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Executive Summary

Data quality is of the highest importance for companies to improve their decision-making
systems and the efficiency of their products. In this current data-driven era, it is important to
understand the effect that “dirty” or low-quality data can have on a business. Manual data
cleaning is the common way to process data, accounting for more than 50% of the time of
knowledge workers. SEDIMARK acknowledges the importance of data quality for both sharing
and using data to extract knowledge and information for decision-making processes. Thus,
one of the main goals of SEDIMARK is to develop a data processing pipeline that assesses
and improves the quality of data generated and shared by the SEDIMARK data providers.

This deliverable presents the final version of the methods and techniques developed within
SEDIMARK for processing data and improving their quality, extending the first version which
was delivered in SEDIMARK Deliverable D3.1 [74]. The focus in this deliverable is to present
the final version of the key techniques that are used for quality improvement of datasets, based
on the requirements of the SEDIMARK platform so that they all work together smoothly.

SEDIMARK considers two main types of data generated and shared within the marketplace:
(i) static/offline datasets and (ii) dynamic/streaming datasets. The project acknowledges that it
is important to cater to both types of datasets equally, thus in most scenarios, separate and
customised versions of the tools have been developed for static and streaming datasets.
Techniques for outlier detection, noise removal, deduplication and imputation of missing values
are important for improving the quality of datasets. These techniques aim to remove abnormal
values or noise from the dataset, remove duplicate values or fill out gaps in some entries or
add complete entries. Techniques for feature engineering such as feature extraction and
selection have also been developed to enrich the datasets. Synthetic dataset creation is
important in scenarios where data providers don’t want to share their real datasets (i.e. for
privacy reasons) but want to share synthetic versions that mimic the real ones.

This deliverable also presents the framework to orchestrate the whole functionality of the data
processing pipeline using a Data Processing Orchestration. This component enables end
users to interact with the built-in data processing solutions through a simplified dashboard
interface. This deliverable also presents the final version of the key quality metrics that
SEDIMARK has defined for assessing the quality of datasets, both per data point and as a
whole, as well as the key techniques for dataset quality improvement, designed to meet
SEDIMARK platform requirements and ensure seamless integration.

Another important part is the description of techniques towards reducing the energy
consumption of the components of the data processing pipeline and optimizing data efficiency,
i.e. using techniques for data distillation, coreset selection and dimension reduction. Minimising
the communication cost in distributed machine learning scenarios is also important for
SEDIMARK, because communication can increase energy consumption. Techniques to
optimise the Artificial Intelligence (Al) models both during training and inference are also
presented, focusing on quantisation, pruning, low rank factorisation and knowledge distillation.

Finally, considering that minimising energy consumption can influence performance or
communication, the deliverable presents the final analysis on these trade-offs, aiming to
provide insights to data providers on how to better configure the pipeline or what models they
should select in order to achieve their targets (energy efficiency/performance/communication).
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1 Introduction

This document is the final deliverable from WP3 Tasks 3.1 and 3.5, aiming to provide the final
draft of the SEDIMARK data quality pipeline. This document details how the pipeline was built
to improve the quality of datasets shared through the marketplace while also addressing the
problem of energy efficiency in the data value chain. This document builds on the technologies
described in SEDIMARK Deliverable D3.1 showing the final ideas and implementations of the
respective tools and techniques for improving data quality and energy efficiency.

The main goal of this document is to discuss how data quality is seen in SEDIMARK, what are
the metrics defined in order to assess the quality of data that are generated by data providers,
and what techniques are provided to them for improving the quality of their data before sharing
them on the data marketplace. This helps the data providers to both optimise their decision-
making systems for the Machine Learning (ML) models they train using their datasets, and to
increase their revenues by selling datasets of higher quality and thus higher value. Regarding
the first argument, it is well documented that low-quality data has a significant impact on
business, with reports showing a yearly cost of around $3 Trillion, and that knowledge workers
waste 50% of their time searching for and correcting dirty data [1]. It is evident that data
providers will hugely benefit from automated tools to help them improve their data quality,
either without any human involvement or with minimum human intervention and configuration.

