and access to their full

content is distributed across the different provider’s connectors. Anyone can use the Registry

to retrieve the existing offerings and query/crawl the corresponding offering self-listings in a

trustworthy manner. In parallel, the connector executes various procedures adhering to IDS

Catalogue protocol principles. This enables interoperability with other connectors, allowing for

the exchange of offerings and asset descriptions in an IDS context.

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 31 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

Through this integration, the Offering Manager ensures that assets are properly registered

within the data space and establishes the necessary bindings between the Connector and the

internal data sources, as previously illustrated in Figure 5. This tight coupling guarantees that

offerings are not only discoverable via the Registry but also technically accessible through the

Self-Listing interface, while the actual data assets remain accessible through the Connector

itself, all under the governance policies defined by the Provider. As a result, the offering

lifecycle is fully aligned with the decentralised, interoperable principles that underpin the

architecture of the proposed framework.

In addition, connectors are essential entities in achieving the capabilities of the data space

enabler. They fulfil the mechanisms to ensure the secured access to all the assets described

by an offering, bridging the gap between providers and consumers by enabling P2P access to

a wide range of assets.

In this sense, and in an ideal marketplace, participants should be able to agree on access

controls, pricing models, and licensing terms to protect their interests and ensure data privacy.

Connectors lay the foundation for such functionalities by following IDS Contract Negotiation

Protocol principles. Therefore, whenever a Consumer decides to acquire a previously

discovered offering, its connector queries its counterpart for the specific offering. All these

interactions are secured using the participant identity credentials. Provider’s connector

answers with the offering details, including details such as cost and access restriction policies.

After that, a negotiation procedure is established and, once a mutual consensus is reached,

both connectors proceed to sign an agreement. All these steps are part of a finite state machine

defined by the Contract Negotiation Protocol and included, for reference, in Figure 11a.

(a) (b)

Figure 11: Contract Negotiation Protocol [19] (a) and Transfer Process Protocol [20] (b) FSMs

SEDIMARK connectors builds on top of that state machine in order to interact with the smart

contracts on the ISC chain, as explained in Section 2.2. The final result is an agreement,

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 32 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

represented by a Fungible Token (FT) owned by the consumer, which is the basis for the

subsequent secure exchange of assets between participants.

Figure 12: Detail of the IDS transfer data plane interactions between connectors

Finally, Connectors also participate in the asset transfer phase, which is governed by the IDS

Transfer Control Protocol. The corresponding state machine that defines its operational flow is

illustrated in Figure 11b. Figure 12 illustrates the interactions that occur between two

connectors when accessing data stored in a context broker on the provider domain. After

triggering the transfer procedure following the principles of the IDS Transfer Process Protocol,

consumers request assets from their own domain using the information received from the

control plane as well as credentials acquired during the offering negotiation phase. In the

figure, the provider’s connector acts as a proxy into the provider ecosystem, authenticating

and authorizing it. From a security standpoint, this implies that it acts as both a Policy Decision

Point (PDP) and Policy Enforcement Point (PEP). More details on the authorization process

as well as the access policies are discussed in Section 5.4.

4.2 Catalogue

The Catalogue is a system entity that serves as the main means for Participants to search and

discover Offerings made available in the marketplace. It adopts a DTS approach as described

in Section 3.4 for the storage and retrieval of information in relation to Marketplace Participants

and Offerings.

The Catalogue is packaged as part of the SEDIMARK Participant toolbox, and can operate in

a centralised or decentralised manner. In the centralised configuration, the Catalogue is hosted

within one Participant domain. Whereas in the decentralised configuration, the Catalogue is

hosted among multiple Participant domains.

The Catalogue has two forms, Global and Local. The Global Catalogue acts as a main point

of contact for all onboarded Participants to search and discover Offerings through a unified

query interface based on the SPARQL language. The Global Catalogue relies on the Registry

to populate the Catalogue based on the retrieval of verified Offering Descriptions originating

from their respective Self-Listings at the Provider’s domain. A Local Catalogue assists a Global

Catalogue with storing a subset of all the Offerings registered at the Registry, and is employed

when the Catalogue is configured as decentralised. Although all Catalogue queries would

normally go through the Global Catalogue, the Local Catalogue can also be queried if its

Data PlaneControl Plane Data Plane Control Plane

Provider EDC Consumer EDC

Send data request with destination type HttpProxy

Send Data Address

Backend service
NGSI-LD Context Broker

Provider ecosystem

Backend service

Consumer ecosystem

Query data (provider public API)

Authentication

Query data

Send Data

Return data

Convert Data Address into a
EndpointDataReference

Negotiation phase successfully completed

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 33 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

endpoint is known. Via the DTS protocol, a Global Catalogue will federate the query to the

Local Catalogues to resolve, compile and then return the compiled result to the Participant.

As a requirement for a Minimal Viable Marketplace (MVM) operation, and as part of the

Baseline Infrastructure, a Global Catalogue must be provisioned by a Participant undertaking

the role of a Marketplace Operator, which operates in a centralised manner. A Local Catalogue

hosted on another Participant domain can be employed in the case where the Global

Catalogue requires the distribution of Offering Descriptions, when configures as decentralised.

Based on the above, the Catalogue will operate mainly in either of several modes when started,

which are Centralised, Decentralised using sharding among Provider nodes, and

Decentralised using sharding among all nodes. This will be managed by the Catalogue

Coordinator as specified in Section 3.4.1.

The different deployment modes that enabled within SEDIMARK are illustrated below.

Mode A: Centralised Catalogue

Figure 13: Centralised Catalogue Deployment

First, Self-Listings from Participants with Offerings (i.e. Providers) are registered with the DLT-

based Registry. The Global Catalogue then retrieves all verified Offering entries from the

Registry and then all descriptions of Offering entries from their corresponding Self-Listing. The

Catalogue is then populated centrally. Finally, Participants query Global Catalogue for

Offerings of interest.

Mode B: Decentralised Catalogue (BIF-Sharded)

The process of constructing the Catalogue follows the same steps (1-3 and 5) as in Mode A.

In step 3, the entries of the Global Catalogue are then sharded into a number of subsets which

are distributed either into other nodes of the baseline infrastructure. This helps to speed up the

query responses in cases where the size of the entries becomes too large. In step 4, the

Catalogue relies on DTSs distributed among other nodes within the Baseline Infrastructure,

whereby each node holds a subset of Offerings from all Providers. The Global Catalogue here

federates the query from a Participant to the Local Catalogues within the Baseline

Infrastructure.

