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Executive Summary 

Data quality is of the highest importance for companies to improve their decision-making 

systems and the efficiency of their products. In this current data-driven era, it is important to 

understand the effect that “dirty” or low-quality data can have on a business. Manual data 

cleaning is the common way to process data, accounting for more than 50% of the time of 

knowledge workers. SEDIMARK acknowledges the importance of data quality for both sharing 

and using data to extract knowledge and information for decision-making processes. Thus, 

one of the main goals of SEDIMARK is to develop a data processing pipeline that assesses 

and improves the quality of data generated and shared by the SEDIMARK data providers. 

This deliverable presents the final version of the methods and techniques developed within 

SEDIMARK for processing data and improving their quality, extending the first version which 

was delivered in SEDIMARK Deliverable D3.1 [74]. The focus in this deliverable is to present 

the final version of the key techniques that are used for quality improvement of datasets, based 

on the requirements of the SEDIMARK platform so that they all work together smoothly.  

SEDIMARK considers two main types of data generated and shared within the marketplace: 

(i) static/offline datasets and (ii) dynamic/streaming datasets. The project acknowledges that it 

is important to cater to both types of datasets equally, thus in most scenarios, separate and 

customised versions of the tools have been developed for static and streaming datasets. 

Techniques for outlier detection, noise removal, deduplication and imputation of missing values 

are important for improving the quality of datasets. These techniques aim to remove abnormal 

values or noise from the dataset, remove duplicate values or fill out gaps in some entries or 

add complete entries. Techniques for feature engineering such as feature extraction and 

selection have also been developed to enrich the datasets. Synthetic dataset creation is 

important in scenarios where data providers don’t want to share their real datasets (i.e. for 

privacy reasons) but want to share synthetic versions that mimic the real ones. 

This deliverable also presents the framework to orchestrate the whole functionality of the data 

processing pipeline using a Data Processing Orchestration. This component enables end 

users to interact with the built-in data processing solutions through a simplified dashboard 

interface. This deliverable also presents the final version of the key quality metrics that 

SEDIMARK has defined for assessing the quality of datasets, both per data point and as a 

whole, as well as the key techniques for dataset quality improvement, designed to meet 

SEDIMARK platform requirements and ensure seamless integration. 

Another important part is the description of techniques towards reducing the energy 

consumption of the components of the data processing pipeline and optimizing data efficiency, 

i.e. using techniques for data distillation, coreset selection and dimension reduction. Minimising 

the communication cost in distributed machine learning scenarios is also important for 

SEDIMARK, because communication can increase energy consumption. Techniques to 

optimise the Artificial Intelligence (AI) models both during training and inference are also 

presented, focusing on quantisation, pruning, low rank factorisation and knowledge distillation.  

Finally, considering that minimising energy consumption can influence performance or 

communication, the deliverable presents the final analysis on these trade-offs, aiming to 

provide insights to data providers on how to better configure the pipeline or what models they 

should select in order to achieve their targets (energy efficiency/performance/communication).  
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1 Introduction 

1.1 Purpose of the document 

This document is the final deliverable from WP3 Tasks 3.1 and 3.5, aiming to provide the final 

draft of the SEDIMARK data quality pipeline. This document details how the pipeline was built 

to improve the quality of datasets shared through the marketplace while also addressing the 

problem of energy efficiency in the data value chain. This document builds on the technologies 

described in SEDIMARK Deliverable D3.1 showing the final ideas and implementations of the 

respective tools and techniques for improving data quality and energy efficiency.  

The main goal of this document is to discuss how data quality is seen in SEDIMARK, what are 

the metrics defined in order to assess the quality of data that are generated by data providers, 

and what techniques are provided to them for improving the quality of their data before sharing 

them on the data marketplace. This helps the data providers to both optimise their decision-

making systems for the Machine Learning (ML) models they train using their datasets, and to 

increase their revenues by selling datasets of higher quality and thus higher value. Regarding 

the first argument, it is well documented that low-quality data has a significant impact on 

business, with reports showing a yearly cost of around $3 Trillion, and that knowledge workers 

waste 50% of their time searching for and correcting dirty data [1]. It is evident that data 

providers will hugely benefit from automated tools to help them improve their data quality, 

either without any human involvement or with minimum human intervention and configuration.  

This document presents high-level descriptions of the concepts and tools developed for the 

data quality pipeline and the energy efficiency methods for reducing its environmental cost, as 

well as concrete technical details about the implementation of those tools. Thus, it can be 

considered that this is both a high-level and a technical document, thus targeting a wide 

audience. Primarily, the document targets the SEDIMARK consortium, discussing the technical 

implementations, so that the integration activities of the project can easily integrate of all the 

components into a single SEDIMARK platform. Apart from that, this document also targets the 

scientific and research community, since it presents new ideas about data quality and how the 

developed tools can help researchers and scientists improve the quality of the data they use 

in their research or applications. Similarly, the industrial community can leverage the project 

tools to improve the quality of their datasets or also assess how they can exploit the results 

about energy efficiency to reduce the energy consumption of their data processing pipelines. 

Moreover, EU initiatives and other research projects should consider the contents of the 

deliverable in order to derive common concepts about data quality and reducing energy 

consumption in data pipelines. 

1.2 Relation to another project work  

This deliverable is an extension of SEDIMARK Deliverable D3.1 and presents the results of 

work done in the last 19 months of the project in Task 3.1 (AI based tools for data quality 

management) and Task 3.5 (energy optimisation of data management techniques). 

Additionally, this deliverable is also based on the work done in WP2, especially in Task 2.2 

related to the definition of the functional and non-functional requirements for the areas of 

interest of this deliverable (presented in deliverable SEDIMARK_D2.1 [2]), in Task 2.3 

regarding the system functional architecture and the functional components related with data 
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quality and energy efficiency, as well as in Task 2.4 regarding the initial draft of the interfaces 

between the system components (presented in SEDIMARK_D2.2 [3] and SEDIMARK_D2.3 

[4]). The architecture and interfaces are of major importance for the work presented in this 

deliverable, as they lay the foundations for the work in the tasks that provide their output to this 

deliverable. The output of the work presented in this deliverable will also be used for the overall 

system testing and validation (in WP5). Figure 1 shows the interaction of the activities within 

WP3 and the relation with the rest of the work packages. 

 

Figure 1: Relationship between SEDIMARK_D3.1 and other deliverables, tasks, and 

workpackages. 

1.3 Structure of the document 

This document is structured into 6 major chapters: 

Chapter 1 is the current chapter and presents the introduction to the overall document. 

Chapter 2 presents the positioning of the deliverable within the overall project. 

Chapter 3 presents the main work done within Task 3.1 and is related to tools and techniques 

for assessing and improving the quality of data assets. 

Chapter 4 presents work done within Task 3.5 and is related to the design and development 

of techniques to reduce energy consumption and improve energy efficiency of tools used within 

the data quality pipeline or the AI pipeline of SEDIMARK. 

Chapter 5 presents work done within Task 3.5 and is related to the assessment of trade-offs 

between energy consumption, ML model accuracy and efficiency, and communication cost. 

The included results aim to help data providers and researchers understand the gains/losses 

when choosing to optimise for energy consumption or accuracy. 

Chapter 6 presents the conclusions of the document, discussing the major outcomes and 

conclusions of the work. 
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1.4 Glossary adopted in this document  

The readers are referred to SEDIMARK_D2.3 which provides a complete final list of the 

terminology used within SEDIMARK.  
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2 Position within the project 
This deliverable presents the final draft of the work in Tasks 3.1 and 3.5. The work in these 

tasks concerns two of the main pillars of the SEDIMARK project, since these tasks focus on 

developing tools that will enhance the quality of the datasets to be shared within the project, 

whilst also ensuring that the SEDIMARK tools will be energy efficient, giving also options to 

data providers to understand how they can tune the models and the tools in order to optimise 

either for energy efficiency or for accuracy and performance.  

Figure 2 presents the SEDIMARK functional architecture that was described in deliverable 

SEDIMARK_D2.2 in detail. The functional components that are part of this deliverable are 

highlighted in orange. As is evident, these are part of the Data and Intelligence layers of 

SEDIMARK. More details about these components and their mapping to deliverable sections 

are given below:  

• Data Processing Orchestration: this is described in section 3.3, where the framework 

for orchestrating the whole data quality pipeline is presented. 

• Pipeline Orchestrator UI: this is described in section 3.4, where the dashboard that will 

be provided to the users for managing their datasets and accessing the various data 

processing tools is presented.  

• Data Visualisation: this is described in section 3.4, where the roadmap for the design of 

his module and its integration with Data Processing Orchestration and Pipeline 

Orchestrator UI is described.  

• Data Quality Evaluation: this component handles the assessment of the data quality and 

is described in section 3.5, including the metrics that were defined within SEDIMARK for 

assessing the quality of datasets. 

• Data Profiling: this is described in section 3.6 and provides general information and 

statistics about a dataset that is managed by the data processing pipeline.  

• Data Curation: this is a suite of components that process the datasets and aim to improve 

their quality. It is described in section 3.7, where more details about the mechanisms for 

outlier detection, noise removal, deduplication, missing value imputation, etc. are 

provided. 

• Data Augmentation: this is described in section 3.8, discussing what tools SEDIMARK 

provides currently for generating synthetic data and how these can be used for removing 

bias and improving fairness in datasets.  

• Feature Engineering: this is described in section 3.9, where the methods for extracting 

valuable features from datasets are discussed, aiming to improve the usefulness of 

datasets when used for training AI models. 

• Frugal AI: this component is described in sections 4.2 and 4.3, discussing various 

techniques to reduce energy consumption of ML models both during training. 

• Model Optimisation: this component is described in section 4.3, discussing techniques 

to optimise the ML models after they are trained, aiming to reduce energy consumption. 

• Energy Efficiency: this component is actually a suite of techniques that help improve the 

energy efficiency of the tools and models of the SEDIMARK toolbox. The components 

and methods included in this suite are described in Section 4, while in Section 5 there is 
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an initial assessment of the trade-offs between energy efficiency and performance 

providing insights on how the methods can be tuned for either criterion. Some specific 

components and analysis that are focused on energy efficiency are given in sections 4.4, 

4.5, and 4.6. 

 

Figure 2: Mapping of SEDIMARK_D3.2 components to the SEDIMARK architecture. 

As discussed in the introduction section, this is the final version of the deliverable describing 

the methods and tools developed within SEDIMARK related to data processing and energy 

efficiency. As presented in deliverable SEDIMARK_D2.3 [4], these tools are part of the Data 

Processing Pipeline, which is part of the SEDIMARK toolbox. The developed tools will become 

public at the end of the project as part of the SEDIMARK’s GitHub page [73], considering that 

most of them will be open sourced. In detail, currently there are implementations of: 

• Data Processing Orchestration, Dashboard and Visualisation, implemented as 

wrapper and abstraction layer of the Python based Mage.ai. 

• Data Profiling and Data Quality Evaluation, implemented using Python. 

• Outlier detection, implemented using python and building on libraries such as PyOD, 

tods, pythresh, pandas, scikit-learn, and river. 

• Deduplication, implemented using python and building on libraries such as recordlinkage 

and dedupe. 

• Missing Value Imputation, implemented using python and building on libraries such as 

hyperimpute, river and scikit-learn. 

• Feature Engineering, implemented using python and building on libraries such as 

pandas, scipy, pymmh3 and numpy, 
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• Data augmentation, implemented using python and libraries such as ydata-synthetic. 

• Model Optimisation, implemented using python and building on techniques for 

quantisation.  

• Frugal AI, not implemented as a standalone component, but currently being an analysis 

of techniques that can be used to maximise the energy efficiency of AI model training and 

inference. 

The table below shows the links for accessing the implemented modules described in this 

deliverable: 

Table 1: GitHub links for the implemented modules 

Module Section GitHub Link 

Data Processing 
Orchestrator 

3.3 /Sedimark/MageAPI,  
/Sedimark/mage  

Data Processing 
Dashboard 

3.4 /Sedimark/Sedimark-Orchestration-UI 

Data Visualisation 3.4 /Sedimark/Sedimark-Orchestration-UI 

Data Profiling 3.6 /Sedimark/sedimark_dqp 

Data quality 
evaluation 

3.6 /Sedimark/sedimark_dqp 

/Sedimark/UC_modules 

Outlier detection 3.7.1.1 /Sedimark/sedimark_dqp 

3.7.1.2 /Sedimark/UC_modules 

Noise cancellation 3.7.2 /Sedimark/noise_cancellation  

Deduplication 3.7.3 /Sedimark/sedimark_dqp 

Missing Value 
Imputation 

3.7.4 /Sedimark/sedimark_dqp 

Feature Engineering 3.9 /Sedimark/SEDIMARK_DPP/tree/main/feature_engineering  

Data augmentation 3.8 /Sedimark/sedimark_dqp 

Quantisation 
(centralised) 

4.3.2 /Sedimark/Crossformer  

Pruning 4.3.3 /Sedimark/Prune  

Knowledge 
distillation 

4.3.4 /Sedimark/offering-generator 

Low-rank 
factorisation 

4.3.5 /Sedimark/Recommender 

Reducing energy in 
data storage 

4.5 /Sedimark/broker  

 

https://github.com/Sedimark/MageAPI,%20https:/github.com/Sedimark/mage
https://github.com/Sedimark/MageAPI
https://github.com/Sedimark/mage
https://github.com/Sedimark/Sedimark-Orchestration-UI
https://github.com/Sedimark/Sedimark-Orchestration-UI
https://github.com/Sedimark/sedimark_dqp
https://github.com/Sedimark/sedimark_dqp
https://github.com/Sedimark/sedimark_dqp
https://github.com/Sedimark/sedimark_dqp
https://github.com/Sedimark/sedimark_dqp
https://github.com/Sedimark/noise_cancellation
https://github.com/Sedimark/sedimark_dqp
https://github.com/Sedimark/sedimark_dqp
https://github.com/Sedimark/SEDIMARK_DPP/tree/main/feature_engineering
https://github.com/Sedimark/sedimark_dqp
https://github.com/Sedimark/Crossformer
https://github.com/Sedimark/Prune
https://github.com/Sedimark/offering-generator
https://github.com/Sedimark/Recommender
https://github.com/Sedimark/broker
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3 Data Processing Pipeline 

3.1 Overview 

A key objective in the development of SEDIMARK is to promote the sharing of high quality, 

curated data within its marketplace. The huge quantities of data made available by the spread 

of commercial internet technologies are widely acknowledged to be at the root of the explosion 

of interest in machine learning. At the same time, effectively dealing with this data presents a 

huge challenge, especially when much of it is of low or only medium quality. A growing trend 

in both industry and research has sought to give data collection and curation a central role 

within the development of AI systems, with many championing Data-centric rather than Model-

centric AI [11]. This originates not only with observations that improving raw data quality can 

often be more effective than iterating on model architectures but also that the data itself can 

often be the root cause of many ethical concerns in the development of AI models [10]. As 

such, emerging approaches to ML and data science support putting the curation of high-quality 

datasets first and foremost within the data science workflow. Although a vast number of tools 

and methodologies exist for improving data quality, the notion of data quality is itself quite 

qualitative, and domain dependent, and often little can be done without the involvement of a 

large amount of expert human labour. In the work of data scientists alone, tasks such as outlier 

detection (OD), data deduplication and missing value imputation are widely acknowledged to 

take up to 50% of their time [1],[7],[8]. 

A key aim of SEDIMARK is to minimise the human effort needed to improve the quality of data 

within its marketplace, thus increasing the data’s intrinsic value, and attracting a wider base of 

both data consumers and providers. As such, it includes a wide array of data cleaning tools 

that can be integrated as part of the data publishing workflow. In its current iteration, 

SEDIMARK includes tools for outlier detection, deduplication, missing value imputation, and 

noise removal from time series. SEDIMARK however recognises that the use of these tools 

could effectively prove a barrier to adoption by data providers, if they require excessive human 

effort to adapt them to new datasets. As such, a key challenge in the development of 

SEDIMARK concerns reducing the amount of human involvement required by the data 

cleaning process. As such, SEDIMARK has explored applying Automated Machine Learning 

(AutoML) techniques to the individual components of the pipeline. In two of the key data 

cleaning components, there are emerging technologies for automating the process of model 

selection and repair, which are discussed below. In addition, some AutoML or meta-learning 

techniques could in principle be used as a method for optimising the overall data pipeline as a 

whole, though this may not be feasible within the scope of the project. This is discussed in 

section 3.10.  

Figure 3 shows the overview of the data processing pipeline within SEDIMARK and the 

interactions between the different components. As is shown, the user interacts with the pipeline 

through the Data Processing Dashboard, choosing the data to be analysed/curated, the 

processing steps and the functions that will be run, as well as the configuration of the various 

functions, i.e. with respect to the models that will run and the hyperparameters for each model. 

Then, the Data Processing Dashboard forwards all this information to the Data Processing 

Orchestration component, which manages the operation of the whole pipeline. The 

orchestration component takes the configuration file (set by the user) as an input and creates 

the flow of modules that need to be executed (sequentially or in parallel) in order to process 
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the data, i.e. to format the data, to do the profiling and extract statistics, to curate and assess 

the quality of the data, to validate the data, extract features and annotate them to convert them 

to the external data format. More details about these steps (apart from data validation and 

annotation which are part of SEDIMARK_D3.3 [5]) are given in the below subsections.  

 

Figure 3: Overview of the data processing pipeline of SEDIMARK 

The rest of Section 3 is structured mostly according to the order of the steps of the data 

processing pipeline, shown in Figure 3: section 3.2 discusses in general how SEDIMARK deals 

with both static and streaming datasets; sections 3.3 and 3.4 present the overlay data 

processing orchestrator and the dashboard; section 3.5 is an entry section discussing the 

metrics defined within SEDIMARK for evaluating the data quality; section 3.6 presents the tool 

developed for data profiling and data quality evaluation; section 3.7 presents the data curation 

techniques; section 3.8 presents the data augmentation techniques; section 3.9 presents the 

techniques for extracting meaningful features from the datasets; section 3.10 presents a high 

level view on how SEDIMARK wants to exploit automatic ML (AutoML) techniques for the data 

processing pipeline.  

3.2 Offline dataset processing vs data streaming  

Data provisioned by providers or artificially generated within SEDIMARK could be either static 

(dataset) or dynamic (data stream). A dataset is defined as a finite set of data instances that 

can be stored in memory and analysed while accessing the data several times. Static datasets 

are typically well-defined and can be accessed, queried, and analysed as many times as 

needed. Offline processing involves working with static datasets that have already been 

collected and stored. These datasets typically do not change during the analysis. They are 
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ideal for scenarios where one does not need real-time insights. Examples include historical 

data analysis, comprehensive reports, and machine learning model training.  

On the other hand, a data stream is defined as an unbounded sequence of multidimensional, 

sporadic, and transient instances that are generated over time. Data streams are characterised 

by their dynamic and evolving nature. They are crucial for scenarios requiring immediate action 

or analysis, such as fraud detection, real-time analytics, and monitoring systems that treat 

critical tasks. 

So, one major difference between these data types is that a dataset can be stored in its entirety 

in memory to serve for analytics at any time while for a data stream, data points arrive one by 

one incrementally and are not available at once which requires adapted analytics methods for 

such a setting. 

If the data are generated as a stream, they require immediate action, while for batched, 

historical, or less time-sensitive data, offline processing is more suitable. For businesses that 

require real-time insights (e.g., stock trading platforms), streaming is essential. In contrast, 

businesses focusing on mid and long-term strategies might rely more on offline processing. 

From the technical point of view, data streaming demands a more sophisticated infrastructure 

and real-time data processing capabilities, whereas offline processing can be more 

manageable with conventional data analysis tools and a more affordable budget. 

For batch dataset processing, traditional machine learning algorithms are needed, and several 

ones have been proposed in the state-of-the-art that can be easily added to the SEDIMARK 

AI pipeline. On the other hand, the infinite nature of data streams presents certain technical 

and practical constraints that render conventional static algorithms ineffective due to, among 

other things, their high consumption of resources, including time and memory. Therefore, to 

process data streams, data stream mining algorithms adapted to handle such data generated 

in real time need to be used.  

Processing data streams presents some specific challenges that are presented as follows:  

• Single-pass: Unlike processing static datasets, it is no longer possible to analyse data 

using several passes during the course of computation because of its unbounded nature. 

Taking into account this constraint, algorithms work by processing each instance from the 

stream only once (or a couple of times) and use it to update the model – or the statistical 

information about data – incrementally (instance-incremental algorithms). In the case of 

batch-incremental algorithms, a batch (chunk or window) of instances is processed at 

once instead of only one instance. 

• Running time: An online algorithm must process the incoming data points as rapidly as 

possible. Otherwise, the algorithm will not be efficient enough for applications where rapid 

processing is required.  

• Memory usage: Because of the massive amounts of data streams that require a limitless 

memory to be processed and stored, it is difficult and sometimes even impossible to store 

the entire stream in memory. So, any stream algorithm must be able to operate under 

restricted memory constraints by storing a few synopses of the processed data and the 

current model(s). 

• High dimensionality: In some scenarios, streaming data may be high-dimensional, for 

example, text documents, where distances between instances grow exponentially due to 
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the curse of dimensionality. The latter can potentially impact any algorithm’s performance, 

mainly, in terms of time and memory. 

• Concept drift: Concept drift is a common challenge in data streams, as the data 

distribution can change over time. Data stream mining algorithms must adapt to these 

changes dynamically. 

The aforementioned challenges frequently arise in different data stream mining tasks. In this 

context, incremental data stream approaches have been developed and will be extended and 

used within SEDIMARK to address these requirements. To cope with the single-pass 

requirement, incremental data stream mining algorithms that potentially handle concept drift 

by being coupled with drift detection mechanisms need to be used. The SEDIMARK AI pipeline 

features a dimension reduction component as a pre-processing step which will address the 

curse of dimensionality and thus contribute to the reduction of the resource usage (e.g., 

memory and time) of the adopted ML algorithms. 

SEDIMARK focuses on ensuring high-quality data through tools for cleaning and curation, 

catering to both offline and streaming datasets. Considering the requirements defined in 

SEDIMARK_D2.1, SEDIMARK needs to identify and manage problematic records, balancing 

data integrity with its size. The SEDIMARK data processing pipeline has the flexibility to 

process both static and real-time streaming data with attention to latency and efficiency. For 

that, a modular and user-customizable data curation pipeline has been developed, balancing 

expert needs with simplicity for non-technical users. More information is given in the sections 

below. 

3.3 Data Processing Orchestration 

This section outlines a multi-stage data processing architecture, namely the Data Processing 

Orchestration (DPO) designed to manage the flow, transformation and storage of data across 

various system components. 

3.3.1 DPO Technical Description 

The DPO process starts with the Data Provider, representing users who will utilize the 

SEDIMARK Toolbox to produce assets, ranging from datasets to models, and publish them on 

the SEDIMARK marketplace for other users to discover and use. 