This document presents high-level descriptions of the concepts and tools developed for the
data quality pipeline and the energy efficiency methods for reducing its environmental cost, as
well as concrete technical details about the implementation of those tools. Thus, it can be
considered that this is both a high-level and a technical document, thus targeting a wide
audience. Primarily, the document targets the SEDIMARK consortium, discussing the technical
implementations, so that the integration activities of the project can easily integrate of all the
components into a single SEDIMARK platform. Apart from that, this document also targets the
scientific and research community, since it presents new ideas about data quality and how the
developed tools can help researchers and scientists improve the quality of the data they use
in their research or applications. Similarly, the industrial community can leverage the project
tools to improve the quality of their datasets or also assess how they can exploit the results
about energy efficiency to reduce the energy consumption of their data processing pipelines.
Moreover, EU initiatives and other research projects should consider the contents of the
deliverable in order to derive common concepts about data quality and reducing energy
consumption in data pipelines.

This deliverable is an extension of SEDIMARK Deliverable D3.1 and presents the results of
work done in the last 19 months of the project in Task 3.1 (Al based tools for data quality
management) and Task 3.5 (energy optimisation of data management techniques).
Additionally, this deliverable is also based on the work done in WP2, especially in Task 2.2
related to the definition of the functional and non-functional requirements for the areas of
interest of this deliverable (presented in deliverable SEDIMARK D2.1 [2]), in Task 2.3
regarding the system functional architecture and the functional components related with data
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quality and energy efficiency, as well as in Task 2.4 regarding the initial draft of the interfaces
between the system components (presented in SEDIMARK _D2.2 [3] and SEDIMARK D2.3
[4]). The architecture and interfaces are of major importance for the work presented in this
deliverable, as they lay the foundations for the work in the tasks that provide their output to this
deliverable. The output of the work presented in this deliverable will also be used for the overall
system testing and validation (in WP5). Figure 1 shows the interaction of the activities within
WP3 and the relation with the rest of the work packages.

WP3
Distributed data quality management and interoperability

WP2
Requirements and
Architecture

Task 3.1

Al based tools for data quality mgt

D3.1

Energy efficient Al toolset for
improving data quality (v1

Task 3.2
Metadata mgt and semantic
wp4 E ff Ds.fl Iset fi mtmTimv
. nergy efficient Al toolset for
Decentralised ; i i Task 3.3
Marketplace Smart distributed data storage
D3.3
Tools for interoperability, data
istri Task 3.4
Distributed Al, analytics, smart
WP5 i
Integration, testing T : D3.4 "
ools for interoperability, data
and evaluation istri Task 3.5
Energy optimization of data mgt
techniques

Figure 1: Relationship between SEDIMARK_D3.1 and other deliverables, tasks, and
workpackages.

1.3 Structure of the document

This document is structured into 6 major chapters:
Chapter 1 is the current chapter and presents the introduction to the overall document.
Chapter 2 presents the positioning of the deliverable within the overall project.

Chapter 3 presents the main work done within Task 3.1 and is related to tools and techniques
for assessing and improving the quality of data assets.

Chapter 4 presents work done within Task 3.5 and is related to the design and development
of techniques to reduce energy consumption and improve energy efficiency of tools used within
the data quality pipeline or the Al pipeline of SEDIMARK.

Chapter 5 presents work done within Task 3.5 and is related to the assessment of trade-offs
between energy consumption, ML model accuracy and efficiency, and communication cost.
The included results aim to help data providers and researchers understand the gains/losses
when choosing to optimise for energy consumption or accuracy.

Chapter 6 presents the conclusions of the document, discussing the major outcomes and
conclusions of the work.
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1.4 Glossary adopted in this document

The readers are referred to SEDIMARK _D2.3 which provides a complete final list of the
terminology used within SEDIMARK.
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2 Position within the project

This deliverable presents the final draft of the work in Tasks 3.1 and 3.5. The work in these
tasks concerns two of the main pillars of the SEDIMARK project, since these tasks focus on
developing tools that will enhance the quality of the datasets to be shared within the project,
whilst also ensuring that the SEDIMARK tools will be energy efficient, giving also options to
data providers to understand how they can tune the models and the tools in order to optimise
either for energy efficiency or for accuracy and performance.