Baseline

Infrastructure

Registry

Catalogue

(Global)

Ret rieve Offerings

1
Register Offerings

2 Ret rieve

Registrations

3
Query Catalogue

4

Part icipant Domain A

Self-

List ing

Part icipant Domain B

Self-

List ing

Part icipant Domain C

Self-

List ing

Part icipant Domain D

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 34 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 14: Decentralised Catalogue Deployment using BIF-sharded Local Catalogues

Mode C: Decentralised Catalogue (Provider-Federated)

Figure 15: Decentralised Deployment using Federated Local Catalogues at Provider Domains

Baseline

Infrast ructure
Baseline

Infrast ructure

Registry

Catalogue

(Global)

Ret rieve Offerings

1
Register Offerings

2 Ret rieve

Registrations

3

Query

Catalogue

5

Baseline

Infrast ructure

Catalogue

(Local)

Catalogue

(Local)

Catalogue

(Local)

Part icipant Domain A

Self-

List ing

Part icipant Domain B

Self-

List ing

Part icipant Domain C

Self-

List ing

Part icipant Domain D

Populate Offerings

4

Baseline

Infrast ructure

Registry

Catalogue

(Global)

Verify Of ferings

1

Register Offering

2Ret rieve

Registrations

3

Part icipant Domain A

Catalogue

(Local)

Self-

List ing

Part icipant Domain B

Catalogue

(Local)

Self-

List ing

Part icipant Domain C

Catalogue

(Local)

Self-

List ing

Part icipant Domain D

Query

Catalogue

5

Populate Offerings

4

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 35 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

Here, the process follows as in Mode B, except that the Global Catalogue relays queries from

Participants to relevant Local Catalogues hosted on Participant domains. Additionally in this

mode, each Participants’ Local Catalogue only stores information about their own Offerings.

The Global Catalogue can also verify the Offerings being made available, before it makes use

of the Local Catalogue. This involves comparing the Offering Descriptions in the Self-Listing,

with the one’s in the Local Catalogue.

Mode D: Decentralised Catalogue (Provider-Sharded)

Finally, this mode involves the Global Catalogue relying on Local Catalogues hosted at

Provider Participant domains, where each holds a subset of all the Offerings Descriptions

made available on the Marketplace. This is done so that each Provider shares in the load for

storing Offering Descriptions, based on the DTS Distribution protocol specified in Section 3.4.1.

This can be seen similar to Mode B, where in Step 3, the sharding and distribution of the

Catalogue entries are not stored into the Local Catalogues of the Baseline Infrastructure, but

in Local Catalogues hosted at the Providers.

Figure 16: Decentralised Deployment using Local Catalogues at Provider Domains

4.3 Issuer

The Issuer of the SEDIMARK marketplace is the component responsible for issuing digital

credentials to the various users. It is the main point of entrance for the users to the

Marketplace, in fact it enables the onboarding procedure, which allows an entity to become

part of the SEDIMARK Marketplace.

The issued credentials adhere to the principles of the Self-Sovereign Identity paradigm. In fact,

the users retain full ownership of their identity. The primary functionality of the Issuer is to

release Verifiable Credentials to the external users of the Marketplace. Additional details and

examples related to the SSI paradigm are reported in Section 5.1.

The Issuer is a trusted component that provides assurance regarding the identity of other

entities within the Marketplace. The credentials issued serve as proof of identity and

authorization, enabling the secure interactions (i.e., data exchanges) in the SEDIMARK

Marketplace.

Baseline

Infrast ructure

Registry

Catalogue

(Global)

Ret rieve Offerings

1

Register Offering

2Ret rieve

Registrations

3

Part icipant Domain A

Catalogue

(Local)

Self-

List ing

Part icipant Domain B

Catalogue

(Local)

Self-

List ing

Part icipant Domain C

Catalogue

(Local)

Self-

List ing

Part icipant Domain D

Query

Catalogue

5

Populate Offerings

4

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 36 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

The issuer registers a new participant and associates a credential that asserts the validity of

the participant in the marketplace. Verifiers that trust the Issuer will accept those credentials in

the authentication and authorization process of a participant.

The Issuer, together with the other entities in the SSI paradigm, facilitates the interoperability

and collaboration among different Consumers and Providers resorting to the use of

standardized credentials.

Through the DLT-Booth component, a user can create its own identity by interacting with the

Issuer. The Issuer, in turn, generates a new Verifiable Credential for the user. The status of

the credential is tracked in a Smart Contract controlled by the Issuer itself. Finally, the issuer

returns the Verifiable Credentials to the user who has requested it. The SEDIMARK Issuer has

its own identity; the key information for the overall marketplace is its public key. By design, the

Issuer is reachable to a known predefined web address:

https://issuer.stardust.linksfoundation.com/prod/ exposing reachable endpoints for the APIs.

From the technical perspective, the Issuer is a software service running as an HTTPS server.

The secure TLS connection provides confidentiality and integrity to the communication with

clients during the identity management phases.

The application has been developed in the course of the project in Rust language. The most

updated and final version of the SEDIMARK Issuer source code can be found in the repository

of the SEDIMARK project at https://github.com/Sedimark/sedimark-issuer/ .

In order to gather the required DID Document for the onboarding, the Issuer needs to be

configured according to parameter related to the DLT infrastructure. The repository also

provide the necessary examples.

First of all, the issuer needs to manage its own self sovereign identity, so it implements a

module for self-sovereign identity management. It can interact with the DLT and control its own

DID. In addition, the Issuer also interacts with the ISC platform to complete the registration

process.

The Issuer exposes HTTPS endpoints for participants registration. When a client connects to

the Issuer, it requests a nonce to solve a cryptographic challenge. This mechanism provides

a proof of possession of client’s DID and prevents replay attacks. Next, the client (DLT-Booth)

completes the registration request providing some data (e.g., username) and the proof of

control of the DID to the Issuer. If the DID is authenticated, the Issuer responds with a valid

Verifiable Credential. From now on, the registered DID is a participant of the SEDIMARK

Marketplace.

4.4 Verifier

In the SSI framework, the Verifier plays a crucial role in establishing trust within the digital

identity of the entities. The Verifier is responsible for validating the claims made by a user

through VCs and Verifiable Presentations (VPs). The Verifier ensures that the information

presented by the user is accurate and trustworthy triggering its own verification mechanisms.

In the SEDIMARK Marketplace, the Verifier intervention is necessary when a Consumer is

requesting the access to the asset. Obviously, the Producer has the interest to verify the user

is legitimate and has correctly purchased the asset. In particular, the Verifier has two primary

responsibilities:

Verification of Verifiable Presentations: the Verifier needs to validate the VPs submitted by

Consumers. This process involves checking the authenticity of the user's claims to ensure that

https://issuer.stardust.linksfoundation.com/prod/
https://github.com/Sedimark/sedimark-issuer/

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 37 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

they are indeed a registered participant in the marketplace. In this way, the Verifier ensures

that only SEDIMARK-authenticated users can access the assets.

Verification of Proof of Purchase: additionally, the SEDIMARK Verifier is responsible for

validating the Proof of Purchase associated with datatokens. This process involves accessing

the user address and checking the balance of the datatokens related to the offering of the

asset. In case the balance is positive, the user has effectively completed the purchase

operation and therefore should gain access to the Asset.