To better align data processing pipelines with the specific needs of the provider, pipelines are 

defined and executed through the Orchestrator UI, described in detail in section 3.4. Once 

defined, pipelines can be triggered using multiple methods: manually by the user or 

automatically at specified time intervals. This flexibility is particularly useful when new data 

entries are created periodically and require immediate processing. 

The DPO execution process preparation steps for ensuring a smooth and efficient data 
processing orchestration are detailed as follows: 

• Pipeline definition: The data provider defines a data processing pipeline using the 

Orchestrator UI or programmatically through the API. Once configured, the pipeline is 

submitted to the orchestrator engine.  

• Pipeline triggering:  The orchestrator triggers the pipeline based on the defined method, 

which can be instant, periodic, or event-driven. 
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• Data retrieval: Typically, the first step of a pipeline involves data retrieval through a 

preconfigured data source defined during the pipeline definition step. 

• Initial Data Processing: The retrieved data is extracted from its original format and a 

preprocessing step is applied over the raw dataset. This step can produce intermediate 

artefacts required by subsequent processes. 

• Pipeline Execution: The pipeline execution proceeds with the application of data 

processing techniques if they are described in the pipeline definition. 

• Output delivery: The resulting data asset is pushed to the NGSI-LD Broker and the 

Offering Sharing component, enabling its exchange and availability to Data Consumers. 

While the steps described previously primarily target streaming datasets, a similar process can 

be adapted for static datasets as well.  

As previously outlined, the DPO execution process follows a well-defined sequence, ranging 

from pipeline definition and triggering to data retrieval, processing, and final output delivery. At 

the core of the DPO framework is Mage AI [52] which plays a major role in supporting this 

orchestration. Mage AI is a robust platform that streamlines data preparation and 

transformation workflows. It automates essential tasks such as data cleaning, transformation 

and feature engineering using machine learning techniques. Additionally, Mage AI offers a 

user-friendly interface that enables both technical and non-technical users by reducing code 

complexity and simplifying data handling operations. Furthermore, it provides flexible 

integration capabilities with various data sources and machine learning tools. This flexibility is 

further reflected in its modular approach to data processing, which divides tasks into distinct, 

customizable modules, enhancing both the efficiency and adaptability of the data preparation 

process. 

An example of such a processing pipeline visualized in the Mage.ai UI is presented in Figure 

4. The pipeline facilitates the loading, processing, and prediction of SEDIMARK data, using 

different loaders based on the format of the input (raw) data and converting them to the internal 

SEDIMARK format. Moreover, Figure 4 displays two types of data loaders: one using CSV and 

the other using NGSI-LD. 

 

Figure 4: Mage AI interface with sample demo flow for processing SEDIMARK data. 
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To ensure a common data format within the marketplace and fulfil interoperability 

requirements, the NGSI-LD context broker serves as the primary method for data export. It 

saves data with contextual metadata specific to the marketplace, thus simplifying data sharing 

between users. 

Another view of the Mage AI UI illustrates how a simple flow for dataset analysis can be 

configured, leveraging Mage AI’s capabilities for streamlined data handling (Figure 5). Starting 

with the data loading phase, the pipeline retrieves the data (i.e., weather information such as 

temperature forecasts) from an NGSI-LD Context Broker, specifically the Stellio context broker 

[12]. This data is then processed and formatted, preparing it for the subsequent stages of the 

pipeline, which can include data prediction or any of the modules in the data processing 

pipeline, such as anomaly detection, deduplication, or value imputation. Mage.ai uses a unified 

method to launch all underlying components. 

Finally, the pipeline concludes with the data export stage, where the results are integrated 

back into the original dataset (depending on user preferences). There is also the option to 

export this enriched dataset back to the NGSI-LD context broker, closing the loop in the data 

processing cycle.  

 

Figure 5: Mage AI orchestration for a simple training flow using SEDIMARK data. 

3.3.2 Mage AI Pipeline Templates 

To streamline development and promote reuse across different scenarios, dedicated pipeline 

templates have been developed for each project, pilot, and use case. These predefined 

pipelines form the foundation of the SEDIMARK Toolbox templates, offering users a set of 

ready-made configurations to kickstart their own data processing workflows. 

By providing consistent structures and reducing the need for repetitive setup, these templates 

help accelerate deployment while ensuring alignment with common data standards. Figure 6 

showcases a selection of these templates, which are further described as follows: 

• anomaly_annotator: An anomaly detection pipeline template that retrieves dataset 

assets from the SEDIMARK Marketplace via the NGSI-LD Context Broker and applies a 
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custom-built AnomalyDetectionModule to identify and annotate anomalous data points. 

This pipeline template was validated in the EGM pilot's weather dataset use case. 

• ml_flow_lightgbm: A machine learning pipeline template that integrates LightGBM with 

MLflow for model training, storage, and inference. LightGBM is a fast, open-source 

gradient boosting framework known for its high efficiency, scalability, and accuracy, 

particularly on large tabular datasets. This pipeline template was evaluated in the EGM 

pilot's water flow use case, where it trained on historical sensor data to forecast future 

values. 

• NGSI-LD Template Pipeline: A utility pipeline template that facilitates the import and 

export of assets to and from the NGSI-LD Context Broker, enabling seamless integration 

with the SEDIMARK Marketplace for standardized asset sharing and interoperability. 

• deFLight_pipeline: A utility pipeline template is available that facilitates the use of the 

deFLight SEDIMARK Marketplace asset service, which can be configured to operate 

either as a server or a client in a federated learning setup. deFLight is a SEDIMARK tool 

for decentralised machine learning described in SEDIMARK_D3.3 [5]. 

 

Figure 6: Mage AI pipeline templates. 

Additionally, the Orchestrator features a pipeline-builder interface that allows users to 

assemble custom pipelines from predefined template blocks. When further customization is 

needed, users can even generate new blocks dynamically by leveraging large language 

models, enabling AI-assisted code generation and supporting a low-code or no-code 

development approach, as detailed in the next section. Some of the pre-built template blocks 

are illustrated in Figure 7 and can be categorized as follows: 

• Data Loaders: Usually, the starting point of a pipeline, data loader blocks are used to 

load various types of resources, ranging from files and databases to services. These 

resources serve as the main input for the transformer blocks, some examples of such 

blocks are PostgresSQL Loader, NGSI-LD Loader and deFLight. 

• Transformers: These blocks apply transformations to the input data, such as cleaning, 

normalization, enrichment, or feature engineering. They act as intermediate steps in the 

pipeline, modifying and preparing the data for subsequent processing or analysis. Some 

examples of blocks include Normalization, Standard Scaling and Support Vector 

Classifier.  

• Data Exporters: Positioned at the end of the pipeline, data exporters handle the output 

of the transformed data, saving it to a target destination such as a file, database, or 
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external service. Some examples of data exporter blocks are MLFlow Saver, NGSI-LD 

Exporter and Minio Exporter.  

 

Figure 7: Mage AI block templates. 

3.4 Pipeline Orchestrator UI 

The Orchestrator UI is designed as a user-friendly platform accessible to both technical and 

non-technical users. It enables users to create, execute, and monitor complex AI workflows 

with ease. To support this, the dashboard is built to emphasizes accessibility with a clean 

layout that organizes related information using colour coding and icons for quick identification. 

The interface includes a suite of tools designed to provide detailed insights into pipeline 

metrics, helping users effectively monitor performance. The Orchestrator UI is tightly integrated 

with a Mage.ai client, which manages all pipelines and provides access to predefined 

templates. Both the Orchestrator and Mage.ai will be deployed as part of the SEDIMARK 

toolbox, and the templates are stored inside Mage.ai. The Mage.ai client URL is specified in 

the deployment configuration. 

The platform enables users to create new pipelines either from predefined templates or by 

assembling them from blocks—these can be predefined or custom-generated. Additionally, 

users can load existing pipelines as needed. 

The pipeline loading process is done using the Pipelines menu, which renders the new pipeline 

in a dedicated tab, as depicted in Figure 8. The platform supports multiple instances of the 

same pipeline running in parallel, enhancing workflow efficiency. Moreover, for each rendered 

pipeline, users can access logs at the block level and across all pipelines runs, along with 

hardware-related performance metrics. 

Customization of pipelines is facilitated by setting variables on each block in Magei.ai, with 

values inputted upon execution of the pipeline. 
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Figure 8: Pipeline Loaded in Orchestrator UI. 

Another feature of the Pipeline Orchestrator UI is the Pipeline Creator, interface illustrated in 

Figure 9, which enables users to build custom pipelines using predefined block templates 

stored in Mage.ai, while also offering the ability to create custom blocks using an integrated 

block generator function. This function allows users to provide a prompt, resulting in a custom 

block that can be used immediately in the Orchestrator UI or saved for future use and 

modifications within Mage.ai. 

  

 

Figure 9: Pipeline Creator Interface. 

The Pipeline Orchestrator also includes support for two federated learning services: Fleviden 

and deFLight, described in detail in section 5.2. These allow users to either offer a federated 

learning asset or utilize one they have previously purchased. Assets can be managed through 



 

 
 

 

 

Document name: D3.2 Energy efficient AI-based toolset for improving data quality. Page:   31 of 118 

Reference: SEDIMARK_D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

dedicated menus, where users can view existing assets as illustrated in Figure 10, or create 

new ones directly from the interface. 

 

Figure 10: Asset Manager Interface. 

3.5 Data quality metrics 

As previously stated, improved data quality is of utmost importance to SEDIMARK, allowing 

both for data providers to increase their revenue, and for the training of improved ML models 

There has been a lot of research into data quality metrics and tools, which has resulted in four 

main data quality “dimensions” that basically look at the structure of the dataset, without going 

into much detail on the usability of the dataset for some specific purpose. SEDIMARK 

acknowledges that most of the datasets that will be generated, processed and shared will be 

mostly used for machine learning purposes. Data providers can use their datasets to gain 

knowledge from them, extract predictions or use them to guide their decision-making 

processes, while consumers can use the datasets i.e. for research purposes.  

The four main data quality dimensions considered in the literature [9],[13] are accuracy, 

completeness, consistency and timeliness. However, SEDIMARK extends the data quality 

dimensions and defines more detailed and ML-related data quality metrics, to give (i) data 

providers more insights into their datasets and (ii) researchers and data consumers more in-

depth information regarding how useful the datasets might be for them. Considering that 

SEDIMARK assumes two different types of datasets, data quality metrics can be split into two 

categories: (i) metrics per data point, useful for data streaming datasets and (ii) overall dataset 

metrics, useful mainly for static datasets. However, some overall dataset metrics are computed 

based on calculations using the metrics per data point.  

3.5.1 Generic data quality metrics 

The following are the considered generic metrics for data quality within SEDIMARK: 

3.5.1.1 Accuracy 

This is considered as the most important metric for the quality of a whole dataset, but usually 

it is the most difficult to measure, since it assumes that there is some knowledge about the 

“correct” points or the model of the “real world” entity that the dataset represents, so that it is 

possible to measure the distance of the dataset points from the “real-world”. Usually, this 

requires external input to measure. Inspired by [9], SEDIMARK defines the following metrics: 
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• Datapoint Accuracy: This indicates how close the measurement value is to the ground 

truth. The equation below shows the distance between the observed value and the 

reference value, taking the units of the observation value: 

𝐷𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = |𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑉𝑎𝑙𝑢𝑒 − 𝑟𝑒𝑓𝑉𝑎𝑙𝑢𝑒| 

• Dataset Accuracy: There have been many different proposals about ways to measure 

data accuracy for an entire dataset, but, considering the metric about the datapoint 

accuracy defined above, usually the equation used is:  

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 "𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒" 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 

However, this assumes that there will be a way to assess the “accuracy” of the 

observations in the dataset, probably using the “Datapoint Accuracy” metric, if the 

reference value is known. 

3.5.1.2 Completeness  

The Completeness metric can be split into two separate metrics, based on if it is a static or a 

streaming dataset. 

• Streaming completeness: Streaming completeness represents the number of missed 

measurements within a given time window. The equation below incorporates three key 

parameters: rate, inter-arrival time value; n, number of missed measurements observed; 

and window, time window of observation. This completeness parameter can be expressed 

either as a part per unit or as a percentage: 

𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =  
𝑤𝑖𝑛𝑑𝑜𝑤 − 𝑛 ∙ 𝑟𝑎𝑡𝑒

𝑤𝑖𝑛𝑑𝑜𝑤
 

• Static Dataset Completeness: This is a metric inspired by [9] that measures if a dataset 

is complete or if there are some records or observations that are missing either as a whole 

or parts of the entries. Considering that a dataset might comprise entries that have 

different fields (columns), missing values can be either complete rows of entries or some 

specific fields in a row. A measure of completeness is given in the following equations: 

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠_1 = 1 −
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑓𝑖𝑒𝑙𝑑𝑠 𝑝𝑒𝑟 𝑒𝑛𝑡𝑟𝑦 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑒𝑙𝑑𝑠
 

 which sums the number of missing cells in a table over the total number of cells or 

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠_2 = 1 −
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑛𝑡𝑟𝑖𝑒𝑠
 

 which sums the number of missing rows in a table over the number of expected rows. 

 or 

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠_3 = 1 −
𝑛𝑢𝑚 𝑜𝑓 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑓𝑖𝑒𝑙𝑑 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑡𝑟𝑖𝑒𝑠
 

 which sums the number of rows with at least one cell missing over the total number of 

rows. 

The usage of the respective metric depends on the target usage of the dataset. 

3.5.1.3 Precision 

Precision refers to the dispersion of values within a dataset, typically assessed through the 

dataset's standard deviation. The equation below shows the standard deviation formula used, 

where the variables involved are: µ, mean of the values in the dataset; n, number of samples 
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in the set; and 𝑥𝑖, the i-th element of the dataset. The precision outcome aligns with the units 

of the dataset’s values: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  √
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1

𝑛
 

3.5.1.4 Consistency 

Normally consistency is measured for datasets that are stored on different systems and is used 

to measure the number of records that match across the different systems. However, 

SEDIMARK inspired by [9] adopts a different interpretation of consistency, which measures 

how well the data points relate to their semantic rules or constraints. In this respect, the 

consistency metric uses the following equation: 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑟𝑢𝑙𝑒𝑠 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑡𝑟𝑖𝑒𝑠
 

3.5.1.5 Timeliness (Recency) 

This metric normally measures how “current” or “recent” is a data entry for a specific task at 

hand. For example, when dealing with measurements from sensors, the timeliness of the data 

point can be measured on the difference between the current time and the timestamp when 

the measurement was taken. Within SEDIMARK, timeliness is measured via the following 

equation inspired by  [9]: 

𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒𝑠𝑠 = 𝑚𝑎𝑥(0, 1 −
𝑅𝑒𝑐𝑒𝑛𝑐𝑦 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦
) 

where 

𝑅𝑒𝑐𝑒𝑛𝑐𝑦 =  (𝑡𝑖𝑚𝑒 𝑜𝑓 𝑠𝑡𝑜𝑟𝑎𝑔𝑒) − (𝑡𝑖𝑚𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑤𝑎𝑠 𝑙𝑎𝑠𝑡 𝑢𝑝𝑑𝑎𝑡𝑒𝑑)  

and Volatility is the time length for which data remain valid. 

Timeliness can also be calculated in data streaming scenarios in a recursive way by calculating 

a weighted average between the previous and the newly calculated mean update time. This 

allows consumers to appreciate the age or punctuality of data items. The equation below 

involves several parameters: α, correction factor belonging to the range [0,1]; rawTimeliness, 

raw value of the newly calculated update time; meanTimelinesi-1, mean value of the update 

time of the previous iteration; and meanTimelinessi, mean value of the update time calculated 

in the current iteration. 

𝑚𝑒𝑎𝑛𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒𝑠𝑠𝑖 = 𝛼 ∙ 𝑚𝑒𝑎𝑛𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒𝑠𝑠𝑖−1 + (1 − 𝛼) ∙ 𝑟𝑎𝑤𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒𝑠𝑠 

3.5.2 ML-based data quality metrics 

Apart from the above mentioned “generic” data quality metrics, SEDIMARK defines and uses 

quality metrics that are more oriented towards the machine learning usage of the datasets.  

3.5.2.1 Uniqueness 

This metric shows how many unique records or labels (categories) exist in each of the features 

of the dataset. 

3.5.2.2 Consistency 

This metric is computed as presented above, comparing the values against a predefined range 

of values, which is assumed to be defined by the data provider. 
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3.5.2.3 Class parity 

This metric is used for measuring the imbalance between the different classes/labels for each 

feature of the dataset. Within SEDIMARK, class imbalance is measured using three metrics:  

• Imbalance ratio, which is the most commonly used metric in the literature and simply 

calculates the ratio of the sample size of the majority class over the sample size of the 

minority class, using the following formula when there are only two classes in the sample 

set: 

𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠
 

When there are multiple classes, the calculation of the imbalance ratio becomes more 

complicated and there have been multiple approaches to doing it, (i) by just using the 

majority and the minority class, (ii) by summing the minority classes or (iii) by using entirely 

different metrics specifically designed for multiclass problems, such as the “imbalance 

degree” [14]. 

• Normalised cross entropy [18],[19], which measures the imbalance of the classes in a 

feature of a data set by computing the normalised entropy of the class sizes, measured 

by: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐶𝑙𝑎𝑠𝑠 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑁𝐶𝐸)  = − 
1

𝑙𝑜𝑔(𝑐)
∑

𝑛𝑘

𝑛
𝑙𝑜𝑔

𝑛𝑘

𝑛

𝑐

𝑘=1

 

• Likelihood ratio imbalance degree (LRID) [20], which was proposed to handle multi-

class imbalance based on the likelihood ratio test, computed by:  

𝐿𝑅𝐼𝐷 =  −2 ∑ 𝑛𝑘𝑙𝑛
𝑁

𝑐𝑛𝑘

𝑐

𝑘=1

 

3.5.2.4 Regularity 

This is measured for time-series datasets as the mean difference between consecutive entries 

of timestamps in the dataset. This can show i.e. if the dataset has entries taken at regular 

intervals or not and can be used also as metric of time consistency and of time completeness. 

3.5.2.5 Time Completeness 

This metric is basically used for time-series datasets that are gathering measurements at fixed 

intervals. The regularity of the dataset can be used to compute if the dataset is complete in the 

given time period of the measurements by comparing the number of observations against the 

number of expected observations. For example, if there is a sensor that measures temperature 

every 10 minutes, the expected number of observations within 1 day is 6*24=144 observations. 

If the dataset for that day consists of 110 observations, it means that the completeness is 

110/144=76.39%. So, the formula to compute time completeness in SEDIMARK is the 

following: 

𝑇𝑖𝑚𝑒 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 +  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 
 

where the “number of missing observations” is calculated using the regularity and finding out 

gaps between consecutive measurements that are bigger than the median difference between 

consecutive measurements. 
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3.5.2.6 Feature Correlation 

This is measured by comparing couples of features of the dataset and measuring how 

well/badly they correlate with each other. Taking the average of all couples gives the average 

feature correlation of the dataset. High correlation between features shows a linear 

dependency, so this metric can be exploited by users to remove highly correlated features from 

input to ML model training processes, since they will have very similar effect. To measure that 

the “corr()” function of pandas data frames is used. 

3.5.2.7 Collinearity  

This metric measures the dependency of couples of features on a regression model. To 

measure that, inspired by [16] SEDIMARK built a function that aims to predict each feature by 

using the other “N-1” features and predict the Pearson correlation between the prediction 

results. 

3.5.2.8 Class Overlap 

This metric measures the overlap of classes/labels within a feature and how they can be 

differentiated (or not) using the other features. Class overlap occurs when instances of some 

of the labels of a feature are mapped on the same area of a feature space, showing that they 

have many similarities. Although there are many metrics used to measure class overlap, 

currently SEDIMARK uses Fisher's discriminant ratio as defined in [21],[22] due to its simplicity.  

3.5.2.9 Unalikeability 

This metric measures how similar or different are the values within a feature column. 

SEDIMARK adopts the unalikeability coefficient as described in [24] using the following 

equation: 

𝑈𝑛𝑎𝑙𝑖𝑘𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  1 − ∑ (
𝑘𝑖

𝑛
)2𝑐

𝑘=1 , 

where 𝑘𝑖 is the number of samples of class “i”, “n” is the total number of observations in the 

feature column and “c” is the number of classes of the feature column. 

3.5.2.10 Number of outliers 

This metric uses the output of the outlier detection models of SEDIMARK’s data curation 

pipeline and measures the number of values detected by the model to be outliers or noise. 

3.5.2.11 Artificiality 

As it is critical to improve the quality of data assets, it is also important to keep track of the 

proportion to which a data asset being produced is by artificial (synthetic) processes rather 

than occurring naturally. This is especially the case in relation to handling original data assets 

with missing data points. Inspired by [15], a measure for this can be as follows: 

𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙𝑖𝑡𝑦 =
𝐴𝑠𝑦𝑛

𝐴𝑠𝑦𝑛 + 𝐴𝑜𝑟𝑔
 

Whereby Aorg is the number of the original data in the dataset, and the Asyn is the amount of 

artificial data that have been generated through a synthetic process. 

3.5.2.12 Stationarity 

Metrics to analyse time series data can be very useful for data providers that aim to use their 

data for modelling and interpretation. A time series data can be stationary when its statistical 

properties, such as mean, variance and covariance, aren’t dependent on the time upon which 
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the data series is observed [75]. In other words, a data series is stationary when there is no 

link between a value and its previous values. To calculate stationarity in SEDIMARK, the 

Augmented Dickey Fuller test [75] and the Kwiatkowski-Phillips-Schmidt-Shin test [76] have 

been implemented using the statsmodels [77] python library. Both tests provide several values 

for a result i.e. the test statistic, the p-value and the critical values at 1%, 5% and 10% levels. 

The easiest way to interpret the result is using the p-value and comparing it to a significance 

level (usually 5%). If the p-value is higher than the significance value then it means that the 

data series is non-stationary. 

3.5.2.13 Entropy 

Entropy in machine learning can be used to measure the uncertainty in the dataset about the 

outcome of a variable and the level of disorder in the dataset. This can be used to evaluate the 

ability of a model to make predictions using that dataset. Entropy in Information theory was 

defined by Shannon in the seminal paper [78] using the below formula, which has been 

implemented in the data profiling module using python: 

Entropy = − ∑ 𝑝𝑘 ∗ log2 𝑝𝑘

𝑛

𝑘=0

 

3.5.2.14 Variance Inflation Factor (VIF) 

For measuring the multicollinearity in multivariate time series, SEDIMARK has implemented 

the Variance Inflation Factor (VIF) [21]. This metric indicates how much the variance of an 

estimated regression coefficient increases when the predictors are correlated. A high VIF 

signifies that the feature can be linearly predicted from others. In SEDIMARK, we use the 

“variance_inflation_factor” of the statsmodel python library [78]. This function gives a double 

value as a result and assumes that if the value is above 5 then the two variables are highly 

colinear. 

3.5.2.15 Predictive Power Score (PPS) 

Another metric for correlation between two variables in a multivariate data series is the 

Predictive Power Score (PPS), defined in [79]. The score aims to detect both linear and non-

linear correlations between two variables. In SEDIMARK we use the ppscore library [79] for 

calculating the PPS. The output is a value between 0 and 1, with 1 showing the highest 

correlation (or predictive power) between the two variables. 