Figure 2 presents the SEDIMARK functional architecture that was described in deliverable
SEDIMARK _D2.2 in detail. The functional components that are part of this deliverable are
highlighted in orange. As is evident, these are part of the Data and Intelligence layers of
SEDIMARK. More details about these components and their mapping to deliverable sections
are given below:

this is described in section 3.3, where the framework
for orchestrating the whole data quality pipeline is presented.

: this is described in section 3.4, where the dashboard that will
be provided to the users for managing their datasets and accessing the various data
processing tools is presented.

: this is described in section 3.4, where the roadmap for the design of
his module and its integration with Data Processing Orchestration and Pipeline
Orchestrator Ul is described.

: this component handles the assessment of the data quality and
is described in section 3.5, including the metrics that were defined within SEDIMARK for
assessing the quality of datasets.

: this is described in section 3.6 and provides general information and
statistics about a dataset that is managed by the data processing pipeline.

this is a suite of components that process the datasets and aim to improve
their quality. It is described in section 3.7, where more details about the mechanisms for
outlier detection, noise removal, deduplication, missing value imputation, etc. are
provided.

: this is described in section 3.8, discussing what tools SEDIMARK
provides currently for generating synthetic data and how these can be used for removing
bias and improving fairness in datasets.

this is described in section 3.9, where the methods for extracting
valuable features from datasets are discussed, aiming to improve the usefulness of
datasets when used for training Al models.

: this component is described in sections 4.2 and 4.3, discussing various
techniques to reduce energy consumption of ML models both during training.

this component is described in section 4.3, discussing techniques
to optimise the ML models after they are trained, aiming to reduce energy consumption.

this component is actually a suite of techniques that help improve the
energy efficiency of the tools and models of the SEDIMARK toolbox. The components
and methods included in this suite are described in Section 4, while in Section 5 there is
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an initial assessment of the trade-offs between energy efficiency and performance
providing insights on how the methods can be tuned for either criterion. Some specific
components and analysis that are focused on energy efficiency are given in sections 4.4,
4.5, and 4.6.

SEDIMARK high level functional architecture
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As discussed in the introduction section, this is the final version of the deliverable describing
the methods and tools developed within SEDIMARK related to data processing and energy
efficiency. As presented in deliverable SEDIMARK _D2.3 [4], these tools are part of the Data
Processing Pipeline, which is part of the SEDIMARK toolbox. The developed tools will become
public at the end of the project as part of the SEDIMARK’s GitHub page [73], considering that
most of them will be open sourced. In detail, currently there are implementations of:

and , implemented as
wrapper and abstraction layer of the Python based Mage.ai.

Data Profiling and Data Quality Evaluation, implemented using Python.

, implemented using python and building on libraries such as PyOD,
tods, pythresh, pandas, scikit-learn, and river.

, implemented using python and building on libraries such as recordlinkage
and dedupe.
, implemented using python and building on libraries such as
hyperimpute, river and scikit-learn.

, implemented using python and building on libraries such as
pandas, scipy, pymmh3 and numpy,
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e Data augmentation, implemented using python and libraries such as ydata-synthetic.

o Model Optimisation, implemented using python and building on techniques for
quantisation.

e Frugal Al, not implemented as a standalone component, but currently being an analysis
of techniques that can be used to maximise the energy efficiency of Al model training and
inference.

The table below shows the links for accessing the implemented modules described in this
deliverable:

Table 1: GitHub links for the implemented modules

Data Processing 3.3 |/Sedimark/MageAPI,

Orchestrator /Sedimark/mage

Data Processing 3.4 |/Sedimark/Sedimark-Orchestration-Ul
Dashboard

Data Visualisation 3.4 |/Sedimark/Sedimark-Orchestration-Ul
Data Profiling 3.6 |/Sedimark/sedimark dgp

Data quality 3.6 |/Sedimark/sedimark dagp

evaluation /Sedimark/UC_modules

Outlier detection 3.7.1.1 |/Sedimark/sedimark dagp

3.7.1.2 |/Sedimark/UC modules

Noise cancellation 3.7.2 |/Sedimark/noise cancellation
Deduplication 3.7.3 |/Sedimark/sedimark dgp
Missing Value 3.7.4 |/Sedimark/sedimark dqgp
Imputation