Additional Policies: the Verifier has been designed to be flexible. Customized access policies

can be easily defined and validated to per perform additional verifications before granting the

access. Additional details on such policies can be found in Section 5.4.

This components is an http server that executes verification procedures for the Verifier in the

SSI model. It is designed to be expanded and customizable for any use case. The Verifier is

implemented as a service application and it is written in TypeScript. It can be instantiated

anywhere since it relies on the decentralized infrastructure. Nevertheless, the design

envisioned for SEDIMARK is to run on the Provider premises. This architecture allows for

enhanced security and privacy, as sensitive verification processes occur locally (i.e., at the

Provider) rather than relying on external servers.

The Verifier exposes two primary API endpoints:

• Verify VP: verifies the authenticity of the claims made in the VP against the corresponding

VC (employing L1).

• Verify Proof-of-Purchase (PoP): It checks the user's ownership of the datatoken (resorting

to appropriate SCs in L2).

Nevertheless, the Verifier can also be easily extended to support additional verification

procedures to enforce the desired policies.

4.5 DLT-Booth

The DLT Booth is a crucial interface within the SEDIMARK Toolbox, designed to facilitate

interactions with DLT for SSI-related operations and the Ethereum Virtual Machine (EVM) for

Smart Contract transactions. This component integrated into the Connector component and it

is specifically tailored to meet the technical needs of the SEDIMARK Marketplace.

It is an HTTP server, written using the Rust language. The DLT Booth is packaged as a Docker

image, allowing for ease of deployment and scalability, and requires a connection to a

PostgreSQL database for managing identity-related data and transaction records.

The primary functionalities of DLT Booth encompass both SSI and EVM operations. For SSI,

it enables the creation and publication of Decentralized Identifier (DID) documents on the

configured DLT, facilitating the establishment of unique identities. Users can also request the

issuance and revocation of VCs from the designated Issuer, which is essential for onboarding

to the SEDIMARK Marketplace. Additionally, it allows for the creation of VPs, enabling users

to embed multiple VCs into a single, shareable document, therefore enhancing privacy and

control over personal data (i.e., their identity).

On the EVM side, DLT Booth supports EIP191 [27] formatted message signatures, ensuring

compatibility with Ethereum-based applications. It also allows users to execute transactions

on the L2 of the decentralized infrastructure, facilitating interactions with smart contracts and

the various marketplace operations tied to ISC framework.

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 38 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

To deploy the DLT-Booth, their users (either developer or participant to the Marketplace) must

ensure that their Docker environment is properly set up and that the PostgreSQL database is

configured and accessible. Once the HTTP server is started, the DLT-Booth can process

incoming requests for both SSI and EVM operations at its endpoints.

The detailed list of APIs available, which are a fundamental part of this deliverable, are defined

and detailed in the corresponding documentation for DLT-Booth. They are available both as

OpenAPI specification and as an example ready to be executed by means of specialized

software (e.g., Postman). The technical documentation containing the APIs’ endpoints

developed is available here: https://github.com/Sedimark/dlt-

booth/blob/main/api/dlt_booth.yaml]. However, the functionalities provided through these APIs

are as mentioned above and pertain to interactions with the DLT (L1) and ISC (L2) from an

architectural infrastructure perspective, as well as onboarding, offering management, and

purchasing from a functional point-of-view.

In summary, DLT-Booth serves as a core building block for the SEDIMARK Connector,

providing essential functionalities for managing identity through SSI by interfacing with the DLT

and enabling smart contract interactions by interfacing with ISC. Its design prioritizes

performance, security, and ease of integration, enhancing its capabilities within the

SEDIMARK domain.

4.6 Main Libraries

This section describes the main software libraries and components used to implement the

marketplace mechanisms.

IOTA SDK [10]: The IOTA SDK (Software Development Kit) provides developers facilities to

interact with IOTA DLT by providing account abstractions and clients to interact with node

APIs. This is a Rust-based library that provides a convenient and efficient way to interact with

nodes in the Shimmer and IOTA networks running the Stardust protocol. It consists of two main

modules: client and wallet. The client module offers low-level functions that allow to have fine-

grained control over the interactions with the distributed nodes. The module provides access

to the underlying API endpoints and enables advanced operations such as custom message

construction and direct communication with the network. The wallet module provides high-level

functions for managing accounts, generating addresses, creating transactions, and interacting

with the network. It offers a simple interface for developers to build applications network.

IOTA Identity [11] is a framework developed by the IOTA Foundation to provide a

decentralized and self-sovereign identity solution. IOTA Identity is a decentralized identity

(DID) method, identified along with the associated library. Identity library is a Rust

implementation of SSI, using IOTA DLT at its core. It implements the World Wide Web

Consortium (W3C) Decentralized Identifiers and W3C Verifiable Credentials specifications.

This library can be used to create, resolve and authenticate digital identities and to create

verifiable credentials and presentations in order to share information in a verifiable manner

and establish trust in the digital world. The IOTA Identity framework implements the most

common standards and patterns for Decentralized Identity. It is designed to work for Identity

for People, Organizations, Things, and Objects acting as a unifying-layer of trust between

everyone and everything. It supports the secure storage of cryptographic keys, which can be

integrated into a key management system. IOTA Identity is written in Rust and has strong

guarantees of memory safety and process integrity while maintaining exceptional performance.

actix-web [12] is a powerful, high-performance web framework for building web applications

in the Rust programming language. It is part of the Actix ecosystem, which includes other

https://github.com/Sedimark/dlt-booth/blob/main/api/dlt_booth.yaml
https://github.com/Sedimark/dlt-booth/blob/main/api/dlt_booth.yaml

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 39 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

libraries for actor-based concurrency or database interactions. It is designed around

asynchronous programming, taking advantage of Rust's asynchronous capabilities to handle

a large number of concurrent connections efficiently. The library provides middleware support:

middlewares can handle tasks like authentication and logging.

EDC Connector [18]: The EDC Connector is a component of the Eclipse Dataspace

Components (EDC) project, an open-source project governed by the Eclipse Foundation. The

project offers a full suite of components for implementing data spaces that comply with IDSA

requirements on IDS protocol, with its reference architecture model rules and agreements as

well as with the IDSA certification scheme. The EDC Connector is a Java- based software

component designed for sovereign; inter-organizational data exchange based on IDS. The

connector framework defines modules for performing data query, data exchange, policy

enforcement, monitoring and auditing. SEDIMARK Connector is built taking the EDC

Connector as a starting point.

koa [21] / Express [22]: Koa is an HTTP middleware framework for node.js, designed to

enhance the writing experience of web applications and APIs. Koa's middleware stack flows

in a stack-like manner, allowing it to perform actions downstream before filtering and modifying

the upstream response. On the other hand, Express is a minimal and flexible Node.js web

application framework that provides a robust set of features for web and mobile applications.

Both frameworks serve a similar purpose but have subtle differences which make them more

suitable for specific purposes.