3.6 Data Profiling and Data Quality Evaluation 

Data Profiling is a functional component of the SEDIMARK architecture that provides a single 

solution for users of the data processing pipeline to gather insights about the quality of their 

data. Data Profiling is usually the process of examining, analysing and presenting useful 

summaries to the users so that they can identify problems with their data and find out ways to 

improve them. There has been a lot of work done to build data profilers in the past, but most 

of the existing tools are either dedicated to specific types of data or are focused on general 

descriptions of datasets, without going into too much detail about the usability of the datasets 

for machine learning purposes.  

Example of tools for data profiling are the following: 

pandas describe(): Pandas is one of the most used libraries in Python for handling data 

frames and performing data analytics tasks. Pandas offers the “describe()” function to provide 
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descriptive statistics about the data frames, analysing both numerical and categorical data 

series. The SEDIMARK Data Profiling component exploits the pandas “describe” function to 

get a quick overview of some statistics of the dataset, including number of rows, unique rows, 

mean values, etc.  

ydata-profiling [25]: This is a python library that provides simple ways to get statistics about 

datasets, featuring an easy to use interface and graphs, together with a large number of 

metrics, including both general statistics and more data-analysis oriented statistics. 

IBM data quality [26]: IBM provides an API for assessing the quality of data, including data 

profiling. It provides insights about class parity, class overlap, data homogeneity, 

completeness, outlier detection, etc. However, the API and the backbone code for computing 

these statistics are not open source. 

The Data Profiling component of SEDIMARK is part of the Data Curation Enabler as discussed 

in SEDIMARK_D2.3 [4] and shown in Figure 3. The Data Profiling component is considered 

as the first step in data curation, taking as input the dataset formatted in the internal 

SEDIMARK format (which is a new data source class as a wrapper above a pandas data 

frame). The Data Profiling component is tightly integrated with the Data Quality Evaluation 

component which assesses the quality of the incoming data. In the current implementation, 

both components are integrated into a single python module that does both the profiling and 

the quality assessment using the metrics described in the previous section. 

Within SEDIMARK, the Data Profiling module is split into two parts: 

• Providing generic statistics about the dataset (which corresponds to the Data Profiling 

component): 

o Number of features. 

o Number of entries (observations). 

o Total number and percentage of missing cells. 

o Total size of the dataset and size per feature column. 

• Providing feature-specific statistics based on the data type of the feature column (which 

corresponds to the Data Quality Evaluation component). 

The feature-specific statistics of the dataset are based on the data type: 

• Numerical columns: 

o Percentage of missing, duplicate, unique cells. 

o Min/max/average/std/median values. 

o 25%, 50%, 75% percentiles, which shows the value point below which lie the 25%, 50% 

or 75% of the data values. 

o Histogram, which shows the frequency of the distribution of the data points across the 

range of the values. 

o Consistency (data within ranges that are pre-defined). 

o Skewness, which measures the shape of the distribution of the feature, and basically 

shows if the distribution is symmetric or asymmetric. It can be negative (showing that 

the tail of the distribution is on the left side), zero (symmetric distribution) or positive 

(showing that the tails is on the right side).  
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o Kurtosis, shows the shape of the distribution, with a normal distribution having a value 

of 3. Values less than 3 mean that the distribution is platykurtic, while a value greater 

than 3 means that the distribution is leptokurtic. 

o Mean absolute deviation, which is the mean absolute distance of each data point from 

the mean of the distribution. 

• Boolean columns: 

o Name, type, missing, duplicates, unique. 

o Label frequency. 

o Imbalance statistics. 

• Object (string) columns: 

o Name, type, missing, duplicates, unique. 

o Min/max/average/median length of string and the histogram. 

o Label frequency per label (assuming it's a label/class columns). 

o Imbalance statistics (imbalance ratio (IR), imbalance degree, log likelihood index, 

tangential imbalance index, normalised entropy). 

o Class overlap, measured by Fisher's discriminant ratio: higher values == higher 

complexity - classes can't be differentiated by the features. 

o Unalikeability, as a measure of how similar/different the values in the column are (0 == 

all the same, 1==all different). 

• Datetime columns: 

o Name, datatype, missing, duplicates, unique. 

o Minimum/maximum data difference between consecutive values. 

o Mean, median, interquartile range (iqr), standard deviation (std), regularity 

(mean/median difference between consecutive dates) for the column values. 

o Histogram of date differences. 

o Regularity. 

o Number of missing values based on regularity. 

o Completeness based on regularity. 

Streaming data profiling 

For streaming data, the profiling of the data and the evaluation of their quality within the 

SEDIMARK streaming pipeline, relies on a trusted external source for accuracy (AEMET [23] 

in the case of temperature in the city of Santander), and on an NGSI-LD Context Broker with 

support for storing temporal values for the rest of the dimensions. The output of the streaming 

data quality module is based on an aggregation of the values of the assessed dimensions, 

selected upon the user's request. This way, a data point quality characterisation is obtained, 

allowing the user or the consuming application to have all the necessary knowledge to decide 

which pieces of data to use or not, i.e., whether they meet their quality requirements or not. 

Figure 11 shows a representative scheme of the module depicting the input needed and the 

outputs expected.  
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Figure 11: DQ Dimensions Module for streaming environments 

3.7 Data Curation 

As shown in Figure 3, data cleaning within SEDIMARK consists of four main modules: (i) outlier 

detection, (ii) noise removal, (iii) deduplication and (iv) missing value imputation. Aiming to 

have a consistent and homogeneous way to execute the functions in these modules, so that it 

is easier to be launched by the Data Processing Orchestration, all modules have been 

developed in a similar way, as it is depicted in Figure 12. All modules have the same predefined 

way to get the data as input and these are being managed by a “pre-processing” function, 

which transforms the data to the format required by the internal cleaning module. Then, the 

processed data are forwarded to the cleaning algorithm, which does the cleaning job and 

forwards the results to the “post processing” module that creates the output data in a 

predefined format to be handled by the Data Processing Orchestration. Depending on the user 

configuration, the output data can be either the “cleaned” data (i.e. with the outliers or the 

duplicates removed) or the original input dataset with annotations, flagging the entries that 

were found to be outliers, noise or duplicates or the entries that were imputed.  

 

Figure 12: A generic SEDIMARK data cleaning module. 
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3.7.1 Outlier Detection 

An AI-Based Outlier Detection (OD) tool harnesses the power of machine learning to identify 

anomalies in multi-dimensional data. Utilizing advanced algorithms like the Isolation Forest 

and One-Class SVM, outlier detection scans through datasets to differentiate regular data 

points from outliers. Combining several approaches in a common module provides a robust 

mechanism for outlier detection, allowing data scientists and analysts to clean their datasets 

effectively and ensuring the integrity of any subsequent data analysis or machine learning 

model training. 

SEDIMARK considers outlier detection as a key mechanism to improve the quality of datasets, 

reducing the amount of low-quality data, while contributing to reducing the size of datasets and 

in the end improving the machine learning models built on top of these cleaned datasets. 

Considering the type of dataset, SEDIMARK has developed components for outlier detection 

on both offline and streaming datasets, as discussed in the next paragraphs. 

3.7.1.1 Outlier detection for offline datasets 

The goal of Outlier Detection (OD) in a data pipeline is to identify and potentially remove data 

points that are highly anomalous and appear to be generated by a data generation process 

differing from the one that the data scientist wants to model. The presence of anomalies in 

data can cause severe problems for downstream ML models, and can also indicate that the 

data has been corrupted or even maliciously poisoned [38] SEDIMARK will aim to either 

remove or clearly flag as many anomalies as possible within the datasets published to its 

marketplace, based on the configuration or preferences set by the data provider.  

There are numerous algorithms for tabular anomaly detection, with popular approaches 

including Local Outlier Factor (LOF), One class Support Vector Machine, and recently deep 

learning based approaches such as Deep Support Vector Data Description (SVDD) [35] or 

classifying anomalies per their autoencoder reconstruction error [33]. These algorithms can be 

classified broadly as based on a) a statistical model, b) density c) distance d) clustering e) 

isolation f) ensembles and g) subspaces [27]. However, the same outlier detection methods 

cannot be naively applied in the case of time series data, where the sequential dependency 

between data points introduces an extra dimension that can be key for recognising outliers 

[37]. As such, while tabular anomaly detection algorithms will most often work on the raw data 

points, in the case of time series data the algorithms generally process chunks or trajectories 

of the data, classifying these as anomalous.  

An additional problem in anomaly detection is that the OD algorithms themselves generally 

output only raw outlier scores and probabilities, with classification determined by the 

application of a threshold. While it is customary to set this according to an a priori assumption 

about the dataset (e.g. that 1% will be outliers) the number of outliers in a dataset is not 

generally known by the data scientist cleaning the data. As such a number of techniques such 

as AUC Percentage (AUCP) [36], gamma Gaussian Mixture Models (gammaGMM) [34] and 

Generalised Extreme Studentized Deviation ESD (GESD) [28] exist to automatically determine 

this threshold automatically by processing the raw anomaly scores. 
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Figure 13: SEDIMARK outlier detection module. 

The SEDIMARK outlier detection module is built in a generic way so that it can easily 

incorporate a number of existing libraries, avoiding the effort of re-implementing well-known 

outlier detection algorithms from scratch. The SEDIMARK outlier detection module currently 

makes use of two key libraries for outlier detection, namely PYOD [40] for the case of tabular 

data, an adaption of the benchmarking suite TimeSeAD [85]. Both PYOD and TimeSeAD 

include a large number of unsupervised OD approaches, such as traditional machine learning 

methods like KNN based methods [29], one class Support Vector Machines (SVMs) [30], or 

simple autoregression models [31] in the case of time series, as well as modern deep learning 

algorithms such as autoencoders, or in the case of time-series data, Long Short Term Memory 

(LSTM) based methods [32]. In addition, SEDIMARK makes use of the PyThresh library [39] 

to automatically set anomaly thresholds, with included methods such as AUCP, gammaGMM 

and GESD. 

As such, the Anomaly detection module follows the flow shown in Figure 13 where input data 

first undergo pre-processing to be PYOD/TimeSeAD compatible and then pass through outlier 

detection and thresholding algorithms. After that, the data are post processed, where they are 

either annotated with outlier descriptors (a Boolean indicating threshold result, and the raw 

outlier score), or the outliers are discarded. 

At present, SEDIMARK includes the following algorithms from PYOD: 

• ABOD: Angle based outlier detection, classifying anomalies based on the variance of their 

cosine scores to their neighbours. 

• AutoEncoder: Neural anomaly model, classifying data points according to their 

reconstruction error when passed through an autoencoder. 

• Feature Bagging: Takes the average of several base detectors, trained on subsets of the 

data features. 

• HBOS: Histogram Based Outlier Selection, assumes feature independence and then 

constructs histograms to infer the extent to which data points are outliers. 

• IForest: Isolation Forest, which classifies outliers based on their average path length in a 

forest of partition trees. 

• KNN: A K-Nearest-Neighbours based approach which takes a data points distance to its 

kth neighbour as an estimate of its outlierness. 

• LOF: Local Outlier Factor, which compares the densities of data points with respect to 

their neighbours. 

• MCD: Takes the Minimum covariance distance in a gaussian distributed dataset as the 

degree of outlierness. 
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• OCSVM: One-class Support Vector Machine, which fits a decision boundary around the 

assumed normal training data.  

• PCA: Projects the data using Principal Component Analysis, taking the projected distance 

of a data point as its degree of outlierness. 

• DeepSVDD: Deep One Class classification for outlier detection, which encloses learned 

representations of the data within a hypersphere, with the distance from the centroid then 

used as the degree of outlierness. 

TimeSeAD provides four general classes of algorithms, namely: 

• Baselines: A number of well known baseline algorithms such as those based on nearest 

neighbours, PCA, or decision trees. 

• Reconstruction: Autoencoder based models that are trained to compress and then 

reconstruct their own input, with the reconstruction error used as a signal for outlier 

detection. 

• Prediction: Models based on autoregressive prediction, where the prediction error of 

subsequent timesteps is used as the main signal for outlier detection. 

• Other: Contains a number of not readily classified algorithms such as THOC [86] and 

NCAD [87]. 

A drawback of the traditional approach to outlier detection is that it requires either domain 

expertise, or a number of labelled outliers, in order to be able to properly assess and thus 

finetune an outlier detection pipeline component to a new dataset. Outliers can themselves 

often be highly domain dependent, and thus without expert involvement it is difficult to assess 

whether retrieved data points are in fact outliers or not.  

3.7.1.2 Outlier detection for data streams  

In the realm of data cleaning, streaming data processing presents unique challenges 

compared to offline (batch) data processing. Streaming data cleaning involves the continuous 

and real-time cleansing of data as they are generated, necessitating immediate actions to 

ensure data quality and reliability. This is in stark contrast to offline data cleaning, where data 

are accumulated over time and cleaned in bulk. The critical difference lies in the immediacy 

and ongoing nature of streaming data cleaning: it requires rapid and continuous cleaning 

mechanisms, which are crucial for applications demanding quick and accurate decision-

making, such as real-time monitoring systems, fraud detection, and live financial trading. On 

the other hand, offline data cleaning is more suitable for scenarios where immediate data 

quality is not as critical, allowing for more thorough and comprehensive cleaning processes for 

large datasets, albeit with some delay in data readiness. Streaming data cleaning demands 

high scalability, performance, and robust error handling due to its dynamic nature, while offline 

cleaning allows for more extensive and deep cleaning processes, suitable for large-scale data 

analyses where time is not a pressing factor. 

River [41], a specialised Python library for online machine learning, is particularly adept at 

handling the complexities of streaming data. It provides a range of tools and algorithms for 

real-time analysis and processing, making it an ideal choice for applications that require 

immediate, continuous data handling, such as in Internet of Things (IoT) devices, financial 

market analysis, or web activity monitoring. In the context of SEDIMARK, River plays a crucial 

role in the data cleaning process for streaming data. Recognizing the inherent challenges in 



 

 
 

 

 

Document name: D3.2 Energy efficient AI-based toolset for improving data quality. Page:   43 of 118 

Reference: SEDIMARK_D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

managing and maintaining the quality of streaming data, SEDIMARK leverages River's 

advanced functionalities for effective data cleaning. This includes a comprehensive suite of 

outlier detection methods, each tailored to specific types of data and anomalies. 

For outlier detection, SEDIMARK includes several robust methods inherited from River: 

• GaussianScorer: This method utilises a Gaussian distribution to score anomalies, 

identifying data points that significantly deviate from the expected distribution. 

• Half-Space Trees (HST): Ideal for high-dimensional data, HST uses space-partitioning 

trees to detect regions with lower data point density, indicating potential anomalies. 

• LocalOutlierFactor (LOF): LOF measures the local density deviation of a data point 

compared to its neighbours, making it effective for identifying local outliers within the data. 

• OneClassSVM: This method employs a one-class support vector machine to isolate 

outliers, particularly useful in datasets where outliers and normal data points are distinctly 

separable. 

• QuantileFilter: It filters out data points that lie beyond defined quantile ranges, based on 

a scoring function, effectively identifying extreme values (values that are above a specific 

percentage). 

• StandardAbsoluteDeviation: This technique scores outliers based on their absolute 

deviation from the mean, relative to the standard deviation, ideal for datasets where such 

deviations are indicative of anomalies. 

• ThresholdFilter: It applies a predefined threshold to identify anomalies, suitable for 

situations where the threshold for anomalous behaviour is known. 

Furthermore, a novel anomaly detection algorithm based on the Exponentially Weighted 

Moving Average [120] has been also implemented. This algorithm is intended to achieve the 

highest possible detection precision while maintaining a computational time compatible and 

appropriate to the system. Three variants of the algorithm, each considering different options 

for its model updating, have been defined. Each variant shows different adaptability to different 

use cases and scenarios. 

Given the dynamic nature of such data streams, it is appropriate to consider moving average-

based solutions. EWMA performs better than the other methods in terms of capturing the trend 

and seasonality of the data. In other words, EWMA-based methods have the lowest forecasting 

error as they capture substantial changes faster than others. Generally, this kind of method is 

used to remove noise from the time series and smooth it, thus allowing further data processing 

techniques to face fewer challenges. This method can be represented by the equation below, 

where x stands for the observation being evaluated and α for the smooth factor. As can be 

seen, this α factor denotes the weight given to the most recent values, thus allowing the EWMA 

method to be more robust against changes in the trend. 

𝐸𝑊𝑀𝐴𝑖 ≡ {
𝑥𝑖 ,                                                   𝑖 = 1

𝛼 ∙ 𝑥𝑖 + (1 − 𝛼) ∙ 𝐸𝑊𝑀𝐴𝑖−1, 𝑖 > 1
 

The proposed algorithm for real-time anomaly detection in data streams is based on a 

threshold approach. As a core operation, for each received observation, an expected value is 

calculated through EWMA, and upper and lower bound values are set using the standard 

deviation of the dataset. When the current observation falls outside these limits, it is considered 

an anomaly. It is worth noting that the estimation of both the expected value and the limits is 
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performed using the information available in the model prior to the arrival of this new 

observation, in order to avoid biasing the results. 

Three variants of the algorithm have been developed, each improving the performance and 

detection results of the previous one, as well as its capacity to adapt to changes and variations 

of the time series to be evaluated. They all allow for the following input parameters: records, 

indicating the number of values to be used in the EWMA calculation; threshold, being the sigma 

factor; α, corresponding to the EWMA importance factor. Additionally, there is another 

configurable parameter that determines the maximum number of values included in the model. 

The first variant, so-called “without update”, is characterised by not updating the model as new 

observations arrive. In other words, the model is based on a static photograph of the training 

data against which estimations are made. Although such a model may not seem to be useful 

for any scenario, it is possible to find use cases where the time series does not vary 

significantly from its initial state, except for the so-called anomalies. Hence, this would allow 

for a simpler and computationally faster model. Nevertheless, considering the use case on 

which we are focusing (i.e., variable time series from IoT environments), this option is not so 

well suited. 

The second variant compensates the previous one’s main problem by updating the model, 

hence we have named it “with update”. In this case, the model used for performing the 

estimations is updated every time an observation is recorded, without differentiating between 

detected anomalies and inliers (i.e., the model update is done whether the observation is 

qualified as outlier or inlier). This approach adapts better to the behaviour of the time series 

that have been used to assess the proposed solutions, although the occurrence of several 

anomalies together can spoil the performance of the algorithm, as they are biasing the model 

towards dirty data. However, in use cases where sudden changes can occur and last over 

time, this version of the algorithm is capable of adapting even in the face of a sequence of 

false positives. 

Finally, the last variant of the algorithm performs a smart update of the model, i.e., the update 

only occurs when the assessed observation is determined not to be an anomaly (i.e., the model 

update is done only if the observation is qualified as inlier). Thus, the model data is clean and 

truly captures the trend and seasonality of the time series. This latter variant is known as “with 

smart update”. 

The streaming outlier detection module of SEDIMARK follows the same concepts as discussed 

in the main data cleaning section, namely it is generically built as a wrapper on top of River to 

allow the easy execution of the cleaning models from the Data Processing Orchestration. In 

the end, the output of the module includes the processed data point (or batch) with the detected 

outliers flagged as such.  

3.7.2 Noise cancellation 

The IoT process generates an enormous amount of data. When the data collected from IoT 

sensors is of poor quality, due to measurement error or environmental factors such as 

atmospheric or electromagnetic disturbances, it will create noisy data (random undesired 

fluctuations or errors) and low signal-to-noise ratios (SNRs). This leads to distortion of the 

original signal, difficult analyses and interpretations of the base patterns, reduction in the 

quality of predictions, and in fine misdirection of Smart Services. Beyond the IoT domain, noisy 
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data exists in many application domains, such as communications, acoustics, or biomedical 

engineering [42]. 

Although the noisy values can be reduced using high precision sensors with inbuilt noise 

reduction mechanisms, such sensors come at a cost and that limits their deployment. Hence, 

noise reduction or cancellation is a crucial step in signal processing, to produce quality 

diagnostics and forecasting results. Noise cancellation techniques enhance the signal in the 

original form by removing unwanted elements from the measurements [43].  

The complex and misunderstood causes of noise in measurements, and the time-varying 

environment, result in multiple kinds of noise, to name a few: Gaussian noise, white noise, 

periodic noise, impulse noise, coloured noise, and heteroscedastic noise. Noise prediction for 

noise cancellation is hence a very arduous task and should ideally consist of a system that can 

automatically adapt to the environmental changes [42]. The challenge is to detect the actual 

useful signals within a strongly noisy background, particularly when the noise is non-stationary. 

If the chosen processing method can effectively predict and eliminate the noise, then the result 

is ideal. Otherwise, the noise will not be cancelled, and the original signal will be weakened 

[42]. 

There exists a very broad range of methods and techniques that try to cancel or mitigate noise 

in time series data. The choice of the method depends on the specific characteristics of the 

noise and data system, the presence of trends, seasonality, the SNR level, the objectives of 

noise reduction.  

3.7.2.1 Specific to noise cancellation method 

Adaptive and Neural network based noise cancellation methods are specific to a signal. They 

rely on learning from historical or reference data to distinguish signal from noise. That makes 

them efficient and able to remove complex noise but decrease the ease of use of such 

methods. 

Adaptive noise cancellation filters are widely used in communication and signal processing 

systems. A comparison of three popular adaptive filtering algorithms used for real-time noise 

reduction is given in [42]: (1) Least Mean Squares (LMS) filter: Minimizes the error between 

the clean signal and the filter output. It is limited in the occurrence of outburst interferences.; 

(2) Normalized LMS (NLMS) filter: Normalizes the filter coefficients depending on the input 

signal’s energy. Useful when the amplitude varies significantly; (3) Recursive Least Squares 

(RLS) filter: Minimizes the sum of errors with time. Outperforms LMS and NLMS techniques 

due to its high convergence speed and efficiency. 

Among neural network-based approaches, a particularly promising technique is the Denoising 

Autoencoder (DAE) [121]. DAE is a type of deep learning model designed specifically to 

remove noise from input signals by learning to reconstruct the original, clean signal from noisy 

data. The DAE is trained using pairs of clean and artificially corrupted signals, allowing it to 

learn the underlying statistical regularities of the clean signal. Once trained, it can be used to 

denoise previously unseen noisy inputs. 

3.7.2.2 Generic noise cancellation method 

Generic noise cancellation methods have the advantage of working out of the box for every 

signal. This means that data services using those methods will work out of the box on any 

received signals 
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We focused on three methods that needs minimal configuration and only use the last values 

of the signal. the number of values used for the calculation is called window size and can be 

configured. Specifying a greater window size will smooth the signal at the cost of decreasing 

peaks value in the signal. 

The weighted moving average (WMA) [122] smooths a signal by assigning varying weights to 

past values, typically giving more importance to recent observations. This makes the filter more 

responsive to short-term changes while still reducing noise. Unlike a simple moving average, 

the WMA minimizes the lag by favouring the latest data, which is often more relevant in real-

time processing contexts (see Figure 14). 