Feature Engineering| 3.9 |/Sedimark/SEDIMARK DPP/tree/main/feature engineering

Data augmentation 3.8 |/Sedimark/sedimark dagp

Quantisation 4.3.2 |/Sedimark/Crossformer
(centralised)

Pruning 4.3.3 |/Sedimark/Prune
Knowledge 4.3.4 |/Sedimark/offering-generator
distillation

Low-rank 4.3.5 |/Sedimark/Recommender
factorisation

Reducing energy in 4.5 |/Sedimark/broker
data storage
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3 Data Processing Pipeline

A key obijective in the development of SEDIMARK is to promote the sharing of high quality,
curated data within its marketplace. The huge quantities of data made available by the spread
of commercial internet technologies are widely acknowledged to be at the root of the explosion
of interest in machine learning. At the same time, effectively dealing with this data presents a
huge challenge, especially when much of it is of low or only medium quality. A growing trend
in both industry and research has sought to give data collection and curation a central role
within the development of Al systems, with many championing Data-centric rather than Model-
centric Al [11]. This originates not only with observations that improving raw data quality can
often be more effective than iterating on model architectures but also that the data itself can
often be the root cause of many ethical concerns in the development of Al models [10]. As
such, emerging approaches to ML and data science support putting the curation of high-quality
datasets first and foremost within the data science workflow. Although a vast number of tools
and methodologies exist for improving data quality, the notion of data quality is itself quite
qualitative, and domain dependent, and often little can be done without the involvement of a
large amount of expert human labour. In the work of data scientists alone, tasks such as outlier
detection (OD), data deduplication and missing value imputation are widely acknowledged to
take up to 50% of their time [1],[7],[8].

A key aim of SEDIMARK is to minimise the human effort needed to improve the quality of data
within its marketplace, thus increasing the data’s intrinsic value, and attracting a wider base of
both data consumers and providers. As such, it includes a wide array of data cleaning tools
that can be integrated as part of the data publishing workflow. In its current iteration,
SEDIMARK includes tools for outlier detection, deduplication, missing value imputation, and
noise removal from time series. SEDIMARK however recognises that the use of these tools
could effectively prove a barrier to adoption by data providers, if they require excessive human
effort to adapt them to new datasets. As such, a key challenge in the development of
SEDIMARK concerns reducing the amount of human involvement required by the data
cleaning process. As such, SEDIMARK has explored applying Automated Machine Learning
(AutoML) techniques to the individual components of the pipeline. In two of the key data
cleaning components, there are emerging technologies for automating the process of model
selection and repair, which are discussed below. In addition, some AutoML or meta-learning
techniques could in principle be used as a method for optimising the overall data pipeline as a
whole, though this may not be feasible within the scope of the project. This is discussed in
section 3.10.

Figure 3 shows the overview of the data processing pipeline within SEDIMARK and the
interactions between the different components. As is shown, the user interacts with the pipeline
through the Data Processing Dashboard, choosing the data to be analysed/curated, the
processing steps and the functions that will be run, as well as the configuration of the various
functions, i.e. with respect to the models that will run and the hyperparameters for each model.
Then, the Data Processing Dashboard forwards all this information to the Data Processing
Orchestration component, which manages the operation of the whole pipeline. The
orchestration component takes the configuration file (set by the user) as an input and creates
the flow of modules that need to be executed (sequentially or in parallel) in order to process

Document name:|D3.2 Energy efficient Al-based toolset for improving data quality. Page: 22 0f 118

Reference: SEDIMARK_D3.2 |Dissemination: PU Version: | 1.0 | Status: Final



the data, i.e. to format the data, to do the profiling and extract statistics, to curate and assess
the quality of the data, to validate the data, extract features and annotate them to convert them
to the external data format. More details about these steps (apart from data validation and
annotation which are part of SEDIMARK_D3.3 [5]) are given in the below subsections.
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The rest of Section 3 is structured mostly according to the order of the steps of the data
processing pipeline, shown in Figure 3: section 3.2 discusses in general how SEDIMARK deals
with both static and streaming datasets; sections 3.3 and 3.4 present the overlay data
processing orchestrator and the dashboard; section 3.5 is an entry section discussing the
metrics defined within SEDIMARK for evaluating the data quality; section 3.6 presents the tool
developed for data profiling and data quality evaluation; section 3.7 presents the data curation
techniques; section 3.8 presents the data augmentation techniques; section 3.9 presents the
techniques for extracting meaningful features from the datasets; section 3.10 presents a high
level view on how SEDIMARK wants to exploit automatic ML (AutoML) techniques for the data
processing pipeline.