Traefik Proxy [23]: Traefik is an open-source Edge Router that simplifies service publication

in a microservices context. It is a dynamic, robust, and versatile reverse proxy and load

balancer that has been designed with modern, distributed, and microservices architectures in

mind. It receives requests on behalf of the system and identifies which components are

responsible for handling them. Besides, it is natively compliant with most container and cluster

technologies, such as Docker and Kubernetes.

Apache Jena [24]: an open-source Java programming framework for building applications

using Semantic Web and Linked Data paradigms, through the provision of tools and libraries

for storing models based on RDF and OWL graphs, and in turn provides a SPARQL query

engine, ARQ2.

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 40 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

5 Digital Identity and Access Management

5.1 Background: Self-Sovereign Identity (SSI)

The Self-Sovereign Identity (SSI) [2] is a decentralized digital identity paradigm that gives a

node full control over the data it uses to build and to prove its identity. The SSI stack enables

a new model for trusted digital interactions in decentralized systems.

The SSI paradigm lays its foundations by means of any Distributed Ledger Technology (DLT)

which acts as the Root-of-Trust (RoT) for identity public data. In fact, DLTs are distributed and

immutable means of storage by design [5] .

A Decentralized IDentifier (DID) [8] is the new type of globally unique identifier designed to

verify a node. The DID is a Uniform Resource Identifier (URI) of the following form:

did : method-name : method-specific-id

where method-name is the name of the DID Method used to interact with the DLT and

method-specific-id is the pointer to the DID Document stored on the DLT.

As example, a DID for the SEDIMARK Marketplace is the following:

did:iota:lnk:0xc6092b44cd422fbfcda4eb86304428fbd4cc718fe4a1c3c92d8157e6588205c6

The DID Method is the software implementation used by a node to interact with the DLT. In

accordance with W3C recommendation [8]. A DID Method must provide the primitives to:

• Create a DID: generate an identity keypair for authentication purposes, the corresponding

DID Document containing the public key and store the DID Document in the DLT,

• Resolve a DID: retrieve the DID Document from the ledger pointed to by the DID,

• Update a DID: generate a new keypair and store a new DID Document at the same or at

a new DID if the node requires changing the DID, and

• Revoke a DID: provide immutable evidence on the ledger that a DID has been revoked

by the owner.

The DID Method implementation is in general ledger-specific and it makes the upper layers

independent of the DLT of choice. In the final version of SEDIMARK, the DLT employed is

IOTA, while the DLT Method is implemented with their IOTA Identity Library.

Another important element in SSI are the Verifiable Credentials (VCs) [9]. VCs build upon the

DID foundation by providing secure, machine-verifiable digital credentials that convey

additional attributes about a node’s identity. Together, DIDs and VCs create a robust

mechanism for authentication and authorization, enhancing trust in digital interactions.

The combination of the keypair, the DID, the corresponding DID Document and at least one

VC forms the digital identity in the SSI framework.

This composition of the digital identity reflects the decentralized nature of SSI. There is no

authority that provides all the components of the identity to a node, and no authority is able to

revoke completely the identity of a node.

In SSI three roles are always mandatory and form the Triangle-of-Trust. The roles are:

1. Holder is the node that possesses one or more VCs and that generates a Verifiable

Presentation (VP) to request a service or a resource from a Verifier;

2. Issuer is the node that asserts claims about a subject, creates a VC from these claims,

and issues the VC to the Holders.

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 41 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

3. Verifier is the node that receives a VP from the Holder and verifies the two signatures

made by the Issuer on the VC and by the Holder on the VP before granting or denying

access to a service or a resource based on the claims.

The VC contains the metadata to describe properties of the credential, the DID and the claims

about the identity of the node.

The Issuer signs the VC to make it an unforgeable and verifiable digital document. A Holder

requests access to services and resources from the Verifier by presenting a VP. A VP is built

as an envelope of the VC. The VC is issued by an Issuer and a signature is made by the Holder

with his private key. Issuer and Verifier rely on an implicit trust (i.e., they trust each other).

Based on the following considerations, it is possible to build any ecosystem of trustable

interactions among nodes. Additional explanation on the adopted model are available in

SEDIMARK_D4.1 deliverable [26].

5.2 Identity Data Models – Final Version

The following subsections present the final version of the DID Document and the updated VC

data model, both employed in the final version of SEDIMARK.

5.2.1 DID Document

Figure 17 shows the JSON format of the DID Document, please refer to [8] for a detailed

description of all fields. Note that, the DID Document contains the DID of the subject, and its

EdDSA public key.

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 42 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 17: Example of DID Document

5.2.2 Verifiable Credentials

Figure 18 shows the generic VC and VP data models recommended by W3C [9]. The VC

contains the Credential Metadata, the Claim(s) about the identity of the subject, and the Proof

in the form of a signature of the Issuer. The VP is a wrap of the VC where the Proof coincides

with the signature of the Holder of the VC.

Figure 18: VC data model and VP data model

{
 "id": "did:iota:lnk:0xbb6fcb4c81cbfb68f9503928a45869eafa354e98ab19586fd88c6c4017a61d48",
 "verificationMethod": [
 {
 "id":
"did:iota:lnk:0xbb6fcb4c81cbfb68f9503928a45869eafa354e98ab19586fd88c6c4017a61d48#We_trPiWFEFl9umAYFceWTUQXXUbiGYZ
IJXXPG95dQw",
 "controller": "did:iota:lnk:0xbb6fcb4c81cbfb68f9503928a45869eafa354e98ab19586fd88c6c4017a61d48",
 "type": "JsonWebKey2020",
 "publicKeyJwk": {
 "kty": "OKP",
 "alg": "EdDSA",
 "kid": "We_trPiWFEFl9umAYFceWTUQXXUbiGYZIJXXPG95dQw",
 "crv": "Ed25519",
 "x": "rUjUKC-laOrbuV-FePFXYjY5BPSR--45fGhdEvLDYSg"
 }
 },
 {
 "id": "did:iota:lnk:0xbb6fcb4c81cbfb68f9503928a45869eafa354e98ab19586fd88c6c4017a61d48#ethAddress",
 "controller": "did:iota:lnk:0xbb6fcb4c81cbfb68f9503928a45869eafa354e98ab19586fd88c6c4017a61d48",
 "type": "EcdsaSecp256k1RecoveryMethod2020",
 "blockchainAccountId": "eip155:1:0xc36271b4787b4ff54d4ac00c57d2d554ef991f81"
 }
],
 "service": [
 {
 "id": "did:iota:lnk:0xbb6fcb4c81cbfb68f9503928a45869eafa354e98ab19586fd88c6c4017a61d48#profile",
 "type": "ServiceType",
 "serviceEndpoint": "https://profile.sedimark.example.com/profile"
 },
 {
 "id": "did:iota:lnk:0xbb6fcb4c81cbfb68f9503928a45869eafa354e98ab19586fd88c6c4017a61d48#connector",
 "type": "ServiceType",
 "serviceEndpoint": "https://connector.sedimark.example.com/api/dsp"
 },
 {
 "id": "did:iota:lnk:0xbb6fcb4c81cbfb68f9503928a45869eafa354e98ab19586fd88c6c4017a61d48#self-listing",
 "type": "ServiceType",
 "serviceEndpoint": "https://offering-manager.sedimark.example.com/offerings"
 }
]
}

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 43 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

This is the final version of SEDIMARK specific JSON format VC, according to [9] (refer to it for

the description of all fields). Note that, the CredentialSubject field contains the DID and claim(s)

that describe the identity of the subject.