 

Figure 14: Weighted moving average applied on Menton sensor signal 

The Savitzky-Golay filter [123] performs polynomial regression to smooth data while preserving 

the shape and features of the signal. Unlike moving averages, the Savitzky-Golay filter 

maintains sharp transitions in the data, making it suitable for biological and environmental 

signals where feature preservation is crucial. In addition to the window size the polynomial 

order can be adjusted to control the level of smoothing and fidelity (see Figure 15). 
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Figure 15: Savitzky-Golay filter applied on Menton signal 

The Butterworth low-pass filter [124] is designed to have a maximally flat frequency response 

in the passband. It removes high-frequency noise components while minimizing distortion in 

the low-frequency signal range. In addition to the window size the cutoff frequency and filter 

order can be adjusted to control what frequency the filter will keep or remove (see Figure 16). 

 

Figure 16 Butter low pass applied on Menton signal 

The different generic algorithms tested before are available on GitHub SEDIMARK repository 

for noise cancellation [119]. The code is in python for easy integration in SEDIMARK data 

pipeline. They also support being integrated in data streams using only the latest values to 

compute the new value. 



 

 
 

 

 

Document name: D3.2 Energy efficient AI-based toolset for improving data quality. Page:   48 of 118 

Reference: SEDIMARK_D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

3.7.3 Deduplication 

Real world datasets can often include a large number of duplicate records, for instance due to 

incorrect data entry or errors during the data collection process. This presents a pernicious 

problem for data scientists seeking to model the underlying data distribution, as the duplicates 

can often be hard to detect, and can often even require expert evaluation, while skewing 

statistics and causing problems for the evaluation of downstream tasks. Broadly speaking, the 

task of data deduplication aims to match pairs of records that are likely to be duplicates. 

Generally, this is accomplished by introducing some notion of similarity between record pairs, 

either by utilising a set of users specified rules, or with e.g. an ML classifier. The records can 

then be clustered according to this similarity metric. Data deduplication is generally considered 

to be a demanding computational problem, given the naive need to compare every pair of 

records within the dataset with each other. Also, often there is only a very small amount of 

labelled ‘training data’ to build an ML approach. More advanced recent approaches, such as 

ActiveClean [44] seek to involve human input in guiding an ML process, by for instance having 

an algorithm iteratively request labels for the samples about which it is least certain. 

In its current state, SEDIMARK makes use of the record-linkage python library [45], which 

relies upon user specified rules for data deduplication. These include e.g. setting specific 

metrics for string similarity (e.g. Jaro-Winkler [125], [126] or Levenshtein distance [127]) and 

allow the computing of how similar two records are to one another across a number of fields, 

with a threshold then used to determine whether the records are duplicates or not. A downside 

of this process is that it requires at least some human assessment of the dataset, and the 

choice of which fields are likely to be worth inspecting for duplicate comparisons.    

 

Figure 17: Comparison of full and block indexing methods. 

As mentioned previously, one factor that significantly affects the performance and efficiency of 

a data deduplication algorithm is the indexing method used. In a naive ‘full’ implementation, all 

records within the dataset/database are compared against one another, which makes the 
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complexity O(n2), but this can be greatly reduced by the choice of an appropriate heuristic and 

method for retrieving likely pairs. The record-linkage library [45] allows for the use of Block 

indexing - only comparing blocks of records that share a certain attribute in common, and the 

additional SortedNeighbourhood indexing method, which allows the blocks to also include 

records within e.g. a short edit distance. As shown in section 5.3.2 indexing methods greatly 

increase the speed of the procedure, but with a resulting loss in terms of recall, as less potential 

matches are considered. A comparison of full and block indexing methods is given in Figure 

17. The raw data is shown on the left, with letter and number representing two features. In the 

middle, n2 comparisons are made between the data points. On the right, as the data points are 

indexed by letter, much less comparisons are made. 

Recent research has shown that large language models (LLMs) can be highly effective out of 

the box for deduplication and the related task of entity matching, often surpassing state of the 

art benchmark results despite not seeing any task specific training data [81][82]. As such, they 

can be considered as something of an AutoML approach to deduplication, as they remove the 

necessity for data scientists to provide labelled examples. Despite this, their use can often 

incur a prohibitively high cost, especially for the most state of the art models. To this end, the 

SEDIMARK deduplication module extends the popular Dedupe [83] package to integrate the 

use of LLMs. Whereas Dedupe employs active learning to iteratively query users for labels for 

uncertain data points, the SEDIMARK deduplication module instead roots these queries to a 

user specified choice of LLM. In such a way, the labelling cost of training data is greatly 

reduced. Once its internal ML model has been fitted to these labelled data points, Dedupe then 

predicts duplicates for the rest of a dataset. 

3.7.4 Missing Value Imputation  

There are numerous reasons why missing values, or incomplete records, may appear in a 

dataset, ranging from problems with the database that stores them, to network issues or faulty 

data collection or entry. These missing values pose a severe problem to downstream ML 

algorithms, which struggle to effectively handle “NaN” entries. While, in the case that the 

number of missing values is small, the incomplete entries can simply be removed, above a 

certain threshold this will impact the performance of any model trained on the resulting data 

[46]. Thus, a popular area of research considers the correct method for imputing or replacing 

the missing entries with their likely real values. Numerous methods exist for missing value 

imputation, targeting multiple different types of data. They can generally be classified as either 

statistical (e.g. Mean/Mode imputation, Linear/Logistic regression, or singular value 

decomposition) or ML based techniques [46]. In general, ML based missing value imputation 

methods will treat imputation as a classification or regression problem, attempting to predict 

the missing values of a feature by modelling them based on other features in the dataset. A 

generic functionality of a Value Imputation Module is shown in Figure 18, where the module 

fills the gaps that it identifies in the dataset. 

 

Figure 18: Module for imputing missing values. 
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3.7.4.1 Offline data 

When it comes to imputing values, methods such as interpolation of Artificial Intelligence 

techniques can be employed. Interpolation involves fitting known data to a function that allows 

the estimation of missing data. On the other hand, AI-based methods estimate missing values 

by leveraging available information, often using supervised learning approaches. In particular, 

the k-Nearest Neighbour (kNN) algorithm is widely used for this purpose. It involves classifying 

data values into clusters or categories based on their proximity to their k nearest neighbours. 

Another popular ML based approach to missing value imputation for tabular data is iterative 

imputation, whereby features are imputed one at a time using the other features in the dataset 

as regressors, with the process iterated upon until some stopping criteria (such as accuracy) 

is met. However, in its naive implementation iterative imputing is limited to one class of 

regressor model, which might not necessarily be optimal for all of the features in the dataset 

[47].  Other approaches exploit regularities of their particular domain to infer missing values, 

such as for instance in the case of time series data where filling gaps by interpolating between 

their neighbouring timesteps can often be quite effective.  

 

Figure 19: Iterative imputation (HyperImpute). 

In SEDIMARK, the focus is on imputing missing values for both tabular and time series data. 

SEDIMARK includes interpolation for imputing gaps in time series and leverages the impute module 

of the scikit-learn python library to offer KNN and iterative imputation methods. At its current stage 

of development, SEDIMARK also includes the HyperImpute algorithm [47] (Figure 19), a method 

that efficiently iterates through rounds of model selection for each feature column in a dataset. 

As such, it doesn’t require the user to go through the process of choosing the appropriate 

regressor for each feature in their dataset, and this can in some sense be considered an 

“AutoML” solution to the problem of model selection for missing value imputation. 

3.7.4.2 Streaming data 

Similar to streaming outlier detection, SEDIMARK utilises River's functionalities for effective 

missing value imputation. The PreviousImputer replaces missing values with the last observed 

value, suitable for time-series streaming data, while the StatImputer uses statistical measures 
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(mean, median, mode) for imputation, effective in datasets with randomly distributed missing 

values. These methods collectively enhance SEDIMARK's ability to maintain high data quality 

standards in its streaming data marketplace. By integrating River's capabilities, SEDIMARK 

not only ensures the integrity and reliability of its data but also streamlines the data cleaning 

process, significantly reducing the need for extensive manual intervention.  

Moreover, the EWMA algorithm that has been developed and presented in Section 3.7.1.2 

have been adapted to update datastreams with missing data points by applying the inliner 

model and including an inliner datapoint when a gap is detected. 

3.8 Data Augmentation 

3.8.1 Overview 

Data augmentation is a popular technique that can serve multiple purposes within a machine 

learning pipeline. Techniques such as interpolation can be used in time series data to 

upsample or fill in missing gaps in the series. If given sufficient prior domain knowledge, data 

augmentation techniques can be used to increase the volume of the training data, resulting in 

the training of more robust models, with heightened model accuracy. This is especially 

effective in the image processing/computer vision domain, where it is relatively easy to produce 

additional images that intuitively fit a given class label, using simple transformations like 

rotations, or adding noise or colour to the raw image. More recently, the model-based 

generation of synthetic data has been pursued as a method to solve certain data problems. 

On the one hand, a data provider might not want to grant access to their raw dataset, and in 

this instance, it might be preferable to instead release synthetic data, on which an equivalent 

machine learning model can still be learned. In the other instance, synthetic data might be 

used to rebalance a dataset, especially in the instance where it perhaps presents a harmful 

bias against one particular class. SEDIMARK will include data augmentation tools to address 

all of these distinct scenarios - augmentation/generation for increasing the performance of 

downstream ML models, augmentation for debiasing and rebalancing datasets, and synthetic 

data generation for replacing the underlying dataset completely. 

3.8.2 Synthetic Data 

 

Figure 20: Synthetic data generation in SEDIMARK  
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A data provider might not wish to release their underlying dataset, but instead opt to make 

available a synthetic alternative. The rise of deep learning has ushered in huge advances in 

the modelling and then generation of synthetic data. Both Variational AutoEncoders (VAEs) 

and Generative Adversarial Networks (GANs) are deep learning based methods that aim to 

learn and then sample from the underlying distribution of the data. In the case of VAEs, this is 

accomplished by training an autoencoder model to encode and reconstruct data samples, with 

the use of a ‘reparameterization’ trick [48] allowing for the drawing of samples from a learned 

gaussian latent space. In the case of GANs [49], two model components, a generator and a 

discriminator play an alternating min-max game, in which the discriminator learns to separate 

generated samples from true ones, while the generator aims to fool the discriminator into 

classifying its samples as coming from the real data distribution. While the true ‘likeness’ 

between true and generated data is hard to evaluate when the underlying distribution is not 

known, for practical purposes the fidelity of the generated synthetic data can be evaluated 

intuitively, through comparing the performance of downstream machine learning models 

trained on either the original or the synthetic data, as shown in Figure 20. 

SEDIMARK will include tools allowing data providers to generate synthetic data. In its present 

iteration, SEDIMARK makes use of methods present in the python library YData-Synthetic to 

generate synthetic tabular data. This tool allows the user to select from a number of GAN 

based models such as CTGAN [50] for tabular data generation. In addition, it includes a less 

computationally demanding method (Gaussian Mixture Model) which represents the data 

distribution as a mixture of gaussians from which new samples can be drawn, with the 

implementation iteratively testing an increasing number of gaussian components to find the 

best fit.  

However, it is expected that much of the data processed by SEDIMARK will be of a time series 

nature, where tabular methods will not work out of the box, as they generate Independent and 

Identically Distributed (IID) samples without considering the time sequential dependency 

between data points. In the case of time series generation, the user will be looking to sample 

whole trajectories of data points. The process often suffers from the low number of distinct 

trajectory examples that are available in the dataset to be modelled, compared to other 

generative fields such as text or image generation, where there are huge public datasets 

available allowing for the creation of general purpose generative models. Luckily, there has 

been a significant amount of recent interest in the problem of time series generation, with 

several methods published in high profile machine learning conferences.  

The most recent version of the SEDIMARK data curation pipeline integrates the python library 

TSGM [84], which features various GANs and VAEs that can be readily applied to time series. 

These models generally run general generative approaches for synthetic data, but extend them 

to generating sequences/trajectories rather than just singular data samples, thus ensuring that 

time dependency is preserved in the generated sequences. We provide some experimental 

results, displaying this tool’s computational energy efficiency in section 5.3.6. 

3.8.3 Augmentation for balancing and debiasing datasets 

It is widely acknowledged that issues with data collection can inject harmful biases into 

downstream machine learning models, for instance when data points corresponding to at risk 

minorities are underrepresented in the training data. Additionally, datasets may be generally 

unbalanced, with some minority classes having few examples present in training data. A further 

use of data augmentation considers the problem of debiasing or balancing these datasets. A 
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general method for this is to employ one of the synthetic data generation methods described 

in the previous example, but to reweight its training data in favour of the minority classes one 

wishes to remove bias against. The current version of the SEDIMARK data augmentation 

module integrates the popular tool TabFairGAN [51]. TabFairGAN employs two phases of GAN 

based training. In the first regular GAN training phase, the model is trained to match the regular 

distribution of the training data. In the second phase, a fairness constraint is added to the loss 

function, penalising the model for generating unfair samples. In this way it can be used to 

generate synthetic samples that can then be used to debias a regular dataset. 

3.9 Feature Engineering 

Feature Engineering is one of the principal components in the SEDIMARK AI pipeline. It refers 

to the pre-processing steps that select and transform the most relevant features, aka attributes, 

from raw data, into features to be used in machine learning algorithms, such as predictive 

models. Whence the goal of simplifying and speeding up data transformations while enhancing 

model accuracy by keeping the most relevant attributes. Dimension reduction tackles the curse 

of dimensionality that occurs due to the use of high-dimensional data which may increase the 

cost of any mining algorithm and consists of mapping high-dimensional instances onto a lower-

dimensional representation while conserving the distances between instances. Dimension 

reduction within SEDIMARK could also be used in non-high-dimensional spaces to represent 

the data more effectively by compacting them differently. 

Two main different dimensionality reduction categories are considered within SEDIMARK (see 

Figure 21 that depicts the difference between them): 

• Feature selection is the process of selecting a subset of the input features, i.e., the most 

relevant and non-redundant features, without operating any sort of data transformation or 

extraction. To do so, feature selection techniques mainly analyse and rank various 

features to determine which ones are irrelevant and should be removed, which ones are 

redundant and/or correlated, and which ones are most relevant and useful for the model 

and should be prioritized. 

• Feature extraction that involves reducing the number of features to be processed using 

dimensionality reduction techniques. It consists of extracting features from a dataset or 

data stream to identify useful information. Without distorting the original feature space, 

this compresses the set of features into manageable quantities for algorithms to process. 

E.g., constructing from a set of input features in a high-dimensional space, a new set of 

features in a lower-dimensional space. 
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Figure 21: Feature extraction vs. feature selection  

Dimension reduction techniques are widely used in machine learning algorithms and operate 

by transforming and using the most relevant feature combinations, handling thus the curse of 

dimensionality, in turn reducing space and time demands; this can be crucial for applications 

such as classification and visualization. For this to happen, SEDIMARK implements and uses 

some common dimension reduction techniques from the state-of-art and available in python 

libraries, such as PCA, feature hashing, correlation, and random projection. These techniques 

require an input parameter specifying the size of the output space of data dimensionality. 

Several dimension reduction techniques have been proposed and used for offline purposes, 

namely for static datasets. Hence, they cannot be used with data streams and have to be 

adapted. For this to happen, multiple static techniques have been extended to the stream 

setting. For instance, an extension of SEDIMARK could use an incremental version of PCA, 

available in the scikit-learn python library, called IncrementalPCA which uses a window to 

make PCA incremental, hashing trick, and random projection. Thanks to the fact that they are 

data-independent techniques, the extension of the latter to the stream setting is easy. In the 

SEDIMARK data processing and AI pipelines, dimension reduction is provided as a 

component, and its techniques can be extended and used with batch and stream data. 

AutoML could be used within SEDIMARK to facilitate the task and serve the purpose of 

automatic hyperparameter optimization without the need to precisely specify which technique 

to use with what parameter. 

3.10 Auto-ML in the data processing pipeline  

Machine learning algorithms have multiple hyper-parameters that are set prior to the learning 

process and can directly affect the performance of the models. However, this task requires 

domain knowledge and human expertise to perform manual hyper-parameter tuning (manually 

trying out different hyper-parameter sets by hand), which is a hard and tedious task both for 

expert and non-expert users. Another major drawback of the manual search is the fact that the 

process is not easily reproducible. The latter is definitely important, especially for the progress 

and improvement of scientific research in the machine learning field and for non-experts who 

intend to use ML. Moreover, it is difficult to manage the manual hyper-parameter tuning task 

when the number of parameters and the range of values is high, i.e., if one aims to apply an 
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algorithm with five hyper-parameters, then these hyper-parameters need to be manually tuned 

with different values on different datasets, and the best combination that achieves the highest 

performance will be chosen. 

To cope with the aforementioned issues, automatic search techniques have been proposed 

under the emerging automated Machine Learning (AutoML) topic. AutoML supports 

researchers and practitioners with the tedious work of manually designing ML and AI pipelines, 

which include performing algorithm selection and tuning hyper-parameters.  

A possible extension of the SEDIMARK data processing pipeline might use AutoML to 

automate various tasks, mostly related with the configuration of the models that are being used 

by the components of the pipeline. As discussed in the previous sections, users of the data 

processing pipeline will be presented with many options for processing their data. One can 

imagine that non-expert users will easily be confused regarding which component they have 

to use, which model/algorithm of that component and which configuration of the 

hyperparameters of that model/algorithm in order to best process their dataset. Manual testing 

can take time, so SEDIMARK aims to provide the tools to automate the process of selecting 

the best-performing model and identifying its corresponding optimal set of hyper-parameters 

that best fit each dataset and each user preferences.  

Users of the data processing pipeline will be provided with AutoML tools which will make the 

use of the data processing components both easier and more accessible for SEDIMARK 

participants. With the integration of AutoML into SEDIMARK, the next integration steps could 

involve enhancing other aspects of the data processing pipeline to fully leverage the potential 

of automated model selection and tuning relative to the data fed to the platform. This holistic 

approach will ensure that each stage of the pipeline is optimized for efficiency and 

effectiveness. 

One of the key aspects is that data pre-processing and feature engineering to handle diverse 

data types and structures will be executed more effectively. Expanding the range of explored 

models through AutoML and automating model validation will also be an effect of choosing 

AutoML. Creating intuitive interfaces for interacting with the AutoML system and providing 

educational resources to assist users of varying expertise levels will also be a benefit of this 

choice. 

Currently, we have developed an AutoML approach for data stream learning. The few existing 

AutoML solutions for stream learning mainly rely on random search or genetic algorithms, 

which struggle to maintain high performance in dynamic environments. By contrast, leading 

methods in batch learning such as the Sequential Model-based Algorithm Configuration 

(SMAC) [107] leverage model-based approaches, suggesting opportunities for improvement 

in stream settings. 

In an attempt at filling this gap, we introduce OnlineSMAC, a model-based optimizer for data 

streams. OnlineSMAC combines Bayesian optimization with an extension of the SMAC 

optimizer to dynamically select optimal processing pipelines and hyperparameters. 

The basic principle of Bayesian optimisation is to hold an incumbent model (the current best 

one) and generate new configurations to try to overcome the incumbent. The new 

configurations are generated according to a surrogate model, a model that estimates the 

behaviour of the function we are optimising. The surrogate model will pick configurations it 

estimates they will have a chance of being better than the incumbent or will explore a new part 

of the domain. 
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In OSMAC, we split the stream in a succession of 1000-instance long windows. At the start of 

a window, we use the surrogate model to generate 3 new configurations and add 2 fully random 

ones and a copy of the incumbent. We train these 6 candidate configurations over the duration 

of the window. When the window ends, we compare the performance of the candidates and 

the best one becomes the new incumbent for the next window. 

This setup provides an efficient optimiser for AutoML on data streams, showing that Bayesian 

optimisation is possible and useful beyond batch AutoML. 

Through this current and future efforts, SEDIMARK is set to offer a comprehensive, automated, 

and user-friendly Data Processing Pipeline, enhancing the efficiency and applicability of 

machine learning models across various user groups and applications. 
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4 Techniques for reducing energy consumption of 

data technologies 

4.1 Overview  

The environmental impact of computing technologies has become an increasing concern, 

particularly in big data processing and machine learning, where computationally intensive 

processes consume vast amounts of energy and generate significant carbon emissions. As 

state-of-the-art ML models grow exponentially in size, their demand for computational power 

scales accordingly, amplifying their carbon footprint and increasing the environmental cost 

associated with data storage and transfer. In response to these challenges, recent research 

has focused on optimising ML model training and inference to improve energy efficiency while 

maintaining performance. SEDIMARK aligns with these efforts by implementing strategies to 

minimise environmental impact of its ML processes. This chapter outlines several approaches 

that SEDIMARK will adopt to enhance energy efficiency in ML and data management based 

on what performed in the first version of the deliverable and the work so far towards this 

direction. Section 4.2 explores strategies for reducing energy consumption during ML training, 

including coreset selection, data distillation and dimension reduction. Section 4.3 presents 

techniques to optimize model efficiency, such as model compression, quantisation, pruning 

and low-rank factorisation. Section 4.4 examines how dimension reduction can lower the 

environmental costs of data sharing. Section 4.5 addresses energy-efficient data storage 

solutions. Section 4.6 develops the concept of a lightweight SEDIMARK toolbox designed for 

edge device compatibility. 

4.2 Reducing energy consumption during ML training 

4.2.1 Optimising Data Efficiency in ML Training 

Training modern ML models requires substantial computational resources, often involving 

repeated processing of large datasets using power-intensive hardware such as GPUs and 

TPUs. This escalation in energy use has multiple implications: 

• Increased energy consumption makes ML training financially prohibitive for smaller 

organizations posing high operational costs. 

• Environmental constraints as ML-driven energy demand raises carbon emissions, 

particularly when relying on non-renewable energy sources. 

• High power usage can stress existing energy grids, challenging the long-term 

sustainability of AI development causing infrastructure problems. 

To mitigate these effects, SEDIMARK prioritizes improving data efficiency during ML training. 

By reducing the volume of data required for model development, the framework lowers 

computational costs while maintaining model accuracy. This approach is critical for minimizing 

the environmental footprint of ML workflows. 

This section highlights three key techniques for optimizing data efficiency in ML training; 

coreset selection (reducing dataset size while preserving essential information), data 

distillation (compressing knowledge from large datasets into smaller, more efficient forms), and 

dimensionality reduction (eliminating redundant features to minimise computational overhead). 
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4.2.1.1 Coreset Selection  

Coreset selection [57],[58] is a compression technique that selects a smaller representative 

subset of data from a larger dataset while preserving its key properties. This enables machine 

learning models to be trained more efficiently, using less data and computational resources, 

while still aiming to preserve the quality and accuracy of the models trained on the complete 

data. Coreset selection is particularly valuable in scenarios where computational efficiency is 

crucial and when dealing with massive datasets that are costly or impractical to use in their 

entirety for training purposes. In the context of SEDIMARK, coreset selection could be applied 

in several innovative ways to enhance its functionality and efficiency: 

• Distributed Training Efficiency: SEDIMARK can utilise coresets to facilitate efficient 

distributed training across its decentralised network. By allowing each node to hold a 

coreset instead of the full dataset, the network can minimise the data transmission 

overhead and reduce training times, leading to significant energy savings. 