Data
formatting

Error/outlier
detection

Noise removal

Missing value

Data provisioned by providers or artificially generated within SEDIMARK could be either static
(dataset) or dynamic (data stream). A dataset is defined as a finite set of data instances that
can be stored in memory and analysed while accessing the data several times. Static datasets
are typically well-defined and can be accessed, queried, and analysed as many times as
needed. Offline processing involves working with static datasets that have already been
collected and stored. These datasets typically do not change during the analysis. They are
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ideal for scenarios where one does not need real-time insights. Examples include historical
data analysis, comprehensive reports, and machine learning model training.

On the other hand, a data stream is defined as an unbounded sequence of multidimensional,
sporadic, and transient instances that are generated over time. Data streams are characterised
by their dynamic and evolving nature. They are crucial for scenarios requiring immediate action
or analysis, such as fraud detection, real-time analytics, and monitoring systems that treat
critical tasks.

So, one major difference between these data types is that a dataset can be stored in its entirety
in memory to serve for analytics at any time while for a data stream, data points arrive one by
one incrementally and are not available at once which requires adapted analytics methods for
such a setting.

If the data are generated as a stream, they require immediate action, while for batched,
historical, or less time-sensitive data, offline processing is more suitable. For businesses that
require real-time insights (e.g., stock trading platforms), streaming is essential. In contrast,
businesses focusing on mid and long-term strategies might rely more on offline processing.
From the technical point of view, data streaming demands a more sophisticated infrastructure
and real-time data processing capabilities, whereas offline processing can be more
manageable with conventional data analysis tools and a more affordable budget.

For batch dataset processing, traditional machine learning algorithms are needed, and several
ones have been proposed in the state-of-the-art that can be easily added to the SEDIMARK
Al pipeline. On the other hand, the infinite nature of data streams presents certain technical
and practical constraints that render conventional static algorithms ineffective due to, among
other things, their high consumption of resources, including time and memory. Therefore, to
process data streams, data stream mining algorithms adapted to handle such data generated
in real time need to be used.

Processing data streams presents some specific challenges that are presented as follows:

: Unlike processing static datasets, it is no longer possible to analyse data
using several passes during the course of computation because of its unbounded nature.
Taking into account this constraint, algorithms work by processing each instance from the
stream only once (or a couple of times) and use it to update the model — or the statistical
information about data — incrementally (instance-incremental algorithms). In the case of
batch-incremental algorithms, a batch (chunk or window) of instances is processed at
once instead of only one instance.

: An online algorithm must process the incoming data points as rapidly as
possible. Otherwise, the algorithm will not be efficient enough for applications where rapid
processing is required.

: Because of the massive amounts of data streams that require a limitless
memory to be processed and stored, it is difficult and sometimes even impossible to store
the entire stream in memory. So, any stream algorithm must be able to operate under
restricted memory constraints by storing a few synopses of the processed data and the
current model(s).

In some scenarios, streaming data may be high-dimensional, for
example, text documents, where distances between instances grow exponentially due to

Document name:|D3.2 Energy efficient Al-based toolset for improving data quality. Page: 240f 118

Reference: SEDIMARK_D3.2 |Dissemination: PU Version: | 1.0 | Status: Final



R

SEpIMARK

the curse of dimensionality. The latter can potentially impact any algorithm’s performance,
mainly, in terms of time and memory.

Concept drift is a common challenge in data streams, as the data
distribution can change over time. Data stream mining algorithms must adapt to these
changes dynamically.

The aforementioned challenges frequently arise in different data stream mining tasks. In this
context, incremental data stream approaches have been developed and will be extended and
used within SEDIMARK to address these requirements. To cope with the single-pass
requirement, incremental data stream mining algorithms that potentially handle concept drift
by being coupled with drift detection mechanisms need to be used. The SEDIMARK Al pipeline
features a dimension reduction component as a pre-processing step which will address the
curse of dimensionality and thus contribute to the reduction of the resource usage (e.g.,
memory and time) of the adopted ML algorithms.