---------------- JWT header ---------------

{

 "kid":

"did:iota:lnk:0x2ab8359cab2468ba2f4217703503a9bde86c4cf85ee57eb6093ed5c2072c87a7

#lY2duRVYU6SHPBI4kxVtP25809k4e4HcSCVQi8y3LXA",

 "typ": "JWT",

 "alg": "EdDSA"

}

--------------- JWT payload ---------------

{

 "exp": 1784719076,

 "iss":

"did:iota:lnk:0x2ab8359cab2468ba2f4217703503a9bde86c4cf85ee57eb6093ed5c2072c87a7

",

 "nbf": 1753096676,

 "jti": "https://issuer.stardust.linksfoundation.com/api/credentials/2",

 "sub":

"did:iota:lnk:0x8ec941e225087c452b9548a032b1e16de71b6775f435c38b1ab485d8f8cdcdbc

",

 "vc": {

 "@context": [

 "https://www.w3.org/2018/credentials/v1",

 {

 "schema": "http://schema.org/"

 }

],

 "type": [

 "VerifiableCredential",

 "MarketplaceCredential"

],

 "credentialSubject": {

 "schema:alternateName": "someUsername",

 "schema:memberOf": "SEDIMARK marketplace"

 }

 }

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 44 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

}

--------------- JWT proof ---------------

 <The Issuer’s signature>

This is the final version of SEDIMARK VP JWT (JSON Web Token) encoded, please refer to

[9] for the description of all fields.

---------------- JWT header ---------------

{

 "kid":

"did:iota:lnk:0x8ec941e225087c452b9548a032b1e16de71b6775f435c38b1ab485d8f8cdcdbc#Sc

oOeQJCAirz3X5BViNhsvWYEAYEg-5qQ8_m90KX2oc",

 "typ": "JWT",

 "nonce": "e186f26f-4852-43fd-a08d-039b35d0ecff",

 "alg": "EdDSA"

}

--------------- JWT payload ---------------

{

 "iss":

"did:iota:lnk:0x8ec941e225087c452b9548a032b1e16de71b6775f435c38b1ab485d8f8cdcdbc",

 "nbf": 1753951212,

 "vp": {

 "@context": "https://www.w3.org/2018/credentials/v1",

 "type": "VerifiablePresentation",

 "verifiableCredential": [

"eyJraWQiOiJkaWQ6aW90YTpsbms6MHgyYWI4MzU5Y2FiMjQ2OGJhMmY0MjE3NzAzNTAzYT

liZGU4NmM0Y2Y4NWVlNTdlYjYwOTNlZDVjMjA3MmM4N2E3I2xZMmR1UlZZVTZTSFBCSTRre

FZ0UDI1ODA5azRlNEhjU0NWUWk4eTNMWEEiLCJ0eXAiOiJKV1QiLCJhbGciOiJFZERTQSJ9.e

yJleHAiOjE3ODQ3MTkwNzYsImlzcyI6ImRpZDppb3RhOmxuazoweDJhYjgzNTljYWIyNDY4YmEy

ZjQyMTc3MDM1MDNhOWJkZTg2YzRjZjg1ZWU1N2ViNjA5M2VkNWMyMDcyYzg3YTciLCJuYm

YiOjE3NTMwOTY2NzYsImp0aSI6Imh0dHBzOi8vaXNzdWVyLnN0YXJkdXN0LmxpbmtzZm91bm

RhdGlvbi5jb20vYXBpL2NyZWRlbnRpYWxzLzIiLCJzdWIiOiJkaWQ6aW90YTpsbms6MHg4ZWM5

NDFlMjI1MDg3YzQ1MmI5NTQ4YTAzMmIxZTE2ZGU3MWI2Nzc1ZjQzNWMzOGIxYWI0ODVkO

GY4Y2RjZGJjIiwidmMiOnsiQGNvbnRleHQiOlsiaHR0cHM6Ly93d3cudzMub3JnLzIwMTgvY3JlZG

VudGlhbHMvdjEiLHsic2NoZW1hIjoiaHR0cDovL3NjaGVtYS5vcmcvIn1dLCJ0eXBlIjpbIlZlcmlmaW

FibGVDcmVkZW50aWFsIiwiTWFya2V0cGxhY2VDcmVkZW50aWFsIl0sImNyZWRlbnRpYWxTd

WJqZWN0Ijp7InNjaGVtYTphbHRlcm5hdGVOYW1lIjoic29tZVVzZXJuYW1lIiwic2NoZW1hOm1lb

WJlck9mIjoiU0VESU1BUksgbWFya2V0cGxhY2UifX19.vlwBEVQfZxj7JbgZFRvNiFJHSQCWpftL

GEao5LsIbQ4_OF5Zqclq60rhrIwJr8YgyA5TX32hRqDDOLHU8UF-Dg"

]

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 45 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

 },

 "walletSignature":

"0x78aa9044b6832d666a86a6725bb73584044f6a6ad842a4732cea87b5427331ec1946b485ead

34f8173a47582fa3832be1768a155f719cba83b27302841be3af61b"

}

--------------- JWT proof ---------------

<The Holder’s signature>

5.3 Authentication

This section presents the Authentication procedure at any entity of the SEDIMARK

Marketplace acting as a Verifier. Then the section introduces the Authorization procedure that

is then addressed in detail in Section 5.4.

Figure 19: Application-layer Holder authentication process.

Figure 19 shows the authentication process as it takes place in the SEDIMARK Marketplace.

The VP is the key component used by the Holder to authenticate itself to a Verifier (e.g., a user

wishing to access the global catalogue). Once a secure channel (Transport Layer Security TLS

[7]) is established with the Verifier, the Holder proceeds with the application-layer

authentication process by presenting his VP. The main advantage resides into such

mechanism, where the authentication takes place without any further interactions with the

issuers (e.g., no connection overhead). This enhancement is due to the concept of “transitive

trust” employing the VC/CP.