• Bandwidth Optimization: When nodes need to communicate or synchronize datasets, 

transmitting coresets instead of full datasets can reduce the required bandwidth and 

enable faster, more efficient data sharing.  

• Resource-Constrained Environments: For nodes operating in environments with 

limited computational resources, such as IoT devices or mobile phones, coresets can 

enable these devices to participate in the ML training process without the need for high 

computational power. 

• Rapid Prototyping: When developing new models or experimenting with different 

algorithms, SEDIMARK users could employ coresets for rapid prototyping, allowing for 

quick iterations over model design with less computational cost. 

4.2.1.2 Data Distillation 

Different from coreset selection, data distillation [59],[60] in machine learning involves 

significantly reducing the size of a dataset by creating synthetic data that captures the essential 

information of the original data. This process allows the training and tuning of machine learning 

algorithms efficiently, akin to using the complete dataset. In SEDIMARK, in addition to 

achieving energy reductions akin to those from coreset selection, data distillation can also be 

leveraged to enhance its privacy protection capabilities in several ways: 

• Privacy-Preserving Data Sharing: By distilling data to only its essential features, 

SEDIMARK can share insightful synthetic data across its network without exposing the 

raw data, which might contain sensitive user information. 

• Anonymization: Distilled datasets can be designed to exclude personally identifiable 

information, allowing the platform to utilize and share data while adhering to privacy 

regulations and user consent. 

• Reduced Data Footprint: A smaller, distilled dataset minimizes the risk of data breaches, 

as less real information is stored and transmitted, reducing the exposure of user data. 

4.2.2 Balancing the model training cost and the communication overhead  

In decentralised ML three main costs are associated with the learning process: (i) the 

communication cost, (ii) the cost of training time and (iii) the final model accuracy. Achieving 

high accuracy while keeping the cost of training time low in decentralised ML often incurs high 
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communication costs. On the other hand, decreasing the communication costs while 

maintaining high accuracy leads to high model training costs, since with sparse communication 

between the working nodes it takes longer for the decentralised ML model to converge. The 

goal of SEDIMARK is to develop energy-efficient ML solutions, therefore the ML models 

implemented within the project aim to find a balance between high accuracy and low 

communication and training time overhead. Inspired by [61], in decentralised ML settings, two 

distinct contexts can be distinguished:  

• Weakly coordinated learning (WCL), where the amount of coordination between 

computing nodes is sparse. In this setting, some global coordination is still required. 

Computing nodes must agree on the hyperparameters of the learning algorithm, such as 

the number of latent factors, and must have commonly agreed identifiers for the items in 

the product database. 

• Strongly coordinated learning (SCL), where each computing node knows the number 

of cooperating computing nodes and global synchronisation is possible, with any pair of 

computing nodes able to send and receive parameters and coordination data between 

each other. 

One of the main advantages of SCL is that it is closely following the implementation of a 

centralised ML algorithm and therefore, it generally follows the accuracy of the centralised 

algorithm. However, this comes at the expense of a heavy communication overhead, requiring 

n all-to-all synchronisations per epoch (n being the number of nodes participating in the 

learning process) to ensure that computing nodes keep their model parameters in sync. Note 

that originally this approach was developed to suit large supercomputers, where it is possible 

to control the overall number of workers and balance the data distribution in order to find the 

best trade-off between the level of parallelisation (i.e. the overall number of computing nodes 

involved) and the communication overhead. However, in SEDIMARK, the data is already pre-

allocated, and the overall number of participating computing nodes cannot be easily controlled. 

The high communication cost can have a significant impact on the efficiency of the distributed 

computation. 

In contrast, WCL provides a communication-efficient alternative. The main advantage of this 

approach is that a computing node communicates only with a small subset of other computing 

nodes during the exchange of the model data. However, this reduced communication can 

mean that the global ML algorithm needs a substantial number of epochs to converge since 

this approach is inherently slower at distributing the contribution of training data to the model 

across the entire network of participating computing nodes.  SEDIMARK aims to develop an 

efficient decentralised ML interface, focusing on minimising the communication overhead and 

minimising the training time of the global model. Therefore, SEDIMARK aims to develop a 

hybrid approach combining weak and strong coordination. As demonstrated in [61], the 

communication-intensive strongly coordinated algorithm can be used to boost the model 

parameters into a part of the solution space in which the model can converge to a good 

solution. The remaining convergence steps can then be computed by the weakly coordinated 

approach, reducing the high communication overhead in the later stages of learning when it is 

no longer necessary. 

The goal of this hybrid approach is two-fold: (i) minimise the communication and model training 

costs while simultaneously (ii) maximise the model accuracy. As discussed above, SCL will 
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address the model's training costs, while WCL will keep the communication overhead at a 

minimum.  

One of the main reasons for the slow training time of WCL is the fact that all computing nodes 

start from random model parameters. This, together with sparse communication of the 

algorithm, results in longer training times as the algorithm requires some time to distribute the 

data across the entire network. 

For simplicity and for proof-of-concept scenarios SEDIMARK has opted for using the SCL, 

assuming that the number of cooperating computing nodes is known beforehand. This is 

realised within SEDIMARK because all participating nodes are using the marketplace to get 

the model assets and thus the initiators of the decentralised ML process can know at any given 

point in time which participants are members of the process. 

4.3 AI Model Optimisation  

The accuracy of today’s machine learning models has significantly improved over the past 

decade. However, this improvement comes with the price of massive, over-parametrised 

models causing high energy consumption and unacceptable delays in inference which is often 

performed in real-time. To address the above issues a large body of research has formed with 

the main goal of improving the efficiency of machine learning models while also maintaining 

optimal accuracy. Taking inspiration from [62], SEDIMARK focuses on reducing the memory 

footprint and computational cost of the machine learning models and hence focuses on five 

main approaches for model compression: 

• Lossless compression - methods that exploit statistical redundancy in the data to 

compress the size of the model without error. 

• Quantisation - the goal of this approach is to decrease the size of model weights. Broadly 

speaking, this is achieved by reducing the precision of model weights from the high-

precision floating point representation to the low-precision floating point or integer 

representation. This achieves a compact model representation. 

• Pruning - the focus of this approach is to remove neurons with small saliency (sensitivity) 

from the neural network. This achieves a sparse computational graph with a smaller 

memory footprint. The approach can be further structured into: 

o Unstructured pruning, which removes all salient neurons achieving aggressive pruning. 

However, this leads to sparse matrix operations which can be hard to accelerate. 

o Structured pruning focusing on removing groups of parameters. On the plus side, 

aggressive unstructured pruning still allows for dense matrix representation but can 

lead to a significant loss of model accuracy. 

• Knowledge distillation - this approach uses the large model as an input in the AI 

algorithm to produce a smaller, more compact model. 

• Low-rank factorisation - these techniques use factorisation to represent the weight 

matrix with a product of two smaller matrices. 

• Mixed Precision Training and Inference - Mixed precision is an optimisation technique 

that uses lower numerical precision such as 16-bit or 8-bit formats instead of standard 32-

bit floating point for model training and inference. This approach reduces memory usage 

and computational load while maintaining comparable model accuracy. It is supported by 
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most modern hardware accelerators and is commonly used to improve execution speed 

and energy efficiency across a range of machine learning applications. It offers a balanced 

trade-off between efficiency and accuracy and is commonly used as a standard 

configuration for benchmarking other optimisation methods such as quantisation or low-

rank adaptation. 

Different model compression techniques can be applied to different ML models. For instance, 

Deep neural networks can be compressed using all compression methods listed above. In 

contrast, more traditional machine learning models, such as decision trees or random forests, 

can be compressed using pruning or quantisation techniques [63]. SEDIMARK aims to develop 

a small number of approaches covering all four compression methods. This will allow the 

potential user to choose the compression technique best suited to their model.  

4.3.1 Lossless compression in federated learning  

Lossless compression techniques can be applied in federated learning (FL) to reduce the size 
of exchanged model parameters without affecting model accuracy. By compressing local 
updates before transmission, communication efficiency can be improved while preserving the 
integrity of the training process. 

In typical FL setups, multiple edge devices train models locally on sensitive data and send the 
resulting updates to a central server for aggregation. However, the repeated exchange of large 
model parameters introduces significant communication overhead and energy consumption—
especially in vanilla FL topologies, where the central server handles all aggregation. Efficient 
compression methods are therefore essential to mitigate these bottlenecks. 

4.3.1.1 Related work 

Lossless compression is a type of data compression that exploits statistical redundancy in the 

data to reduce its size without any information loss. It is mainly used in applications where 

preserving the data's integrity is required or highly desirable (such as in text documents or 

executable files). In contrast, lossy compression is that in which the uncompressed data is not 

identical to the original, which usually comes as a trade-off between the accuracy or fidelity of 

the data and the achieved compression rates, allowing for significantly smaller file sizes at the 

cost of some loss in quality or precision.  

Some common lossless compression methods are: substitution coders [100]-also known as 

dictionary coders-, where the data is converted to text strings that are then substituted by the 

index in a dictionary; entropy coding [101], which encodes common sequences in data using 

fewer bits than less frequent or rare sequences; or run-length encoding [102], which 

compresses consecutive occurrences of the same value by representing them as a single 

value followed by the number of repetitions. Although general purpose encoders are common 

and widely used, most techniques are optimized for a particular type of data (images, text, 

audio, etc.) to better exploit its statistical properties. Many algorithms combine two or more 

techniques to further increase the compression ratio they can achieve. Some of the most 

extended are: 

• Huffman coding, which assigns variable-length codes to the input symbols, with frequent 

symbols being encoded using shorter codes. 

• Lempel-Ziv compression, which identifies repeated sequences in the data with a sliding 

window and dynamically builds a dictionary of variable size. The two main algorithms from 
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this family are LZ77 and LZ78 [103], which serve as basis for other variants such as LZMA 

(Lempel-Ziv-Markov) or LZW (Lempel-Ziv-Welch). 

• Deflate: [104] a widespread algorithm that combines LZ77 and Huffman coding. 

• Asymmetric numeral systems: [105] a family of entropy coding algorithms that encodes 

the information as natural numbers. 

• Burrows-Wheeler transform, [106] which reorders the input data to achieve longer 

sequences of repeated symbols before applying run-length encoding techniques. 

These algorithms have been implemented in several software that are widely used for many 

applications. For example, GZIP, Zlib, Brotli, Zstd, Zopfli, Bzip2, Snappy or LZ4, to name a 

few. Although modern algorithms are high performant, lossless compression techniques are 

limited by the statistical properties of the input data, as data with no redundancy cannot be 

compressed. 

In the context of machine learning, deep learning models typically present high entropy, 

consisting of large set of floating-point numbers with a seemingly random distribution. Since 

data with high entropy is difficult to compress, lossless methods usually fail to achieve high 

compression ratios. As a conclusion, lossless compression should only be used in applications 

where achieving the highest accuracy is prioritized over communication costs and storage size. 

4.3.1.2 The Fleviden compression solution 

In Federated Learning, inter-agent communication is one of the most critical steps for the 

training to be carried out successfully. Since bandwidth is limited, efficient communication is 

required to avoid bottlenecks. 

Fleviden [5] offers a lossless compression solution to optimize the size of the exchanged 

messages in use cases where model integrity and high accuracy are desirable. As Fleviden 

messages contain more than just the model’s updates, the solution is agnostic to the type of 

input data contained in the messages (formatted as JSON-serializable dictionaries). The 

solution is implemented as a package of compression pods that encode and decode Python 

dictionaries efficiently, with several available options that can be tuned to the case at hand. To 

comply with the JSON-serializable requirement of all Fleviden modules, these pods perform 

the following steps: 

• Binarization, where dictionaries are converted to byte objects. Two binary serialization 

formats are implemented, namely, MessagePack [129] and CBOR2 (Concise Binary 

Object Representation [128]). The first is slightly faster and more compact, but the latter 

supports advanced data types, which expands on the agnosticism of Fleviden’s 

compressor.  

• Compression, applying one of the algorithms available as Python packages, such as 

Zstd (Zstandard) or LZMA. Zstd is faster and the default choice for most use cases. LZMA 

is more computationally expensive but achieves greater compression ratios. A trade-off 

must be made between speed and ratio, so users must select one or the other according 

to their needs. 

• String encoding. Because byte objects are not JSON-serializable, they must be encoded 

as strings before generating the final output. A base64 encoding block is used for this 

task, as it provides the best possible code with printable ASCII characters. 
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The steps are executed in reverse order for the decoding and decompression of previously 

encoded data. For the decoding pipeline to work as expected, the same compressor and binary 

serialization format must be agreed upon. To enable interoperability with other pods, the output 

message is another Python dictionary that contains the compressed and encoded information, 

as well as additional metadata about the process, such as the achieved ratio. Because the 

model is reconstructed without error, its performance is not compromised in any way. 

Therefore, the only trade-offs are related to the cost in energy and time of the algorithms 

themselves. 

In a typical federated learning scenario, participants may use the compression pod as the first 

contact layer between inter-agent communication, or to store models in a more compact file. 

The attached metadata of the pod can be used to check that the decompression process was 

successful or to gather compression metrics from different clients.  

4.3.2 Quantisation in federated learning 

To address the communication efficiency challenge, quantization techniques have been 
implemented to compress the size of messages exchanged between the clients and the server 
during the FL process. These techniques fall under the category of lossy compression, 
enabling a significant reduction in update sizes without the need to fully preserve the original 
data, while still ensuring convergence of the global model. 

In this context, the Quantized Stochastic Gradient Descent (QSGD) algorithm [130] was 
integrated as a quantization method, due to its proven convergence guarantees for both 
convex and non-convex optimization problems. QSGD transforms model parameters into 
discrete levels controlled by a configurable parameter (s), followed by encoding them using 
Elias Omega coding, a compression scheme that efficiently represents integer values—
especially when smaller values are more common, which is often the case in gradient updates. 
Together, these mechanisms enable substantial communication savings with minimal impact 
on model accuracy. This quantization strategy was implemented within the Fleviden federated 
learning framework through the development of two new pods: 

• The qsgd pod, which performs the quantization and dequantization of model parameters 

according to the QSGD scheme. 

• The elias pod, which encodes and decodes the quantized values using the Elias Omega 

method. 

These pods can be flexibly connected to other components such as the server, agents, and 
aggregator modules. For instance, when the server receives updates from clients, they are 
first passed through the elias pod for decoding, then through the qsgd pod to reconstruct the 
approximate floating-point values before aggregation. The reverse process is used when 
sending updates back to the clients. 

A detailed description of the algorithms, including pseudocode, design details, and software 
architecture diagrams, can be found in SEDIMARK_D3.1 [104]. Interested readers are referred 
to that document for an in-depth technical overview of the quantized federated learning solution 
and its integration within Fleviden. 

4.3.3 Pruning 

The goal of pruning techniques is similar to the goal of quantisation and that is to produce more 

compact models with a reduced memory footprint. However, in this case, rather than 

compressing the model weights, pruning removes the redundant parameters or neurons. This 
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happens when the weight coefficient is replicated or close to zero (0) or zero (0). The pruning 

techniques can be categorised in various ways [64]: 

• Based on the symmetry of the pruned network into symmetric and asymmetric methods  

• Based on whether the pruning is performed after or during training into static or dynamic 

pruning 

Various elements can be pruned in deep neural networks [65] as follows: 

• Weights - refers to removing the network weights based on some condition, such as for 

example weights below some pre-defined threshold. This requires traversing weights one 

by one, which can affect the running time. 

• Neurons - different from removing weights, this method refers to removing the redundant 

neurons. 

• Filters - when removing filters, these are first ranked according to their importance based 

on a pre-defined metric and then the least important filters can be removed. 

• Layers - another pruning approach looks at removing entire layers from deep networks. 

SEDIMARK will provide a suite of pruning approaches based on the user needs. For example, 

for users who wish to save energy during the training process, SEDIMARK will offer dynamic 

pruning methods. On the other hand, for users who wish to reduce the memory and inference 

cost of an existing model, a static pruning strategy might be more suitable. Similarly, 

SEDIMARK will allow the user to choose the specific model elements they wish to prune and 

will suggest suitable pruning approaches accordingly. 

4.3.4 Knowledge distillation 

Knowledge distillation consists of two models, the large original model, which is also referred 

to as the teacher model and a smaller representation of this larger model called the student 

model. The goal of this approach is for the student model to learn the generalisation of the 

teacher model [66]. Previous research showed that shallow student models are capable of 

learning complex functions of the teacher models while maintaining nearly the same accuracy. 

Summarising a recent survey on knowledge distillation [67], there are three main components 

in this approach: 

• Knowledge types: the types of knowledge used to learn the student model can be further 

classified into (i) response-based, (ii) feature-based and (iii) relation based. The goal of 

(i) is to directly mimic the final prediction of the teacher model. This is achieved by feeding 

the response of the last output of the teacher model into the student model. One of the 

disadvantages of this approach is that it can only handle supervised learning. (ii) is an 

extension of (i) in so far as rather than just learning the output of the final layer, the student 

model also learns the outputs of the intermediate layers, also called the feature maps. 

Finally (iii) rather than using the outputs of some specific layers, the focus of this approach 

is on the relationships between the feature maps.  

• Distillation strategies: this refers to the training approaches for teacher and student 

models. Based on whether the student and teacher models are updated simultaneously 

the distillation strategies can be divided into three categories: (i) offline, (ii) online and (iii) 

self-distillation. The offline distillation approach is done in two steps, first, the teacher 

model is built based on the training data and then the student model is built based on the 
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knowledge from the teacher model. On the other hand, the online distillation strategy 

learns both teacher and student models simultaneously. This approach often takes 

advantage of parallel high-performance computing. Finally, self-distillation uses the same 

networks for both teacher and student models. To better distinguish the three approaches 

a good analogy is used in [67], where in method (i) the teacher teaches the student, in 

method (ii) both teacher and student learn together and in the final method (iii) the student 

learns by themself. 

• Teacher-student architectures: this refers to the problem of the right design of structures 

in teacher and student models. The general idea of knowledge distillation is to transform 

the wider and deeper teacher model into a smaller and shallower student model. 

Therefore, a student model can become one of the following options: (i) a model with 

fewer layers and channels, (ii) preserved structure of the teacher model in quantised 

version, (iii) keeping efficient basic operations, (iv) minimised model optimising global 

structures and (v) same as the teacher. 

4.3.5 Low-rank Factorisation 

In neural networks, the weights being shared among working nodes are represented as weight 

matrices. Hence, the size of such weight matrices can be effectively reduced by low rank 

factorisation methods. The goal of low rank factorisation is to represent the target matrix with 

two or more smaller matrices. One of the most common low rank factorisation techniques is 

Singular Value Decomposition (SVD). Two aspects of neural networks could be decomposed 

into their low rank alternatives, (i) linear layers, and (ii) embeddings [68]. Some approaches 

aim to decompose both aspects of neural networks. Model optimisation techniques utilising 

low rank factorisation can become twice as fast in the learning process as their uncompressed 

counterparts while showing only a 1% drop in the model accuracy [69],[70]. Low rank 

factorisation methods can be used to speed-up tasks such as for example text character 

recognition models, object detection and image retrieval [69]. SEDIMARK will provide 

approaches such as SVD to the end user, and SEDIMARK will allow the user to choose 

whether to apply the low-rank decomposition to the convolutional layer or the fully connected 

layer, similar to the approach studied in [71]. 

Another use case of low-rank factorisation is the fine-tuning process of Large Language 

Models (LLMs). Because LLMs often contain a very larger number of trainable parameters, 

fine-tuning such models can require substantial memory and computational resources. 

Therefore Low-Rank Adaptation of LLMs (LoRA) [80] can be incredibly useful to end users with 

limited access to computational resources. This is achieved by freezing the pre-trained LLM 

parameters and only train small representations of the pre-trained parameters in selected 

layers during the fine-tuning process. In SEDIMARK, the Recommender Systems module 

contains a retrieval algorithm which is based on neural sentence transformers, called the Bi-

Encoder. We added LoRA to the Bi-Encoder model to allow for more efficient fine-tuning 

process of this model and we discuss the comparisons of the full model vs. the modified model 

using LoRA in Section 5.3.7.   

4.4 Reducing energy on data sharing  

Reducing energy consumption during data sharing is a crucial aspect of optimizing machine 

learning workflows, particularly when dealing with large-scale datasets. Data transfer across 

networks, especially for high-volume, high-frequency processes such as model training and 
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inference, can be a significant contributor to energy consumption. The environmental impact 

of data sharing is amplified when vast amounts of data are continuously moved between 

centralized servers, requiring substantial computational resources and network infrastructure. 

This becomes particularly problematic in distributed systems, where data transfer between 

remote edge devices and central cloud storage increases the overall energy footprint. 

SEDIMARK aims to address these challenges by employing strategies that reduce the volume 

of data shared without compromising model performance. One such approach is the use of 

data compression techniques, which reduce the size of datasets before transmission. The use 

of advanced algorithms that compress data with minimal loss of important information, can 

significantly lower the energy required for storage and transmission. Furthermore, edge 

computing is integrated into the framework, which ensures that data processing is done closer 

to the source, reducing the need for large-scale data transfer to central systems. This 

decentralized approach not only cuts down on energy costs associated with long-distance data 

transfer but also helps to alleviate the strain on network infrastructures. Another technique that 

SEDIMARK employs to reduce energy consumption during data sharing is the application of 

data sparsity and pruning methods. By identifying and removing redundant or irrelevant data 

points, the framework minimizes the amount of data that needs to be transmitted. Additionally, 

data sharing can be optimized by using more energy-efficient protocols and transmission 

methods, such as low-power wide-area networks (LPWAN) or other technologies designed for 

low-energy data exchange. 

4.5 Reducing energy on data storage  

As the SEDIMARK framework primarily features a decentralised approach to data 

management at the edge, it is necessary to take into consideration energy consumption as a 

result of data storage, which in cases of some providers will be crucial for maintaining 

reasonable costs. Increasing energy efficiency in relation to data storage on the data level, 

mainly involves reducing the storage footprint of artefacts produced during the data processing 

pipeline, and the storage of the final Data Assets that will serve as part of the providers 

Offerings.  

In addition to data reduction methods such as deduplication as defined in Section 3.7.3, 

compression techniques can also be used, in addition to aggregation methods where Data 

Assets sources are co-located. Single-instance approaches can also be used at a higher level 

in comparison to deduplication, whereby similar chunks within Data Assets can be removed 

and linked to instead. Caching techniques can also be applied to Data Assets in cases where 

access to them is frequent. The granularity of annotations for Data Assets has a significant 

impact on the storage footprint, i.e. whether annotations are done on the atomic level of data 

points or on the level of windows or batches of time-series data points. 

In relation to AI Model Assets, pruning (Section 4.3.3) and knowledge distillation (Section 

4.3.4) techniques can be applied. These methods can allow AI Model Assets to operate with 

fewer computations, reducing the energy required for training and inference. Studies have 

shown that pruning combined with distillation can significantly reduce training energy costs 

while maintaining accuracy. 

4.5.1 Compression for Data Processing Pipeline Artefacts 

For intermediate artefacts generated as a by-product of a data processing pipeline as 

illustrated in Section 3.3, “downcasting” can be used is to reduce the primitive datatypes used 
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from one of a higher magnitude to a lower, such as float64 to float16, as long as the 

corresponding value is within the bounds of the smaller datatype. 

More efficient datatypes can be adopted for data columns with a small number of unique 

values, such as the case for labels. In the case of Pandas, function such as “Categorical” and 

“to_numeric”. 

For certain types of dataset serializations, several compression formats can be applied to 

significantly reduce the size footprint, such as in the case with pickle which supports gzip, bz2, 

zip, xz, and zstd. 

4.5.2 Broker Storage Configuration 

Data Brokerage implementations are normally built upon well-established open-source 

databases. How these databases are configured can have a significant impact on the storage 

footprint. Data Providers are expected to produce data assets at different velocities and 

volumes, and hence how their data assets are evolving need to be monitored to continuously 

re-configure as per need and compute resource constraints of the hosting server. 

In the case of the Stellio Context Broker (Section 3.3), the PostgreSQL database serves as 

the underlying data store. Performance tuning tools can be used, which focus on configuration 

settings for a set of application scenarios, in relation to storage requirements, especially for 

shared_buffers which acts as the cache. 

4.6 Pushing data processing to the edge  

One effective strategy for reducing energy consumption in data technologies is to shift some 

processing closer to where the data is generated (i.e., at the edge). In many scenarios, local 

processing allows devices to reduce the frequency and volume of data sent to the cloud, which 

can significantly lower energy consumption. This may lead to them being included “on the 

sensor”, directly on the microcontroller unit (MCU) that reads the probe and controls the 

sending of the data to the network. One can think of various ways to integrate such capabilities 

into a dynamic data platform such as SEDIMARK. The current choice is to explore the 

possibility of pushing processing algorithms from the platform to the MCU in the sensor by 

using a bytecode language (WebAssembly) via some Edge Cloud orchestration services (see 

SEDIMARK_D4.3 [6]). This allows the simplification of DevOPs operations by setting up a 

single compilation chain on the cloud side, at the price of providing an implementation of the 

SEDIMARK WebAssembly platform API for each MCU one wants to support. This brings the 

main advantage of being able to integrate any kind of sensor, by any vendor, without requiring 

them to set up a full compilation chain for their device on the Cloud side. The vendor will only 

need to work on their device, making them compatible with the SEDIMARK API and protocols. 

The choice of WebAssembly bytecode is driven by its fast adoption and support by major 

vendors, its very compact size when compiled, the availability of bytecode interpreters and 

compilers on all kind of platforms (including microcontrollers), and the availability of compilation 

chains for various languages (including C++ or javascript for example). 

 

https://webassembly.org/
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5 Trade-offs between performance, communication 

cost and energy efficiency 

5.1 Overview 

Data processing may require significant computing resources to analyse the datasets, 

depending both on the size of the dataset and the type of processing to be done or the selection 

of the processing algorithm. Similarly, training machine learning models also require significant 

resources, both when training data locally and in a distributed way. The previous section 

presented techniques to reduce the energy consumption when training machine learning 

models or when sharing data. However, these methods normally use less energy with the cost 

of performance or accuracy. It is therefore critical to assess the trade-offs between energy 

consumption, performance and communication cost in a way that data providers of consumers 

can know the effects of targeting for (i) maximum energy efficiency against performance and 

vice versa or (ii) minimum communication cost against performance. This subsection presents 

the final analysis of the trade-off results, expanding the initial analysis presented in the first 

version of the deliverable SEDIMARK_D3.1 [74].  

5.2 Communication cost analysis for distributed learning   

This section investigates the trade-offs between communication efficiency and the overall 

model accuracy. The experiments and analysis are performed using deFLight, a tool that 

enables federated learning and gossip learning approaches and is already implemented in 

SEDIMARK and presented in more detail in SEDIMARK_D3.3 [5]. 

Experimental Setup: 

• Dataset: A small subset of the MNIST dataset is used [54]. This is a labelled dataset of 

handwritten digits and the goal of an ML model is to correctly recognise such digits. To 

mimic a real-world data distribution in decentralised systems, the dataset is divided 

between the worker nodes in a non-IID fashion. In particular, each working node is 

assigned 50% of the images attached to one label and the other 50% attached to another 

label. A small portion of IID data distribution in the form of 100 IID images per working 

node is also added. 

• deFLight setup: The nodes passively receive model weights from other participating 

working nodes (in Gossip learning) or from the server (in Federated learning). 

Communication percentage values C are set to [0.25,0.5,0.75,1.0]. In the context of 

Federated learning this corresponds to the percentage of worker nodes participating in 

the model aggregation step by the server and in the context of gossip learning this 

corresponds to the percentage of communication peers for each worker node. A record 

of the overall number of bits exchanged between participating nodes/server during the 

learning process is also kept. The goal is to keep high accuracy while maintaining the 

smallest possible communication cost (i.e. the number of bits exchanged). 

5.2.1 Federated Learning 

The federated learning module for each communication setup is run over 10 runs and reports 

the average across those runs. Figure 22 illustrates that the model has a smooth convergence 
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curve achieving high model accuracy when the level of communication is set to 100%. On the 

other hand, the convergence curve is not so smooth with the communication level of 25% also 

resulting in a significant final performance drop of 0.23. However, note that by decreasing the 

level of communication from 100% to 50% the drop in final model accuracy is just 0.05, while 

being able to decrease the number of bits being sent around (at that point in time) by 5.8 billion 

which equals significant energy savings, as shown in Figure 23. 

 

Figure 22: Accuracy for different percentages of selected nodes for communication in 

federated learning. 

 

Figure 23: Communication cost (in bits) for different percentages of selected nodes for 

communication in federated learning. 
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5.2.2 Gossip Learning  

This experiment is averaged over 4 runs and the results are plotted in Figure 24. As expected, 

the model achieves the best accuracy when the worker nodes are set to 100% communication. 

However, by decreasing the level of communication to 50% a drop in accuracy from 0.98 to 

0.97 is noted, while decreasing the level of communication by half, which in this case equals 

to a whopping 276 billion bits saved from communicating (shown in Figure 25). This illustrates 

how massive savings in energy consumption through communication volume can be achieved 

with minimal impact on final model accuracy. 

 

Figure 24: Accuracy for different percentages of selected nodes for communication in gossip 

learning. 

 

Figure 25: Communication cost (in bits) for different percentages of selected nodes for 

communication in gossip learning. 
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5.2.3 Communication/Computation cost versus performance comparison with 

topologies in deFLight 

In this section we further extend our experiments with deFlight to consider two newly 

introduced topologies, Split Learning (SL) [90] and Federated Distillation (FD) [89]. We again 

employ the MNIST dataset, setting aside 20% of the data to be randomly distributed between 

all nodes, and with the remaining data assigning only 2 labels to each node, thus creating a 

non-iid split. In the case of gossip learning, we use a fully connected graph. Both SL and FD 

are implemented without any server-side aggregation of model weights. We then allow the 

experiments to run for 2 hours each. In Figure 28 and Figure 29, we then plot a rolling mean 

(with window size 50) of the accuracy attained against a) the number of bits communicated 

and b) the number of floating point operations per second (FLOPS) in one forward pass of a 

model, multiplied by the total number of forward passes conducted by the clients at each point 

in time. 

 

Figure 26: Communication cost (in bits) for various topologies training on the MNIST dataset 

within deFlight. 
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Figure 27: Computational cost in FLOPS for various topologies training on the MNIST dataset. 

We observe that, while Federated is unsurprisingly more efficient in terms of communication, 

Gossip employs somewhat less FLOPS in order to reach a similar level of accuracy. FD shows 

great benefit in terms of the communication cost, and this is due to the fact that instead of 

communicating full model weights, it is only sending the logits for a relatively small number of 

datapoints. On the other hand, SL incurs a high communication cost, as it needs to 

communicate tensors and gradients after every batch of data that is processed. However, it is 

fairly efficient in terms of FLOPS, likely, because the central model is being trained 

asynchronously. The good performance of FD in terms of flops might be ascribed to the fact 

that the global portion of data used to share logits is IID. 

5.2.4 Communication cost versus performance in Fleviden 

In this experiment we leverage Fleviden to analyse the trade-off between accuracy and 

communication cost in a Federated Learning scenario. Like in the previous experiment 

conducted with DeFLight, we will train a Convolutional Neural Network for the classification of 

the MNIST dataset, measuring the differences in accuracy and loss when the number of 

participants N in a training round is limited to a percentage C of the whole federation –i.e., only 

N*C clients train and contribute to the round aggregation–. The dataset has been divided into 

ten subsets where, to emulate a typical Federated Learning casuistic, each subset contains 
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80% of the samples of one label and 20% of the rest –i.e., client zero will have most of the digit 

zero images, and so on. The resulting label distribution per client can be seen in Figure 28. 

 

Figure 28: Label distribution per client in the experiment, where each client represents most of 

the samples for each digit label (highly imbalanced distribution) 

The communication cost per round is measured in terms of the total number of bytes 

exchanged between clients and the aggregation server. The accuracy is measured over a 

uniformly distributed test set at the server at the end of each round. A FedAverage strategy is 

used for the aggregation. In total, 15 rounds are completed per experiment run. Regarding 

local training configuration, clients train the model for 1 epoch with a randomly selected subset 

of 3000 samples. The reason behind this limitation is to homogenize the number of images 

used in different clients, since the total number of samples varies depending on the digit. 

The experiment evaluates the test accuracy for C in [0.2, 0.4, 0.6, 0.8, 1.0]. The subset of 

clients in a round when C<1.0 is chosen randomly. The resulting accuracy curve obtained is 

shown in Figure 29. 

 

Figure 29: Accuracy versus number of clients per FL round 
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Due to the use of the toy dataset and the expressiveness of the CNN, all models eventually 

reach an accuracy around 0.98, although, as an obvious result, the higher the number of 

participants, the faster convergence occurs. In this case, however, differences between C=0.6, 

C=0.8 and C=1.0 are practically negligible. As can be seen in Figure 30 below, each client 

represents around 7 MB in the total sent to the server, which means that we could save almost 

30 MB per round with no detrimental effects. 

 

Figure 30: Average size of exchanged messages between clients and server 

The results are, as expected, similar to those achieved in the deFLight experiment. 

5.2.4.1 Communication cost of Fleviden’s lossless compression 

Even though in this toy scenario the CNN model is not too large for communication to become 

prohibitive, applying lossless compression in our federated learning setup can help us reduce 

the size of the message exchanges at a relatively small computational cost. To do so, we 

leverage Fleviden’s compressor pod to encode and decode messages before client-server 

communication takes place. 

The compressor pod is configured to use MessagePack as the binary serialization format, 

Zstandard as the compression algorithm –which prioritizes speed over compression ratio–, 

and base64 as the string code for JSON-serialization. Every other parameter is the same as 

in the previous setup. Since, by definition, lossless compression doesn’t modify the values of 

the model’s weights, the accuracy curve is practically identical to the one in Figure 29, so it is 

omitted here. In terms of communication cost, Figure 31 shows the average number of bytes 

sent to the server in a round, for C= [0.2, 0.4, 0.6, 0.8, 1], compared with the vanilla scenario 

with no compression. 
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Figure 31: Average size of exchanged messages w/o lossless compression 

The achieved compression ratio is around 5.4, which reduces the size obtained with C=1.0 to 

a lower value than the one with C=0.2 and no compression. Because Zstd is very fast, the cost 

in terms of time is negligible in comparison with the local training time. As such, the benefits 

outweigh the drawbacks; however, in lossless compression the ratio that can be obtained is 

always upper bounded. To further compress the size of the messages, a quantization 

approach must be used. 

5.2.4.2 Performance vs communication cost of Fleviden’s QSGD 

In this experiment, we leverage Fleviden’s quantization pod and compare the accuracy and 

compression ratio achieved for different setups of the QSGD algorithm. Namely, we vary the 

number of quantization levels (L) parameter in L= [175, 200, 225, 250, 500, 2000]. These 

values have been selected heuristically through a preliminary experiment, because QSGD is 

sensitive to the model size, and thus there is not a rule of thumb for the proper selection range. 

The higher the number of levels, the fewer the reconstruction error of the decoding, and the 

higher the computational cost of the encoding. All clients participate in every round (C=1.0), 

but the other hyperparameters remain the same.  

The accuracy curves obtained are shown in Figure 32 below. 
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Figure 32: Accuracy versus number of quantization levels of QSGD 

On the other hand, the number of megabytes exchanged for each L is shown in Figure 33. For 

reference, the sizes without compression and with Zstd are included in the chart. 

 

Figure 33: Average size of exchanged messages w/o QSGD quantization 

Regarding accuracy: QSGD quantization step pushes values to zero and decreases the 

dynamic range of the input, which translates into reducing the expressiveness of the CNN and 

consequently worsening the performance. When L=2000 (lowest quantization error), the final 

accuracy reaches 0.96, which is a 0.02 loss with respect to lossless techniques. The 

computational cost of encoding and decoding is, however, too high, to the point that it takes 

several times the training time of an epoch. On the other end, L=175 impacts much more 

significantly on the performance, with a drop of 0.15 that can be considered too drastic to justify 

its use. Further lowering the number of quantization levels results in unstable training and the 

curves do not converge. Regarding the compression ratio: the gain is quite significant with 

respect to Zstd. With L=2000, the ratio is around 36, which increases up to 80 with L=175. A 
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good balance between the two is found at 225, where the accuracy decreases only to 

approximately 0.94, with a ratio of 72 and acceptable encoding-decoding time. It is important 

to highlight that the classification problem is not very hard, and the dataset contains enough 

samples to make the stochastic gradient descent smooth. In other more realistic scenarios, 

the user should evaluate the trade-off more carefully and tune the number of quantization 

levels to find the optimal spot in the trade-off.  

5.3 Analysis of trade-offs in performance vs computational cost  

This section investigates the energy efficiency trade-offs for a number of modules that are 

already implemented within SEDIMARK. The performance of three modules is considered: (i) 

the deFLight distributed learning module (described in SEDIMARK_D3.3 [5]), (ii) the Data 

Deduplication and (iii) Anomaly Detection modules within the data pipeline. All three of these 

modules offer a number of parameters or different methods for which the trade-off between 

their computational efficiency and performance on a dataset can be examined. In the following 

experiments, the popular python package eco2ai [53] is employed to estimate the CO2 

consumption of the target algorithms. 

Additionally, in this section performance evaluation of other techniques that have been 

integrated within the SEDIMARK Toolbox (i.e. timeseries and data streams anomaly detection, 

synthetic data generation, low-rank factorisation, time-series forecasting and offering 

generation) are also presented. 

5.3.1 CO2 consumption of Federated Learning in deFLight 

This section considers the CO2 efficiency of the federated learning scenario implemented with 

the deFLight distributed learning component of SEDIMARK as the amount of client-server 

communication is adjusted. Following the protocol described in greater detail in section 5.2, 

ten non-IID training subsets of the MNIST dataset are created, and small convolutional neural 

networks at each node are trained. Each experiment is run for 100 iterations and both the 

accuracy attained and the CO2 output as measured by eco2ai are compared. 

 

Figure 34: CO2 cost per 100 iterations of FL given communication percentage. 
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Figure 35: Final accuracy for 100 iterations of FL given communication percentage. 

 

Figure 36: Comparison of CO2 cost to reach given accuracy levels for different communication 

percentage in FL. 

In Figure 34, the CO2 cost of running a full 100 rounds is observed to increase with the amount 

of communication but in Figure 35 there is a trade-off here in the final accuracy attained. 

However, Figure 36 shows that for any given target accuracy, running with higher 

communication is actually more CO2 efficient. With greater communication, the algorithm 

converges much faster, which is demonstrated further in section 5.2. However, full or even 

high communication can be quite unlikely in real world settings. As such, going forward the 

DeFLight SEDIMARK module might target a) more efficient sampling of nodes and b) non-IID 
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robust aggregation and distributed model training techniques such as e.g. FedProx [55], in 

order to decrease the CO2 consumption in low communication non-IID settings. 

5.3.2 Performance of data deduplication module as the indexing method is varied. 

As described in section 3.7.3, the deduplication module includes an indexing component with 

a significant effect on the computational cost of reaching a deduplication solution. Naively 

indexing the dataset results in comparisons taking place between all pairs of records and thus 

an O(n2) runtime complexity. However, there are two supplemental methods included - Block 

and SortedNeighbourhood Index, which greatly reduce the number of comparisons made. The 

Block method only compares records that agree on a specific variable - for instance in a 

dataset of restaurant records, it might only compare restaurants within the same city. The 

SortedNeighbourhood indexing method extends this by also including records within their 

neighbourhood - e.g. perhaps if there are likely to be small spelling mistakes in the city name, 

these will be compared to. The three methods are run on the Fodor/Zagat restaurant dataset, 

which has ground truth duplicate labels [72]. For the indexing methods, the ‘city’ feature in the 

dataset is used as an efficient way to draw out blocks of the data. Precision, recall and CO2 

consumption are recorded and compared for the three indexing methods. 

 

Figure 37: Comparison of CO2 cost of different indexing methods for deduplication. 
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Figure 38: Comparison of precision of different indexing methods for deduplication. 

 

Figure 39: Comparison of recall of different indexing methods for deduplication. 

In Figure 37 the high CO2 cost of full indexing can be immediately observed. While ‘Block’ 

based indexing has a greatly reduced CO2 cost, this increases somewhat for the 

Neighbourhood method which also searches through neighbouring strings. In Figure 38, 

negligible drops in precision for both of the block-based indexing methods are observed. On 

the other hand, in Figure 39 it can be observed that recall is much higher for the full indexing 

method, with a small drop for Neighbourhood, indicating that pure Block based indexing 

causes us to miss comparing many records that would have been valid duplicates. Going 

forward, the project’s intention is to explore further indexing methods that do not necessarily 

sacrifice recall while still greatly reducing energy consumption compared to full indexing of the 
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provided dataset. Smart data models might also be exploited to automatically select 

performant features on which to index the data. 

5.3.3 Performance of Anomaly Detection module on ground truth, employing different 

models. 

The SEDIMARK Anomaly Detection module contains a large number of different models, 

which might be suited to different kinds of datasets. This section compares a large number of 

algorithms on a generic tabular anomaly detection task. This work considers the tabular 

anomaly detection task for which PYOD is built and experiments are run on the thyroid dataset 

introduced by [56]. 11 models are considered: ABOD, AutoEncoder, Feature Bagging, HBOS, 

Isolation Forest, KNN, LOF, MCD, OCSVM, PCA and DeepSVDD (discussed in section 3.7.1). 

As the focus of this experiment is to show how a naive user might interact with these modules, 

they are deployed using their default parameters from the PYOD library. As a performance 

metric, the Receiver Operating Characteristic Area Under the Curve (ROC AUC) score is used, 

measured against the true labels provided in the dataset. 

 

Figure 40: CO2 cost for the various anomaly detection methods available in the SEDIMARK 

pipeline. 
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Figure 41: ROC AUC score for the various anomaly detection method available in the 

SEDIMARK pipeline. 

Comparing the results in Figure 40 and Figure 41, one can see that unlike the algorithms in 

the previous sections, anomaly detection does not appear to show a clear trend between the 

energy consumption produced and performance on the given task, with one of the lowest cost 

models (HBOS) actually attaining the best performance. Furthermore, one of the most energy 

consuming methods (DeepSVDD) has the lowest performance overall. This signals towards a 

problem in the deployment of unsupervised methods - as the methods do not optimise directly 

against a ground truth, it is hard to know a priori that e.g. a model with more parameters might 

better fit the data. Indeed, this is in line with the problem of unsupervised model selection 

discussed in section 3.7.1. As such, going forward, SEDIMARK seeks to further understand 

the series of trade-offs implicit in fitting unsupervised methods in the absence of ground truth 

data. SEDIMARK plans to employ some of the AutoML methods referenced earlier in the 

deliverable (sections 3.7.1 and 3.10) to optimise both for energy consumption and accuracy.  

5.3.4 Performance of Time Series Anomaly Detection module on ground truth, 

employing different models. 

The SEDIMARK Anomaly Detection module also integrates a large number of time series 

anomaly detection algorithms through the TimeSeAD [85] benchmark. In this section we briefly 

deploy the algorithms with their default hyperparameters on a section of the SMD dataset [88]. 

For algorithms requiring training, we set the number of epochs to 10. We largely adopt the 

evaluation process from [85]. We train the models on clean training data, then evaluate them 

on the contaminated test data against the set of withheld anomaly labels (which aren’t required 
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for training). We measure performance using the best_f1 metric suggested by the same 

authors, and we record the co2 cost for our experimental runs in Table 2. 

Table 2: Data Processing requirement analysis. 

category model Best_f1_score CO2 (grams) 

baselines eif 0.2743 2.5605 

baselines hbos 0.2929 0.1156 

baselines iforest 0.3579 0.1465 

baselines iqr_ad 0.1841 0.0707 

baselines kmeans 0.3705 0.0713 

baselines knn 0.4337 2.9676 

baselines oos_ad 0.184 0.0715 

baselines pca_ad 0.3999 0.0624 

baselines wmd_ad 0.7073 0.062 

prediction lstm_prediction_filonov 0.2216 0.1692 

prediction lstm_prediction_malhotra 0.7072 0.6427 

prediction tcn_prediction_he 0.7227 0.6114 

prediction tcn_prediction_munir 0.3198 0.5374 

reconstruction anomtransf 0.1838 5.8506 

reconstruction autoformer 0.1936 1.6414 

reconstruction dense_ae 0.3815 0.5127 

reconstruction etsformer 0.1941 2.2693 

reconstruction fedformer 0.1861 8.1379 

reconstruction genad 0.1838 1.6139 

reconstruction lstm_ae 0.5468 0.6523 

reconstruction lstm_max_ae 0.1841 0.6713 

reconstruction mscred 0.1838 12.3292 

reconstruction stgat_mad 0.4162 2.2248 

reconstruction timesnet 0.2717 22.8043 

reconstruction untrained_lstm_ae 0.3944 0.8002 
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category model Best_f1_score CO2 (grams) 

reconstruction usad 0.1839 1.0528 

other lstm_ae_ocsvm 0.1838 1.1864 

other mtad_gat 0.4399 1.9327 

other ncad 0.1874 3.8797 

other thoc 0.2027 6.3633 

generative donut 0.599 0.7524 

generative gmm_vae 0.6841 0.9859 

generative lstm_vae_park 0.6978 1.0306 

generative lstm_vae_soelch 0.6864 1.29 

generative sis_vae 0.5387 29.7981 

generative beatgan 0.2043 23.8155 

generative lstm_vae_gan 0.2044 1.4443 

generative madgan 0.2003 9.1934 

generative tadgan 0.1845 1.6854 

 

As with the results in the previous section, there is no clear relationship between the 

computational cost of the algorithms and their performance on the dataset. This signals both 

the necessity for human oversight in the anomaly detection process, and the problems raised 

about many of the benchmarks in the field, for instance the performance of extremely simple 

predictors on many of the field’s benchmark datasets [94]. 