The authentication comprises all common verification steps envisioned by the SSI model as

specified by W3C in [9]. The verification process comprises these steps:

1. Holder contacts the Verifier and receives a nonce from the Verifier, the nonce acts as a

challenge for counteracting replay attacks;

2. Holder prepares and presents the VP to the Verifier;

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 46 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

3. The verifier verifies the VP:

a) Verifier resolves the holder's DID to retrieve the Holder public key pk_Holder;

b) Verifier verifies the signature on the VP with pk_Holder;

c) Verifier checks that the VP adheres to the recommended data model;

d) Verifier validate the credential in the presentation:

i) Verifier resolves the issuer's DID to retrieve the Issuer public key pk_Issuer (the

Issuer is trusted),

ii) Verifier verifies the Issuer’s Signature on the VC with pk_Issuer,

iii) Verifier checks that the VC adheres to the recommended data model and the validity

of all VC metadata;

4. If all verifications are successful, the Verifier authenticates the Holder, otherwise it closes

the connection with the Holder.

Finally, the Verifier checks the values in the credentialSubject field of the VC to proceed with

the authorization, i.e. the process of determining his access rights.

5.4 Authorization and Access Policies

Access control within the SEDIMARK Marketplace is governed by a policy-based authorization

framework that ensures secure, compliant, and flexible enforcement of asset access

conditions. These policies are defined by Providers and evaluated during both the negotiation

and exchange phases, allowing fine-grained control over who can access what, under which

conditions.

Policies are expressed using the Open Digital Rights Language (ODRL), a W3C standard

designed to represent permissions, prohibitions, and obligations associated with digital assets.

In SEDIMARK, ODRL policies are attached to offerings and interpreted by Policy Decision

Points (PDPs), with the Verifier component acting as a specialized PDP optimized for on-chain

validation. Once a policy is positively evaluated, a Policy Enforcement Point (PEP), typically

the SEDIMARK Connector, ensures that access is granted in accordance with the defined

rules.

Each policy includes a set of permissions, which may contain multiple constraints and

optionally one or more duties. In the current implementation, three types of constraints and

one duty are supported:

• Temporal Constraint: This condition restricts access based on time, using ODRL

operators such as lt, gt, lteq, or gteq. It is stateless and can be evaluated locally by the

Provider’s Connector.

• Credential-Based Constraint: This constraint relies on claims embedded in the

SEDIMARK Verifiable Credential (VC) issued during onboarding. Typical claims include

memberOf and alternateName. While alternateName has limited practical relevance,

memberOf can be used to demonstrate potential cross-marketplace interoperability. In

practice, this constraint is optional and may be omitted depending on the Provider’s

preferences.

• DataToken Ownership Constraint: This mandatory condition verifies that the Consumer

holds a valid DataToken (DT) linked to the offering’s NFT. Ownership is checked on-chain

during the asset access phase. Although this may seem redundant with the duty described

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 47 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

below, it serves a distinct purpose: confirming that the Consumer still possesses the DT

at the time of access, even if it was acquired earlier during negotiation.

In addition to constraints, the policy may include a duty, which defines an obligation that must

be fulfilled before access is granted. In SEDIMARK, this duty requires the Consumer to

purchase a DataToken during the negotiation phase. In other words, the FSM governing the

DSP Contract Negotiation will not reach the FINALIZED state unless this duty is fulfilled. The

duty also includes a refinement specifying the price of the DT in native tokens, currently fixed

at 1 native token. While static in the current implementation, this refinement anticipates future

support for dynamic pricing, allowing Providers to define variable or market-driven prices for

asset access.

The verification of this duty is performed during the negotiation phase and involves the

following steps:

1. The Holder connects to the Verifier, its identity is authenticated as described in Section

5.3. It also sends the address of the offering to be verified.

2. The Verifier verify the purchase on the ISC platform. The offering smart contract contains

a function that verifies the proof of purchase. The smart contract controls that the holder

is a valid user of the SEDIMARK Marketplace and that the balance of the corresponding

datatokens is greater than 0, i.e., the Consumer has at least purchased the offering

corresponding to the desired asset.

An example of a complete ODRL policy, including all three constraint types and the duty, is

shown in Figure 20. This example illustrates how temporal restrictions, credential-based

conditions, and token ownership requirements can be combined with a purchasing obligation

to enforce secure and accountable access to a given SEDIMARK offering.

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 48 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 20: Example of SEDIMARK offering ODRL policy

{
 "@id": "https://uc.sedimark.eu/offerings/dummy-offering-id/offeringContract/dummy-offeringContract-id",
 "@type": "sedimark:OfferingContract",
 "odrl:profile": "https://sedimark.eu/odrl/sedi-profile",
 "odrl:uid": "https://uc.sedimark.eu/offerings/dummy-offering-id/offeringContract/dummy-offeringContract-id",
 "odrl:permission": [{
 "odrl:target": "https://uc.sedimark.eu/offerings/dummy-offering-id",
 "odrl:assigner": "did:iota:lnk:0xf053682e4724ba221e2f49dd0adabba135cd4ccb08d492440e163482064b617a",
 "odrl:action": "odrl:use",
 "odrl:constraint": [
 {
 "odrl:leftOperand": "odrl:dateTime",
 "odrl:operator": {
 "@id" : "odrl:lteq"
 },
 "odrl:rightOperand": {"@value": "2025-12-31T00:00:00Z", "@type": "xsd:dateTime"}
 },
 {
 "odrl:leftOperand": "odrl:dateTime",
 "odrl:operator": {
 "@id" : "odrl:gteq"
 },
 "odrl:rightOperand": {"@value": "2025-08-31T00:00:00Z", "@type": "xsd:dateTime"}
 },
 {
 "odrl:leftOperand" : "sedi:claimMemberOf",
 "odrl:operator" : {
 "@id" : "odrl:eq"
 },
 "odrl:rightOperand": "SEDIMARK marketplace"
 },
 {
 "odrl:leftOperand" : "sedi:dataTokenOwnership",
 "odrl:operator" : {
 "@id" : "odrl:eq"
 },
 "odrl:rightOperand": "true"
 }
],
 "odrl:duty": [
 {
 "odrl:action": [
 {
 "odrl:action" : "sedi:purchaseDataToken",
 "odrl:refinement": [
 {
 "odrl:leftOperand": "odrl:payAmount",
 "odrl:operator": {
 "@id" : "odrl:eq"
 },
 "odrl:rightOperand": {"@value": "1", "@type": "xsd:decimal"},
 "odrl:unit": "sedi:nativeToken"
 }
]
 }
],
 "odrl:constraint": [
 {
 "odrl:leftOperand": "odrl:event",
 "odrl:operator": {
 "@id" : "odrl:lt"
 },
 "odrl:rightOperand": "sedi:dspContractAgreementFinalized"
 }
]
 }
]
 }],
 "odrl:prohibition": [],
 "odrl:obligation": []
 }

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 49 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

6 Tokenization
The SEDIMARK Marketplace uses the tokenisation process to make assets discoverable and

tradable. The tokenization framework acts as a backbone for trading into the marketplace: any

owner can tokenise an asset and make it discoverable for purchase by other Consumers.

The tokenisation is defined as the process of representing the ownership of real-world assets

as digital tokens on the DLT. The SEDIMARK Marketplace uses a set of Smart Contracts (SCs)

to rule tokenising of assets, making offers and buying access to assets. SCs are software

applications that operate on the decentralized network of validators who execute and validate

the same code, as described in Section 3.2.

In the SEDIMARK Marketplace the object of the purchase is the offering, which represents a

specific asset owned by a Provider which put it up for sale. Such offering is unique. The trading

of the asset is regulated with the appropriate SCs. With the SCs infrastructure is possible to

trace the existing offerings from the Providers and the respective purchases made by the

Consumers. The result of the negotiation between Provider and Consumer include the transfer

of tokens from the seller to the purchaser.

6.1 Types of Tokens and Standards

In the final version of the SEDIMARK Marketplace, two types of tokens have been employed

for realizing the trading operations.

Figure 21 shows the tokenization model based on the adoption of two different types of tokens.

Figure 21: Digital asset tokenization

Non-Fungible Tokens (NFTs)

The purchase operation in the SEDIMARK Marketplace allows a user to obtain the access to

the asset. The property of the asset bought remains to the owner, namely the Provider. A

representation of the offering on the ISC-Chain of the asset is actually being bought, after its

conversion into NFT.

The tokens are minted with a specific SC, named ServiceBase SC, which is an ERC-721

compliant contract [1]. The ServiceBase SC is responsible for minting an NFT representing the

specific offering of its owner. ERC-721 is a token standard on the Ethereum blockchain that

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 50 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

defines a set of rules for creating NFT. Each ERC-721 token has a unique identifier, ensuring

that no two tokens are the same. Additionally, such standard enforces interoperability, allowing

NFTs to be traded across different platforms supporting this standard.

Fungible tokens – “Datatokens” (DTs)

The DT is another SC. It manages the access to an asset and proves the correct purchase of

the respective offering.

NFTs and the corresponding DTs related to the asset are two linked concepts. However, the

NFT cannot be copied, substituted nor subdivided. Conversely, datatokens are fungible, i.e.,

they can be used indistinctly for the purchase.

The DTs are used to allow the access to the asset, providing on the ISC-Chain a verifiable

proof of purchase.

A DT SC is associated to each NFT SC. The NFT contains the list of the addresses of the

minted fungible tokens. When an offering is created, it is also created the corresponding DT

SC with a specific supply of tokens. Therefore, a certain number of fungible tokens (one or

more) are associated to the specific offering’s NFT. A consumer that buys the access to an

asset, exchanges a native token to acquire a datatoken. Therefore, the datatoken is a proof of

having purchased the asset.

6.2 Smart Contracts Overview and Token Creation

The offering of an asset is unique. The SC contains the offering metadata which are fed from

the Offering Manager. The content of the metadata points to the offering description.

SEDIMARK uses Solidity, compatible with Ethereum VM (EVM) and supported by ISC-Chain.

Smart Contracts are deployed on the immutable ledger which means that once they are

published, nobody can tamper with the code.

The main Smart Contracts deployed on the ISC chain are described in the following:

• ServiceBase Smart Contract: ERC-721 compliant contract [1]; the ServiceBase SC is

responsible for minting an NFT representing a specific offering of the Provider. Minting

the NFT means immutably store it on the ISC chain to make an offer. The contract holds

the relevant NFT information together with its metadata.

• Datatoken Smart Contract (DTSC): ERC-20 compliant contract [4]; the DTSC is

responsible for minting a certain number of ERC-20 tokens (i.e. Datatokens) for the owner

of the NFT (i.e. the owner of the associated asset). The DTSC allows the owner to add

his datatokens into a Fixed Rate Exchange Smart Contract (FRESC), enabling potential

Consumers to purchase access to the asset represented by the NFT. Moreover, upon a

datatoken transfer, the DTSC updates the information about the balance of all the wallets

involved in such an operation.

• Fixed-Rate Exchange Smart Contract (FRESC): is a contract acting as an exchange.

Providers, after making an offer, add the minted datatokens to the FRESC to enable

trading of the asset at a fixed price. The smart contract can swap Provider’s datatoken

with Consumer’s native tokens. Later, Providers can withdraw the swapped native tokens

from the FRESC. A new local instance of the exchange is created within the FRESC every

time a new datatoken is added to FRESC. Thus, the FRESC holds many exchange

instances, one for each datatoken. Every exchange instance holds essential information

required for the exchange process (e.g., datatoken owner, datatoken price, DTSC

address). In more detail, the Provider sets the datatoken price when it instantiates the

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 51 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

exchange. Moreover, a unique ID is assigned to each instance; the ID facilitates

transactions and token swaps.

6.3 Token usage and available operations

From the usage point-of-view, a user (either provider or consumer) can trigger the following

operation on the platform:

• Creation and publication of the offering. The creation and the publication of the offering

is realized through the interactions with the Offering Manager and the DLT-Booth of the

SEDIMARK Toolbox. The tokenisation allows the placement of the immutable SC

containing the pointer to the offering information. The offering manager module is

employed for managing the offering lifecycle. Also in this case, the DLT-Booth component

actually stores the offering onto the DLT interfacing with decentralized infrastructure.

• Purchasing of the offering. A consumer has the assurance that the offering advertised

is the one desired and it will not change in the future. Therefore, after the purchase, it is

possible to demonstrate the agreement on a specific offering with the advertised features.

On the other hand, a Provider relying on this mechanism based on a robust decentralized

infrastructure, has the guarantee enabled with the Proof-of-Purchase verification.

• Access to data. A Consumer buys a specific datatoken related to the desired offering.

The ownership of the datatoken enables the Consumer to access to the Provider’s asset.

In fact, datatokens are strictly related to a specific offering published on the Smart Contract

Platform. Therefore, the Provider relies on the offering Smart Contract to verify that the

Consumer can access the asset; it can check that the Consumer is a valid user of the

SEDIMARK Platform and it purchased a datatoken associated to a specific asset.

In any marketplace, there is value exchange, that is a connection between what is purchased

and the currency. In the SEDIMARK Marketplace, the asset exchange between the Provider

and the Consumer is realized by giving datatokens in exchange of the access to the asset. In

this exchange there is no currency involved. For the sake of simplicity in the SEDIMARK

Marketplace it is employed a customized native token. This specific “currency” does not carry

any real economic value outside the SEDIMARK Marketplace. The native tokens have been

generated with the sole target of supporting the Use Cases activities of the Project. Moreover,

having access to the real economic value would imply for the Partners to managing the related

financial activities, incurring in a cumbersome overhead. For this reason, in the SEDIMARK

Marketplace, the following assumption is made: a single native token corresponds to a single

datatoken.

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 52 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

7 Conclusions
This document is the final version of the decentralised infrastructure and access management

mechanisms. This document analysed the final version of the APIs of the decentralised

infrastructure enabling the various operations in the marketplace and the mechanisms for

implementing the access control of the users of the SEDIMARK Platform.