5.3.5 Performance of Datastreams Anomaly Detection module employing EWMA 

model. 

This section details the evaluation and performance characterisation process of the proposed 

solution for outlier detection in data streams described in Section 3.7.1.2. In order to be able 

to thoroughly discuss the proposed algorithm, the same evaluations have been carried out on 

the algorithms available in the River framework [41]. This framework promotes online machine 

learning for streaming data in Python and therefore provides a suitable reference for 

comparison. 

The experiments were carried out using a dataset from the Santander pilot case platform, more 

specifically from a temperature sensor. These observations are historical values from January 

1st to September 16th (2021), with a periodicity of approximately 5 minutes. Therefore, in total 

there are about 75,000 observations. This dataset has been divided into two separate portions: 

45,000 observations as a training dataset and the remaining 30,000 observations as an 

evaluation or test dataset. The training dataset is classified as clean, while 40 randomly 
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assigned anomalies have been forced into the evaluation dataset, so that the efficiency of the 

algorithms' detections can be subsequently evaluated. Figure 42 depicts the dataset used for 

the experiments. The training dataset is represented by a blue line, while the evaluation dataset 

is plotted with a light green line. In addition, the introduced anomalies are marked with dark 

green dots. 

 

Figure 42: Santander temperature dataset divided in training and test dataset. Randomly 

synthetic anomalies have been introduced. 

It is important to note that, since the algorithms are focused on data streams, the evaluation 

dataset has been injected in a way that simulates the production of a sensor device, i.e., on 

an observation-by-observation basis. 

In order to fully characterise the algorithm proposed against the River’s algorithms, two 

different analyses have been conducted. Firstly, we report the results of the detection 

capabilities of the algorithms, measured by metrics such as Precision or Recall. Secondly, we 

provide the results obtained in terms of the algorithms' time performance 

Considering the evaluation of the detection capabilities, as mentioned above, the algorithms 

have been exposed to the same dataset, i.e., the same training values and the same evaluation 

data stream. 

The following metrics are used for the assessment of the evaluated algorithms’ detection 

capacity: Precision, Recall, F1-score and AUC-ROC. Precision quantifies the proportion of 

observations correctly identified as anomalies out of all the points flagged as anomalies by the 

model. Recall measures the fraction of anomalous observations correctly identified as such. 

F1-score provides the balance between Precision and Recall and is commonly employed as 

the preferred metric for algorithm comparison. Finally, AUC-ROC represents the likelihood of 

the model correctly identifying anomalies. The equations representing the first three metrics 

are given in (2), (3) and (4), respectively, where TP is the number of True Positives (anomalies 

correctly identified), FP is the number of False Positives (normal observations identified as 

anomalies) and FN is the number of False Negatives (anomalies not identified). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)                       (2) 
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𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                       (3) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 𝑇𝑃/(𝑇𝑃 + (𝐹𝑃 + 𝐹𝑁)/2)            (4) 

Once the assessment methods are known, Table 3 and Table 4 present the numerical results 

obtained. The first table shows the detection results obtained for the three aforementioned 

variants of the proposed algorithm. In order to be able to properly illustrate and expose the 

different characteristics of the variants, several combinations of parameters are included in 

Table 3: th stands for threshold; and a is the EWMA importance factor. Alternatively, Table 4 

shows the results obtained by the algorithms provided within the River framework, which will 

later be used for comparison.  

Table 3: Detection metrics of the EWMA-based proposed algorithm. 

    
Precision Recall F1-score AUC-ROC 

 records th  

Without  

update 

12 

1.1 
0.2 0.0009 0.5 0.0017 0.3487 

0.8 0.0009 0.5 0.0017 0.3487 

1.2 
0.2 0.0009 0.5 0.0017 0.3693 

0.8 0.0009 0.5 0.0018 0.3734 

1.3 
0.2 0.0009 0.5 0.0019 0.3965 

0.8 0.001 0.5 0.0019 0.4028 

With  

update 

1.1 
0.2 0.9524 1.0 0.9756 0.9999 

0.8 0.5132 0.975 0.6724 0.9869 

1.2 
0.2 0.975 0.975 0.975 0.9875 

0.8 0.5652 0.975 0.7156 0.987 

1.3 
0.2 1.0 0.95 0.9744 0.975 

0.8 0.7091 0.975 0.8211 0.9872 

With  

smart update 

1.1 
0.2 0.9524 1.0 0.9756 0.9999 

0.8 0.9512 0.975 0.963 0.9875 

1.2 
0.2 0.975 0.975 0.975 0.9875 

0.8 0.975 0.975 0.975 0.9875 

1.3 
0.2 1.0 0.95 0.9744 0.975 

0.8 0.975 0.975 0.975 0.9875 

 

As mentioned, Table 3 shows the Precision, Recall, F1-score and AUC-ROC results obtained 

for each of the combinations of the proposed algorithm presented. Previously, it was stated 
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that the changes in the variants involved the updating of the model, which is based on EWMA. 

For that reason, the α parameter plays such an important role in obtaining a good detection. A 

higher value of α implies a higher weight or greater importance to the latest value of the time 

series, as was shown in Section 3.7.1.2. Taking this into account, it is evident that the 

performance of the second variant, “with update”, is greatly affected by this parameter, since 

there are certain cases where the last value of the time series corresponds to an outlier, which 

distorts the results. In contrast, in the third variant, the model does not include these anomalies, 

as they have been already detected and removed, and is, therefore, relatively unaffected by 

the α parameter. 

Table 4: Detection metrics of the River algorithms.  

  
Precision Recall F1-score AUC-ROC 

  

Gaussian Scorer 

wndw = 12 

grc_prd = 1 

th = 0.9 

0.0055 1.0 0.011 0.8797 

Half Space Trees 

tree_ h = 4 

wndw = 12 

n_trees = 10 

th = 0.8 
0.4066 0.925 0.5649 0.9616 

n_trees = 10 

th = 0.9 
1.0 0.65 0.7879 0.9616 

n_trees = 15 

th = 0.8 
0.5692 0.925 0.7048 0.962 

n_trees = 15 

th = 0.9 
1.0 0.425 0.5965 0.7125 

n_trees = 20 

th = 0.7 
0.4368 0.95 0.5984 0.9742 

n_trees = 20 

th = 0.8 
0.9722 0.875 0.9211 0.9375 

Local Outlier 

Factor 

n_neigh =12 

th = 0.9 
0.3824 0.975 0.5493 0.9864 

One Class SVM 
nu = 0.005 

th = 0.9 
0.0032 0.35 0.0064 0.6033 

Parameters note: wndw stands for window size; grc_prd stands for graph 

convolution predicted value; th stands for threshold; n_trees stands for number of 

trees; tree_h stands for tree heigh; n_neigh stands for number of neighbours; and 

nu is upper bound on the fraction of training errors. 
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Based on the results reported, there is evidence showing that for the type of dataset used and 

its behaviour over time, the third variant of the proposed algorithm (i.e., the one “with smart 

update”) shows the best performance metrics at all levels. This variant exhibit values higher 

than 0.95 in each metric.  

Furthermore, beyond the results shown in Table 3, the best performance obtained by the “with 

smart update” variant is through the combination (records = 12, threshold = 1.3, α = 0.3), 

obtaining values of Precision = 1.0, Recall = 0.975, F1-score = 0.9873, and AUC-ROC = 

0.9875. This combination is graphically depicted in Figure 43, where the test dataset is 

represented by a light green line, the anomalies introduced synthetically are plotted with dark 

green dots, and the anomalies detected by the algorithm are shown with red circles. 

 

Figure 43: Anomaly detection performance of the third variant of the algorithm proposed, so-

called “with smart update”. Configuration parameters are: records = 12, threshold = 1.3, and α 

= 0.3. 

Table 4 provides the performance results obtained with the algorithms available in River. 

Gaussian Scorer, Half Space Trees, Local Outlier Factor and One Class SVM algorithms have 

been used, all in their versions for data streams. The best combinations have been selected 

after a thorough process to analyse which parameters worked best for each algorithm. Note 

that the only algorithm that achieves proper detection values is Half Space Trees, with its best 

combination on (num_trees = 20, tree_height = 4, window_size = 12, threshold = 0.8) and 

metrics of Precision = 0.9722, Recall = 0.875, F1-score = 0.9211, and AUC-ROC = 0.9375. 

The remaining algorithms do not behave adequately with the dataset used. 

Figure 44 displays the graphical results of the detection of the Half Space Trees algorithm 

when configured to use the parameters that showed best detection performance. As in Figure 

43, the test dataset is represented by a light green line, the introduced anomalies are marked 

with dark green dots, and finally the anomalies detected by the algorithm appear as red circles. 

Comparing both best combinations, the proposed algorithm using the “with smart update” 

variant and Half Space Trees, it can be seen that the former offers better and more stable 

detection values throughout the four metrics, as summarised in Table 3 and Table 4. Not only 

does this hold true in its best combination, but also over a range of them. Moreover, the 
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difference in performances is illustrated graphically, i.e., which anomalies have been detected, 

which have been overlooked and which normal instances have been incorrectly identified as 

anomalies in Figure 43 and Figure 44. 

 

Figure 44: Anomaly detection performance of the Half Space Trees algorithm by River. 

Configuration parameters are: num_trees = 20, tree_height = 4, window_size = 12 and 

threshold = 0.8. 

Concerning the second phase of the performance characterisation and comparison, it focuses 

on the computational time of the algorithms (i.e., the delay introduced in the detection of an 

outlier within the data stream). To this end, 300 Monte Carlo simulations have been performed 

for each of the algorithms configured with the parameters that made them have their best 

detection performance, monitoring both the training and assessment time of each of the 

incoming observations. All these tests have been carried out on an Ubuntu 20.04.6 LTS 

machine (2 CPU cores, 2.4 GHz clock, 16GB RAM). The resulting values are presented in 

Table 5. The total computation time values from the beginning of the training to the assessment 

of the last observation and the mean evaluation time per observation are provided. Note that 

the training dataset is composed of 45,000 measurements while the test dataset is composed 

of 30,000 records.  

Table 5: Time performance results. 

 Total time (s) Mean detection time (ms) 

Without update 

(records: 12, th: 1.6,     a: 0.4) 

5.9 0.197 

With update  

(records: 12, th: 1.1, a:0.2) 
127.76 4.259 

With smart update 

(records: 12, th: 1.3, a:0.3) 
133.91 4.463 
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 Total time (s) Mean detection time (ms) 

Gaussian scorer  

(wndw: 12, grc_prd: 1, th: 0.9) 
5.11 0.17 

Half Space Trees  

(n_trees: 20, tree_h: 4, wndw: 

12, th: 0.8) 

11.2 0.373 

Local Outlier Factor 

(n_neigh: 12, th: 0.9) 
366.09 12.2 

One Class SVM  

(nu = 0.005) 
5.46 0.182 

Parameters note: wndw stands for window size; grc_prd stands for graph convolution 

predicted value; th stands for threshold; n_trees stands for number of trees; tree_h 

stands for tree heigh; n_neigh stands for number of neighbours; and nu is upper bound 

on the fraction of training errors. 

Table 5 demonstrates that, among the variants of the proposed algorithm, the computation 

time increases considerably in the two approaches that update the model. It is obvious as they 

do not keep the static photograph of the training dataset but include the new information and 

have to recalculate the model continuously. However, this comes as the trade-off for high 

precision. As for the algorithms provided by the River framework, Gaussian Scorer is the 

fastest, followed by One Class SVM. Nevertheless, these two algorithms together with Local 

Outlier Factor do not pose a strong challenge to the proposed algorithm due to their poor 

detection performance. In contrast, Half Space Trees has proper performance values, 

exhibiting an actually comparable trade-off with our proposed EWMA-based algorithm. 

On the one hand, the proposed algorithm presented better detection values versus worse 

computation time, while Half Space Trees, the best of the River algorithms, showed lower 

detection delay versus poorer detection metrics. According to the needs and requirements of 

the use case, i.e., depending on whether the priority must lie in the speed of detection or in its 

accuracy, one or the other should be chosen. 

5.3.6 Performance of synthetic data generation vs computational cost.  

The SEDIMARK Data Augmentation module features the ability to generate purely synthetic 

datasets which can then be used to train downstream machine learning models, providing a 

useful alternative to data providers who might not wish to share their raw data within the 

SEDIMARK marketplace. The SEDIMARK Data Augmentation module contains a number of 

methods, however as these methods generally rely upon expensive neural network models as 

their generation backbone, the synthetic data generation incurs a large computational cost. In 

this section, we briefly compare the computational cost and the output performance of a 

downstream machine learning model on time series data. To this end, we train a machine 

learning model on the time series data and then compare performance when we train further 

machine learning models on synthetic datasets generated with increasing computational cost 

with the VAE component of the augmentation module. We vary the computational cost by 



 

 
 

 

 

Document name: D3.2 Energy efficient AI-based toolset for improving data quality. Page:   91 of 118 

Reference: SEDIMARK_D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

increasing the number of training epochs for which the synthetic data generation is run. We 

employ the stock and energy time series datasets used by [92], and adapt the evaluation code 

and procedure from [93], using the S4 [91] model as the baseline for downstream performance. 

We then report the mean squared error of the baseline trained on both real and synthetic data 

as we increase the number of synthetic training epochs. Results are shown in Figure 45. 

 

Figure 45: MSE scores for both real and synthetically trained models, when the number of 

epochs to train the synthetic model is increased. 

On both datasets we observe that with increased computation, the predictive power of the 

synthetic data approaches that of the original training data. On the Energy dataset, this effect 

happens in only a small number of epochs, after which additional computation doesn’t help to 

further increase its predictive power and in fact overfits the model. On the Stock dataset, the 

trend continues downwards. This highlights the necessity of overseeing the synthetic data 

generation process, perhaps by employing a validation procedure to guide early stopping. 

5.3.7 Analysis of Low-rank factorisation  

The goal of this section is to investigate the application of the low-rank adaptation (LoRA) in 

the fine-tuning process of SEDIMARK’s recommender module (as described in Section 4.3.5). 

The goal of applying the low-rank representation is to make fine-tuning process more efficient 

by drastically decreasing the number of trainable parameters. 

Experimental setup: 

In this experiment we use the Bi-Encoder model [95], whose goal is to retrieve relevant 

datasets based on the given query. This is achieved using two separate sentence encoders 

from the transformer model. The model is then trained using a contrastive loss and hard 
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negatives selected using BM25 retrieval [96] from the training dataset. To add LoRA to the Bi-

Encoder model we use the peft (Parameter-Efficent Fine-tuning) library [97]. We compare the 

Vanilla (i.e. the full model) vs. LoRA approaches studying (i) the model performance and (ii) 

the parameter efficiency in both approaches. For (i) we report the test accuracy selected from 

the best accuracy reported on the validation set;  and for (ii) we report the number of trainable 

parameters. The implementation of LoRA-based bi-encoder is available in our GitHub 

repository [98]. 

Dataset: 

In this experiment we use the Datafinder dataset [99] containing train queries generated using 

the Galactica LLM incorporating information from abstracts of relevant research papers. The 

test queries were generated by human annotators.  Additionally, we further divide the train set 

into train/validation sets at the ratio of 90/10 to fine-tune the Bi-Encoder model. Overall, this 

dataset contains 2687 datasets, 1024 train queries and 257 test queries. 

Results: 

Table 6: Results for low-rank factorization. 

Model Precision@10 (P@10) # Trainable Params 

Bi-Encoder: Full 0.168 ~22M 

Bi-Encoder: LoRA 0.162 ↓3.57% ~110K ↓99.59% 

 

The results in Table 6 illustrate a massive saving in the computational resources (memory and 

compute cost) required for fine-tuning the Bi-Encoder model if LoRA is applied. The accuracy 

is measured in terms of Precision@10, which is the proportion of recommended items in the 

top-10 set that are relevant for the user. In particular, applying LoRA decreases the number of 

trainable parameters by more than 21M, which is a decrease of over 99% resulting in only 

slightly decreased accuracy of 3.57%. 

5.3.8 Performance Evaluation of Coreset and Distillation Methods 

In this section, we investigate the effectiveness of Coreset Selection and Data Distillation 

methods for improving efficiency in SEDIMARK. We aim to evaluate these methods in terms 

of accuracy, runtime, data size, and overall efficiency. The results of these experiments will 

provide practical guidance for deploying scalable, resource-aware machine learning 

workflows, directly supporting SEDIMARK’s objective of enabling high-quality and energy-

efficient data marketplaces. 

5.3.8.1 Experimental Setup 

Dataset: In our experiments, we use two widely used public datasets to simulate different 

dataset sizes that might be encountered in real-world scenarios: Statlog (large) [108] and 

Water Potability (medium) [109].  

• The Statlog (Landsat Satellite) Data Set contains multispectral values of pixels in satellite 

images of the Earth’s surface. The primary objective is to classify each pixel into one of 

six land cover types (such as soil, vegetation, or water) based on 36 spectral attributes. 

The dataset consists of 6,435 instances and is widely used as a benchmark for multi-class 
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classification tasks, especially in the remote sensing and environmental monitoring 

domains.  

• The Water Potability dataset focuses on water quality assessment. Each sample consists 

of nine physicochemical properties (such as pH, hardness, solids, and turbidity), and the 

target variable indicates whether the water is potable (safe for human consumption). The 

dataset contains 3,276 instances and is commonly employed for binary classification 

tasks, particularly in environmental data analysis and public health applications.  

These datasets enable us to systematically evaluate the performance and efficiency of 

the proposed methods across different domains and data scales. 

Baseline Methods: For data distillation, we include: 

• PCA K-means [110] Applies K-means clustering in the principal component space to 

capture key data variations. 

For Coreset Selection, we include: 

• Random Sampling: Randomly selects a subset of data points from the original dataset. 

• K-means [111]: Clusters data using K-means and selects representative points from each 

cluster. 

• Greedy k-Center [112]: Selects data points that maximize coverage of the dataset by 

iteratively choosing the farthest points. 

• Facility Location [113]: Selects a subset of points that best represent the entire dataset 

based on facility location optimization. 

• Influence [114]: Picks samples with high influence scores, aiming to retain critical points 

for model performance. 

• Random Projection K-means [115]: Applies K-means clustering after projecting data to a 

lower-dimensional space. 

• DBSCAN [116]: Uses density-based clustering to identify representative points. 

• Gradient Coreset [117]:: Utilises gradient-based selection to retain samples that most 

impact model updates. 

• DPP Diversity [118] Maximises diversity in the selected subset using Determinantal Point 

Processes. 

By including these diverse algorithms, our evaluation provides a comprehensive comparison 

of mainstream distillation and coreset strategies, covering a broad spectrum from random and 

clustering-based methods to optimisation-driven and diversity-focused approaches. 

To ensure the reliability and statistical significance of our results, each experiment is 

independently repeated 10 times. For every method and dataset combination, we report the 

average value of each evaluation metric across these 10 runs. For all experiments, each 

dataset is randomly split into training and test sets using an 80/20 ratio. Within the training set, 

we further apply coreset selection or data distillation to obtain reduced subsets at varying sizes: 

1%, 5%, 10%, 15%, and 20% of the training data. For the downstream classification task, we 

employ a Support Vector Machine (SVM) as the classifier. This approach enables us to 

systematically evaluate the impact of subset size on model performance. By averaging over 

multiple runs and systematically varying the subset size, we mitigate the effects of randomness 
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and provide a robust assessment of the comparative performance and efficiency of different 

methods.  

Evaluation Metrics: To facilitate a fair and intuitive comparison across different subset 

selection and data distillation methods, we report all performance results in terms of relative 

metrics. These relative metrics allow us to directly assess how well each method preserves 

model performance or improves efficiency compared to using the full dataset.  

Each relative metric is calculated by dividing the value obtained from the model trained on the 

coreset or distilled subset by the value obtained from the model trained on the full dataset. The 

result is typically expressed as a percentage. For example, relative accuracy indicates the 

proportion of accuracy retained when using a subset instead of the entire dataset. In this report, 

the same approach is applied to relative ROC-AUC, relative training time, and other metrics, 

providing a straightforward way to compare the effectiveness and efficiency of different 

methods. 

5.3.8.2 Experimental Results 

Figure 46 and Figure 47 show the relative classification accuracy achieved by different subset 

selection and distillation methods as the subset size varies on the Water Potability and Statlog 

datasets, respectively. 

On the Water Potability dataset (Figure 46), excellent classification performance can be 

achieved even with very small subsets. For example, when using just 5% of the training data, 

which corresponds to approximately 131 samples, most methods are able to achieve nearly 

the same accuracy as using the full dataset. This suggests that, for this binary classification 

problem, both coreset and distillation methods are highly data-efficient, and that increasing the 

subset size beyond this point provides little additional benefit. 

On the Statlog dataset (Figure 47), most selection methods continue to perform well as the 

subset size increases. Random sampling, k-means, and pca_kmeans maintain consistently  

high relative accuracy, indicating that they generalize effectively even in a more complex, multi-

class scenario. However, some methods such as dbscan, gradient, and random_projection  

show reduced accuracy when the subset size is very small, which may be due to difficulties in 

adequately representing all classes under these conditions. Facility and DPP methods are not  

shown in the Statlog results because, at small subset sizes, they often produced subsets 

containing only a single class. This is a result of their diversity-based selection strategies, 

which can sometimes favour the dominant class or the densest regions of the feature space 

when the subset size is much smaller than the number of classes. As a consequence, these 
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subsets are not suitable for multi-class model training, which limits the applicability of these 

methods in such scenarios. 

 

Figure 46: Relative classification accuracy (%) of models trained on coreset/distilled subsets 

versus the full dataset, across different subset sizes and selection methods on Water 

Potability. 

 

Figure 47: Relative classification accuracy (%) of models trained on coreset/distilled subsets 

versus the full dataset, across different subset sizes and selection methods on Statlog. 

Figure 48, Figure 49 (Water Potability) and Figure 50, Figure 51 (Statlog) present the absolute 

and relative training time required by models trained on coreset or distilled subsets of different 
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sizes. The results indicate a clear trend: as the subset size increases, training time increases 

correspondingly for all methods, which is expected. However, when compared with the 

accuracy results discussed previously, it becomes evident that substantial reductions in 

training time can be achieved without sacrificing classification performance. 

For the Water Potability dataset, most methods are able to achieve nearly 100% of the full-

dataset accuracy using only 5% of the training data, as shown in Figure 46. At the same time, 

Figure 49 shows that training with such a small subset typically requires less than 1% of the 

training time compared to using the full dataset. Even when increasing the subset size to 10% 

or 20%, the relative training time remains a small fraction of the total, yet the classification 

accuracy is almost indistinguishable from that obtained with the entire dataset. This 

demonstrates the high data efficiency of subset selection and distillation methods for this 

binary classification problem: excellent performance can be achieved with dramatically 

reduced computational cost. 

 

Figure 48: Absolute training time of coreset/distilled subsets on Water Potability. 



 

 
 

 

 

Document name: D3.2 Energy efficient AI-based toolset for improving data quality. Page:   97 of 118 

Reference: SEDIMARK_D3.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 

Figure 49: Relative training time (%) of coreset/distilled subset versus full dataset training time 

on Water Potability. 

Similar trends are observed for the Statlog dataset, although the relationship between subset 

size, accuracy, and training time can be influenced by the multi-class nature of the problem. 

As seen in Figure 47, most methods (such as random, k-means, and pca_kmeans) are able 

to retain high relative accuracy when the subset size reaches 15–20%. According to Figure 

51, at these subset sizes, the relative training time is only about 4–5% of that needed for the 

full dataset. This means that it is possible to reach almost full classification performance while 

using just a small fraction of the total training time. For smaller subset sizes, some methods 

show lower accuracy, indicating that sufficient class diversity is important in multi-class tasks, 

but the computational savings remain substantial. 

Overall, these results show that by using only a small proportion of the training data, it is 

possible to achieve both significant computational efficiency and high model performance. This 

is particularly valuable in practical applications where training time or computational resources 

are limited. 
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Figure 50: Absolute training time of coreset/distilled subsets on Statlog. 

 

Figure 51: Relative training time (%) of coreset/distilled subset versus full dataset training time 

on Statlog. 
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5.3.9 Performance of Time Series Forecasting with Optimisation Techniques 

The goal of this section is to analyse the performance of time-series multivariate forecasting 

approach, CrossFormer, with diverse optimisation techniques. The performance evaluation 

uses the evaluation feature designed within the CrossFormer component, including MAE, 

MAPE, MSE, MSPE, RMSE and SCORE. 

Performance of Forecasting with Quantization (FLOPS) 

As tensor calculations cost a significant amount of computational resources in deep learning 

based time series forecasting approaches, different float precision settings of tensor may lead 

to varied performance. Therefore, the model has been tested on the weather use case with 

several float precision settings, comparing their forecasting performance. The result is given 

in Table 7. 

Table 7: Comparisons of performance over diverse float precision settings. 

Float Precision MAE MSE RMSE 

Float 64 3.2644 20.2673 4.2437 

Float 32 3.9656 27.0471 4.8866 

Float 16 5.3205 99.1768 6.9796 

Forecasting with Pruning Techniques: 

Building on the pruning techniques introduced in Section 4.3.3, we present the results of 

applying pruning techniques to the CrossFormer model. The primary objective was to evaluate 

how channel pruning affects the model's size, the number of parameters, floating-point 

operations per second (FLOPs), memory usage, and performance metrics. 

Structured (Channel) Pruning: 

The results in Table 8 demonstrate that channel pruning is an effective method for reducing 

the computational complexity of the CrossFormer model while also achieving substantial 

memory savings. By targeting entire channels for pruning, this approach results in a model 

that is not only smaller and faster but also uses significantly less memory, making it highly 

appropriate for deployment in environments with limited resources. 

Table 8: Impact of Channel Pruning on CrossFormer Model. 

 Parameters Size (MB) FLOPS 

(GFLOPS) 

Score 

Original Model 6.35 M 24.24 0.382 0.0932 

Channel Pruned 

Model 
3.04 M 11.62 0.181 0.0925 

Unstructured Pruning: 

The findings from layer specific pruning in Table 9 highlight the effectiveness of this method in 

maintaining a balance between reducing the computational load and preserving model 

performance. Unlike uniform or unstructured pruning, where a fixed ratio or individual weights 

are pruned across all layers, layer specific pruning allows for more nuanced and strategic 
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reduction of parameters. This is evident in the relatively small performance degradation 

observed even after reducing the model's size and parameter count by more than half. 

By leveraging the Coefficient of Variation (CoV) and other weight statistics to determine layer 

specific pruning ratios, this approach ensures that critical layers are preserved while less 

important ones are pruned more aggressively. The success of this strategy is reflected in the 

high scores, which are only slightly lower than those of the unpruned model. By selectively 

pruning layers based on their importance, this method allows for substantial reductions in 

model size without sacrificing the accuracy needed for effective video quality assessment 

Table 9: Impact of Unstructured Pruning on CrossFormer Model. 

 Parameters Size (MB) FLOPS 

(GFLOPS) 

Score 

Original Model 6.35 M 24.24 0.382 0.0932 

Unstructured 

Pruned Model 
2.98 M 11.37 0.383 0.0962 

Hybrid pruning: 

The results in Table 10 demonstrate the effectiveness of combining Layer specific and Channel 

Pruning as a strategy for optimizing neural networks. This approach allows for a more targeted 

reduction of model complexity by applying different pruning techniques that complement each 

other. The significant reduction in model size, parameter count, and FLOPs, combined with 

the retention of high scores, highlights the potential of this method for creating efficient, high-

performance models. 

Table 10: Impact of Hybrid Pruning on CrossFormer Model. 

 Parameters Size (MB) FLOPS 

(GFLOPS) 

Score 

Original Model 6.35 M 24.24 0.382 0.0932 

Hybrid Pruned 

Model 
1.45 M 5.53 0.181 0.0927 

Key Observations: 

• Channel Pruning reduces model size by ~48% (24.24MB → 11.62MB) and FLOPs by 

~53% (0.382 → 0.181 GFLOPs) while maintaining competitive accuracy (6.526 MAE vs. 

original 6.630). Ideal for edge deployment due to dense weights. 

• Unstructured Pruning achieves ~47% size reduction (24.24MB → 11.37MB) but no 

FLOPs reduction (0.382 GFLOPs retained). Improves MSE (128.03 vs. 132.62) but 

requires sparse-aware hardware for acceleration.  

• Combined Pruning combined with Unstructured Pruning delivers the highest compression 

(78% fewer parameters, ~77% smaller size) and 53% fewer FLOPs, with the best MAE 

(6.517) but slightly worse MSE (139.10). Balances sparsity and FLOPs reduction. 
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5.3.10 Performance of Offering Generation with Optimisation Techniques 

The Offering Generator implements knowledge distillation to address efficiency challenges by 

enabling smaller, more efficient models to learn from the capabilities of much larger teacher 

models. This approach achieves comparable performance with significantly reduced 

computational requirements. A compute-efficient model such as Qwen 2.5-3B serves as the 

smaller student model, trained through knowledge distillation from a larger counterpart. 

To assess performance and efficiency, five optimisation techniques as discussed in Section 

4.3 were applied to both Qwen 2.5-3B and the larger Qwen 2.5-7B variant: 

• Baseline (FP16): Standard 16-bit floating-point precision model 

• 8-bit Quantization: Reduced precision model using 8-bit integers 

• 4-bit Quantization: Further reduced precision using Normalized Float 4 (NF4) format 

• LoRA: Low-Rank Adaptation for parameter-efficient fine-tuning 

• QLoRA: Combination of 4-bit quantization and LoRA for maximum efficiency 

To illustrate the impact of these techniques, comparative results for both model sizes Qwen 

2.5-3B and Qwen 2.5-7B are presented in Table 11 and Table 12, respectively. These results 

allow for analysis of how optimisation effectiveness scales with model size while maintaining 

a consistent architecture. 

5.3.10.1 Memory Efficiency and Parameter Reduction During Training 

The optimisation techniques yielded significant improvements in memory efficiency and 

trainable parameter counts. 8-bit quantization achieved moderate memory reduction (42–45%) 

while maintaining the full parameter count of the baseline model, thereby retaining model 

capacity with lower memory usage. In contrast, 4-bit quantization resulted in dramatic memory 

savings (66–67%) along with a reduction in effective parameter count, making it the most 

compact configuration. LoRA preserved the overall model size but drastically reduced the 

number of trainable parameters to just 0.1–0.2% of the total, allowing for highly efficient fine-

tuning. QLoRA combined the benefits of 4-bit quantization and LoRA, reducing memory usage 

by 46–55% while keeping the number of trainable parameters minimal, offering an optimal 

setup for efficient training. 

5.3.10.2 Model Size Scaling 

The comparison between the 3B and 7B variants revealed key scaling behaviours across all 

optimisation techniques. Memory efficiency remained consistent across model sizes, with 8-

bit and 4-bit quantization achieving similar percentage reductions approximately 42–45% and 

66–67%, respectively. Parameter efficiency improved with scale, as evidenced by LoRA’s 

trainable parameter share dropping from 0.2% in the 3B model to 0.1% in the 7B model, 

highlighting increased relative benefits for larger models. Relative size reductions were also 

stable across both variants, with roughly 7× reduction achieved through 4-bit quantization and 

2× through 8-bit. Importantly, absolute memory savings were greater in the larger model, with 

the 7B configuration saving 9.1 GB using 4-bit quantization compared to 4.0 GB in the 3B 

model. 
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5.3.10.3 Context Curriculum Learning 

To enhance robustness under variable context availability common in real-world deployment 

scenarios a context curriculum learning strategy was applied. Training began with full context 

access and progressively reduced it in successive stages, using context dropout rates of 30%, 

60%, and 90%. This gradual reduction improved the model’s ability to generate structurally 

valid JSON-LD even when context was limited. Notably, the 7B model maintained superior 

structural coherence under high dropout conditions, indicating stronger contextual reasoning 

capabilities despite optimisation 

5.3.10.4 Results 

Selecting appropriate optimisation techniques in this context enables a reduction in 

computational and environmental costs while preserving the semantic richness and structural 

integrity of marketplace offerings. 

 Table 11: Optimisation Results for Qwen 2.5-7B Model. 

Qwen 2.5-7B Model 

Technique Parameters Trainable 

Parameters 

Model Size 

(MB) 

Memory 

Usage (MB) 

Size 

Reduction 

Original Model 6.35 M 24.24 0.382 0.0932 - 

Baseline 7,615,616,512 7,615,616,512 

(100.0%) 

0.382 14,587.4 1.00× 

8-bit 7,615,616,512 1,090,199,040 

(14.3%) 

2,943.0 8,418.3 2.00× 

4-bit 4,352,972,288 1,090,199,040 

(25.0%) 

810.0 5,473.6 7.00× 

LoRA 7,625,709,056 10,092,544 

(0.1%) 

5,900.0 14,625.9 1.00× 

QLoRA 4,363,064,832 10,092,544 

(0.2%) 

3,254.0 7,851.3 1.75× 

Table 12: Optimisation Results for Qwen 2.5-3B Model 

Qwen 2.5-3B Model 

Technique Parameters Trainable 

Parameters 

Model Size 

(MB) 

Memory 

Usage (MB) 

Size 

Reduction 

Baseline 3,085,938,688 3,085,938,688 

(100.0%) 

5,886.0 6,007.1 1.00× 

8-bit 3,085,938,688 311,314,432 

(10.1%) 

2,943.0 3,085,938,688 2.00× 
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Qwen 2.5-3B Model 

Technique Parameters Trainable 

Parameters 

Model Size 

(MB) 

Memory 

Usage (MB) 

Size 

Reduction 

4-bit 1,698,672,640 311,314,432 

(18.3%) 

810.0 2,021.7 7.27× 

LoRA 3,093,311,488 7,372,800 

(0.2%) 

5,900.0 6,035.2 1.00× 

QLoRA 1,706,045,440 7,372,800 

(0.4%) 

3,254.0 2,730.0 1.81x 

5.3.11 Performance of AutoML for data streams 

We use model execution time as a proxy for energy consumption: on a CPU, power usage is 

proportional to the time to finish the task. 

We compare classification algorithms on several classic datasets, both real-world 

(Covertype [131], Electricity [132], Sensors [133]) and synthetic (Banana, LED, RBF, SEA). 

LED, RBF, and SEA also had variations with induced concept drift, both slow and fast. 

We compare the models OnlineSMAC (ours), OnlineSMAC Ens (ours), Automated Streaming 

Machine Learning [134], Auto Class [135], Adaptative Random Forest [136], Streaming 

Random Patches [137], and Leveraging Bagging [138] (respectively abbreviated as OSMAC, 

OSMAC Ens, ASML, AC, ARF, SRP, and LB). OSMAC, ASML, and AC are AutoML models, 

the others are traditional ensemble models. 

We measured the overall accuracy of the models in test-and-train mode and the time they 

needed to process the datasets.  

Figure 52 and Figure 53 report the average of the metrics over the datasets. 
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Figure 52: Average accuracy of the models over the test datasets (note that the Y axis is 

truncated for legibility). Higher is better. 

 

 

Figure 53: Average processing time (in seconds) of the models over the test datasets. Lower is 

better. 

For the accuracy, OSMAC, OSMAC Ens and ASML are equivalent. OSMAC Ens is the best 

by an unsignificant margin. 
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For the processing time, ARF, SRP, and LB are the best-performing models in this order thanks 

to their relative simplicity. ASML and AC are the worst models in this comparison, AC needing 

almost twice as long as OSMAC Ens, and ASML two and a half. 

  

Figure 54: Trade-off between accuracy and processing time. Models on the lower right are 

better. 

Figure 54 shows the trade-off between accuracy and runtime. The models OSMAC and 

OSMAC Ens are on the optimality frontier, together with ARF. 

The ensemble, non-adaptative methods are faster and use less energy, but they have a lower 

overall accuracy. In contrast, ASML is very accurate but also slow. 

5.4 Data storage efficiency analysis  

This section investigates the different method to increase data storage efficiency. The 

experiments and analysis are performed using Stellio, a NGSI-LD broker that store data and 

enable easy interoperability as described in SEDIMARK_3.3 section 6.2.3. 

5.4.1 Current data storage evaluation cost 

In NGSI-LD the data is stored in entities. Each entity contains a list of attributes which can 

have temporal evolution. To know what data is stored on the broker and detect inconsistent 

behaviour we have developed a dashboard that let us follow in real time the number of entity, 

attribute and temporal instances (each temporal instance represents a point in time of an 

attribute) in the broker.  
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Figure 55: Dashboard following the data deployed for Helsinki datasets 

By directly looking at the database storage we have been able to estimate the following storing 

costs  

• an entity: 2500 bytes (1017 entity for a total of 2.5MB) 

• an attribute: 1100 bytes (13258 attributes for a total of 14.6MB) 

• a temporal instance: 650 bytes (749910 instances for a total of 487.4MB) 

Some temporal representations are measured every 15 minutes for multiple consecutive 

years. This explains the huge number of temporal instances present and consequently the fact 

that most of the storage cost is taken by the temporal representation of attributes. Since most 

of the cost of storage is taken by the temporal representation we will focus on optimizing it in 

the next points. 

5.4.2 Increasing data storage efficiency by down sampling 

Down sampling is a technique used to reduce the number of temporal instances by decreasing 

the frequency of recorded values. Since most of the storage cost is due to temporal data, down 

sampling offers a promising solution to significantly reduce the amount of data stored while 

keeping the general trend of the attribute evolution. 

Several strategies can be considered: 

• uniform down sampling: storing one value every n interval (e.g., every hour instead of 

every 15 minutes). 

• aggregation-based down sampling: storing aggregated values such as the average 

over a fixed time window. 
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These strategies allow for a trade-off between data volume and temporal precision. For 

example, reducing the sampling rate from 15 minutes to 1-hour results in a 75% storage gain. 

Aggregation-based down sampling needs some additional calculation but may preserve more 

meaningful statistics. 

In some use cases, fine-grained temporal data is essential and cannot be reduced without 

losing important information. In such cases, down sampling is not applicable. However, when 

high precision is not required, down sampling can lead to significant storage savings by 

reducing the number of stored temporal instances. 

Stellio, as a generic tool, must handle down sampling carefully to avoid unintended effects. 

Introducing configurable down sampling mechanisms at the attribute level could provide 

greater flexibility and efficiency. To ensure this remains fully interoperable, these mechanisms 

should be discussed within the NGSI-LD specification, paving the way for broader adoption 

and consistent implementation. 

5.4.3 Increasing data storage by database compression 

Database compression is another way to reduce storage size without modifying the data itself. 

TimescaleDB, the database used in our setup, offers native compression for time-series data. 

The trade-off is you have to decompressed data before accessing it. This decompression will 

impact the request performance and may cause some errors if the compression is not 

configured perfectly. 

5.4.3.1 Compression data storage reduction 

We experimented with the compression mechanism included in TimescaleDB, the tool that we 

use for time-series data. One of the challenges of compression is to find good configuration. 

For example, the first experiments gave a bigger data size after compression. 

 

Figure 56: Compression result segmented by id 

After further investigation we found the segment by parameter that described how the elements 

are grouped in the compression. A good practice is to find a parameter that is a natural way of 

separating the table data. We tried segmenting the table by attribute and found way better 

results. With a reduced size of 68% for 12000 data points and 82% for a million datapoints. 

 

 

Figure 57: Compression result segmented by attribute 
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5.4.3.2 Impact on request performances 

Another important configuration is the interval after which data is compressed. Since recent 

data is the most likely to be accessed and modified, setting a compression interval of one 

month ensures that requests targeting recent data remain unaffected. 

For requests targeting data outside of this interval, compression can have a performance 

impact. The observed results are as follows: 

Consumption Requests: 

We observed an average performance degradation of 13–20 ms, corresponding to a 3% 

slowdown for long-running queries and up to 15% for very fast requests. 

Table 13: Compression performance impact on consumption request.  

Requests Iterations Duration All tests Avg. Resp. 

Request1  (Long)   

Not compressed 

500 9m 16s 0 1036 ms 

Request1 (Long)   

Not compressed 

500 9m 22s 0 1051 ms 

Request2 (Small)  

Not compressed 

100 26s 342ms 0 201 ms 

Request2 (Small)  

Not compressed 

100 28s 452ms 0 214 ms 

Modification Requests: 

The performance impact is more pronounced for modification operations, with delays of up to 

1.2 seconds. This is due to the need to decompress and recompress the entire chunk of data 

affected by the modification. In our tests, the experimental setup created an unusually large 

chunk (over one million columns), which do not reflect typical real-world scenarios. 

Fortunately, chunk size is configurable, and by splitting the chunk we were able to reduce the 

impact to 0.2 seconds. Further reductions in chunk size could yield even better performance. 

However, it's important to note that smaller chunk sizes decrease compression efficiency, 

resulting in less effective storage savings. Therefore, a careful trade-off between query 

performance and storage optimization must be considered. 

Table 14: Compression performance impact on modification request. 

Requests Iterations Duration All tests Avg. Resp. 

Not compressed 500 1m 0 23 ms 

Compressed 500 11m 24s 0 1276 ms 

Compressed with reduced 

chunk 

100 2m 50s 0 238 ms 
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6 Conclusions  
One of the main goals of SEDIMARK is to provide easy to use tools for developers to 

understand their datasets, process them and improve their quality before sharing them to the 

marketplace, aiming to increase their value. As described in this series of documents, 

SEDIMARK made significant steps towards the twin aims of improving data quality while 

managing trade-offs with energy efficiency and environmental impact.  

In Section 3, the current work on the SEDIMARK data pipeline was outlined, showing how a 

set of data quality metrics has been implemented, alongside a number of data cleaning tools 

and modules for orchestrating the pipeline and visualising its results. Work on implementing 

the data pipeline has concluded successfully, with modules for data profiling, data cleaning 

(anomaly detection, missing value imputation, deduplication), and data orchestration, as well 

as data augmentation (data synthesis) and feature engineering (dimension reduction and 

feature selection).  

These modules were carefully designed and implemented based on the requirements 

elicitation process of the SEDIMARK WP2, aiming to address the most important functionalities 

that data providers need for assessing and improving the quality of their data, before these are 

shared through the marketplace. The data quality pipeline as developed by SEDIMARK 

balances efficiency and user friendliness and caters for users of different technical expertise. 

Advanced users can exploit the maximum capabilities of the pipeline and its modules, 

configuring themselves all the parameters of the models and designing new models using the 

modules through the command line interface. However, novice users can benefit from 

SEDIMARK’s user interface through Mage.ai, where with minimum user intervention they can 

take advantage of the full set of the SEDIMARK pipeline tools, being able to just set the 

modules they want to execute and using default parameters. The SEDIMARK pipeline modules 

are open sourced and uploaded on GitHub. This was agreed by the partners aiming to allow 

the research community to improve and extend the modules and maximise impact. 

In Section 4, the work for reducing the environmental impact of the data processing and AI 

tools of SEDIMARK was outlined, with approaches discussed for carbon friendly model 

training, inference, as well as reducing the impact of data sharing, communication and data 

storage. These approaches included dimension reduction, data distillation and coreset 

selection for reducing the model training cost. Quantisation, model pruning, model distillation 

and low rank factorization have also been investigated for further optimising machine learning 

models. Furthermore, it was analysed that there are viable methods for optimising 

communication cost, as well as that of data sharing and storage.  

In the final section, an extended number of experiments showed the trade-offs between 

accuracy and environmental cost that are implicit in naively running the tools in the SEDIMARK 

toolbox. These experiments emphasised that often the results can be counter intuitive, for 

instance with full communication federated learning being more carbon efficient than low 

communication, or worse performance coming from highly parameterised anomaly detection 

algorithms. Additionally, it was shown that with Fleviden’s compression and quantisation 

algorithms, the communication cost of distributed learning can be decreased significantly, 

without a major impact on performance. Energy consumption can also be decreased in other 

modules of the data processing pipeline using respective methods and parameters. For 

example, in the deduplication module, by using different indexing methods the energy 

consumption can be reduced significantly without an effect on precision. Similarly, in the 
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anomaly detection module, the type of algorithm selected for detection can have a severe 

effect on energy consumption, with some algorithms being very resource heavy without having 

any benefit in terms of performance. Users of the module can then select themselves which 

algorithm they want to use based on their target objectives. Regarding synthetic data 

generation, it was shown that there is a trade-off between energy consumption in terms of 

computation and how close to the real data the synthetic ones are.  

Techniques for minimising energy consumption in model training were also shown to have 

good results. For example, with low rank factorisation, data distillation and coreset selection 

methods, the computation cost of model training can be significantly reduced, without changing 

too much the model performance. In time series forecasting it was shown that model size and 

FLOPS can be reduced almost by half with a minimum reduction in performance. For 

techniques for offering generation, a reduction in computational and environmental cost can 

be achieved while preserving the semantic richness and structural integrity of marketplace 

offerings. It was also shown how AutoML can provide assistance to users to select models 

with high performance. As such, SEDIMARK should emphasise the need for user guidance, 

and automation, in their use of the pipeline. 

To this end one conclusion is that SEDIMARK has managed to provide a set of tools that work 

together to automate the data cleaning process, while emphasising energy efficiency in the 

choices that it makes. SEDIMARK’s toolbox is adaptive and user friendly, catering for the 

diverse types of users that span from novice (using the user-friendly UIs) to experts (using 

command line configurations). Both carbon and human hours are rapidly expended via naïve 

approaches to data cleaning, with results that might still be suboptimal. Thus, going forward, 

a key aim of the final step of the integration work in WP5 is to further automate the pipeline, 

so as to reduce both the human and energy costs associated with it. 
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