The decentralized infrastructure and access management presented in this document

consolidates the foundations for a secure and decentralised marketplace. These features are

complemented by the tokenization of the assets together with the chains of smart contracts

that orchestrate the secure exchange of assets enabled by the SEDIMARK Marketplace.

The whole architecture is rooted in robust governance mechanisms and user-centric access

controls, to define how the data and the services are managed and shared. The interconnected

chains of smart contracts constitute an innovation among the complexities of the

decentralization technology. The adoption of these technologies and mechanisms results in

an improved trustworthiness of the SEDIMARK Marketplace.

The second and final version of the decentralised infrastructure also features the complete set

of access management policies, together with the integration of the technical works deriving

from the joint development, especially in other WPs – such as WP3 for the AI and data related

activities and in WP5 for the final steps related to the integration and deployment.

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 53 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

8 References

[1] William Entriken, Dieter Shirley, Jacob Evans, and Nastassia Sachs. Erc-721. Non-

fungible token standard, ethereum improvement proposals, no. 721.

https://eips.ethereum.org/EIPS/eip-721 , 2018.

[2] Alex Preukschat and Drummond Reed. Self-sovereign identity. Decentralized digital

identity and verifiable credentials. https://www.manning.com/books/self-sovereign-

identity , 2021.

[3] Evaldas Drąsutis. IOTA Smart Contracts.

https://files.iota.org/papers/ISC_WP_Nov_10_2021.pdf , 2021

[4] Fabian Vogelsteller and Vitalik Buterin. Erc-20. Token standard, ethereum

improvement proposals, no. 20. https://eips.ethereum.org/EIPS/eip-20 , 2015.

[5] N. Kannengießer, S. Lins, T. Dehling, and A. Sunyaev, Trade-offs between distributed

ledger technology characteristics, ACM Computing Surveys, vol. 53, no. 2, pp. 1–37,

2020.

[6] Serguei Popov. The Tangle.

https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92

f85dd9f4a3a218e1ec/iota1_4_3.pdf , 2018.

[7] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. Internet

Request for Comments. https://www.rfc-editor.org/info/rfc8446 , 2018.

[8] W3C. Decentralized Identifiers (DIDs) v1.0. W3C Recommendation.

https://www.w3.org/TR/did-core/ , 2022.

[9] W3C. Verifiable Credentials Data Model v1.0. W3C Recommendation.

https://www.w3.org/TR/vc-data-model-1.0/ , 2019.

[10] IOTA SDK. https://github.com/iotaledger/iota-sdk

[11] IOTA Identity. https://github.com/iotaledger/identity.rs

[12] Actix-web. https://actix.rs/

[13] ipfs-api-backend-actix. https://crates.io/crates/ipfs-api-backend-actix

[14] SEDIMARK, Deliverable 2.1: Use case definition and initial requirement

analysis, SEDIMARK, June 2023.

[15] SEDIMARK, Deliverable 3.3: Enabling tools for data interoperability,

distributed data storage and training distributed AI models. First version, SEDIMARK,

December 2023.

[16] International Dataspace Protocol - Version 0.8.

https://github.com/International-Data-Spaces-Association/ids-specification/tree/v0.8

[17] IDSA, Dataspace Protocol - Working Draft.

https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-

protocol/overview/readme

[18] Eclipse Foundation. Eclipse Dataspace Components.https://eclipse-

edc.github.io/docs/#/README

[19] Contract Negotiation Protocol state machine. https://github.com/eclipse-

dataspace-protocol-

base/DataspaceProtocol/blob/main/specifications/negotiation/figures/contract.negotiat

ion.state.machine.png

[20] Transfer Process Protocol state machine. https://github.com/eclipse-

dataspace-protocol-

https://eips.ethereum.org/EIPS/eip-721
https://www.manning.com/books/self-sovereign-identity
https://www.manning.com/books/self-sovereign-identity
https://files.iota.org/papers/ISC_WP_Nov_10_2021.pdf
https://eips.ethereum.org/EIPS/eip-20
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://www.rfc-editor.org/info/rfc8446
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/vc-data-model-1.0/
https://github.com/iotaledger/iota-sdk
https://github.com/iotaledger/identity.rs
https://actix.rs/
https://crates.io/crates/ipfs-api-backend-actix
https://github.com/International-Data-Spaces-Association/ids-specification/tree/v0.8
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/readme
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/readme
https://eclipse-edc.github.io/docs/#/README
https://eclipse-edc.github.io/docs/#/README

Document name: D4.2 Decentralized Infrastructure and access management. Final version Page: 54 of 54

Reference: SEDIMARK_D4.2 Dissemination: PU Version: 1.0 Status: Final

base/DataspaceProtocol/blob/main/specifications/transfer/figures/transfer-process-

state-machine.png

[21] Koa. https://github.com/koajs/koa

[22] Express. http://expressjs.com

[23] Traefik Proxy. https://traefik.io/traefik/

[24] Apache Software Foundation, 2021. Apache Jena, Available at:

https://jena.apache.org/.

[25] SEDIMARK, Deliverable 3.4: Enabling tools for data interoperability,

distributed data storage and training distributed AI models. Final version, SEDIMARK,

July 2025.

[26] SEDIMARK, Deliverable 4.1: Decentralized infrastructure and access

management. First version, SEDIMARK, December 2023.

[27] Martin Holst Swende and Nick Johnson. Erc-191. Signed data standard,

ethereum improvement proposals, no. 191. https://eips.ethereum.org/EIPS/eip-191,

2016.

https://github.com/koajs/koa
http://expressjs.com/
https://traefik.io/traefik/
https://jena.apache.org/

	Document Information
	Table of Contents
	List of Figures
	List of Acronyms
	Executive Summary
	1 Introduction
	1.1 Purpose of the document
	1.2 Structure of the document

	2 Interactions in a Secure and Decentralized Marketplace
	2.1 Foundations: Decentralization in the Marketplace
	2.2 Entities and Interactions in the Marketplace

	3 Core Technologies for Decentralization
	3.1 IOTA DLT
	3.2 IOTA Smart Contract (ISC) chain
	3.3 Dataspace Protocol
	3.4 Distributed Triple Stores Protocol
	3.4.1 Decentralised Offering Management
	3.4.2 Decentralised Query Resolution
	3.4.3 Node Dynamics and Resilience

	4 Implementation Perspectives
	4.1 Connector
	4.2 Catalogue
	4.3 Issuer
	4.4 Verifier
	4.5 DLT-Booth
	4.6 Main Libraries

	5 Digital Identity and Access Management
	5.1 Background: Self-Sovereign Identity (SSI)
	5.2 Identity Data Models – Final Version
	5.2.1 DID Document
	5.2.2 Verifiable Credentials

	5.3 Authentication
	5.4 Authorization and Access Policies

	6 Tokenization
	6.1 Types of Tokens and Standards
	6.2 Smart Contracts Overview and Token Creation
	6.3 Token usage and available operations

	7 Conclusions
	8 References