SEDIMARK focuses on ensuring high-quality data through tools for cleaning and curation,
catering to both offline and streaming datasets. Considering the requirements defined in
SEDIMARK_D2.1, SEDIMARK needs to identify and manage problematic records, balancing
data integrity with its size. The SEDIMARK data processing pipeline has the flexibility to
process both static and real-time streaming data with attention to latency and efficiency. For
that, a modular and user-customizable data curation pipeline has been developed, balancing
expert needs with simplicity for non-technical users. More information is given in the sections
below.

This section outlines a multi-stage data processing architecture, namely the Data Processing
Orchestration (DPO) designed to manage the flow, transformation and storage of data across
various system components.

The DPO process starts with the Data Provider, representing users who will utilize the
SEDIMARK Toolbox to produce assets, ranging from datasets to models, and publish them on
the SEDIMARK marketplace for other users to discover and use.

To better align data processing pipelines with the specific needs of the provider, pipelines are
defined and executed through the Orchestrator Ul, described in detail in section 3.4. Once
defined, pipelines can be triggered using multiple methods: manually by the user or
automatically at specified time intervals. This flexibility is particularly useful when new data
entries are created periodically and require immediate processing.

The DPO execution process preparation steps for ensuring a smooth and efficient data
processing orchestration are detailed as follows:
The data provider defines a data processing pipeline using the
Orchestrator Ul or programmatically through the API. Once configured, the pipeline is
submitted to the orchestrator engine.

The orchestrator triggers the pipeline based on the defined method,
which can be instant, periodic, or event-driven.

Document name:|D3.2 Energy efficient Al-based toolset for improving data quality. Page: 250f 118

Reference: SEDIMARK_D3.2 |Dissemination: PU Version: | 1.0 | Status: Final



zﬂaé! 4

SEpIMARK

Typically, the first step of a pipeline involves data retrieval through a
preconfigured data source defined during the pipeline definition step.

The retrieved data is extracted from its original format and a
preprocessing step is applied over the raw dataset. This step can produce intermediate
artefacts required by subsequent processes.

The pipeline execution proceeds with the application of data
processing techniques if they are described in the pipeline definition.

The resulting data asset is pushed to the NGSI-LD Broker and the
Offering Sharing component, enabling its exchange and availability to Data Consumers.

While the steps described previously primarily target streaming datasets, a similar process can
be adapted for static datasets as well.

As previously outlined, the DPO execution process follows a well-defined sequence, ranging
from pipeline definition and triggering to data retrieval, processing, and final output delivery. At
the core of the DPO framework is Mage Al [52] which plays a major role in supporting this
orchestration. Mage Al is a robust platform that streamlines data preparation and
transformation workflows. It automates essential tasks such as data cleaning, transformation
and feature engineering using machine learning techniques. Additionally, Mage Al offers a
user-friendly interface that enables both technical and non-technical users by reducing code
complexity and simplifying data handling operations. Furthermore, it provides flexible
integration capabilities with various data sources and machine learning tools. This flexibility is
further reflected in its modular approach to data processing, which divides tasks into distinct,
customizable modules, enhancing both the efficiency and adaptability of the data preparation
process.

An example of such a processing pipeline visualized in the Mage.ai Ul is presented in Figure
4. The pipeline facilitates the loading, processing, and prediction of SEDIMARK data, using
different loaders based on the format of the input (raw) data and converting them to the internal
SEDIMARK format. Moreover, Figure 4 displays two types of data loaders: one using CSV and
the other using NGSI-LD.

# Download new version 8.9.43 17 origin/mage desc v “ Live hel

Zoomin  Zoomout Reset 1.00
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To ensure a common data format within the marketplace and fulfil interoperability
requirements, the NGSI-LD context broker serves as the primary method for data export. It
saves data with contextual metadata specific to the marketplace, thus simplifying data sharing
between users.

Another view of the Mage Al Ul illustrates how a simple flow for dataset analysis can be
configured, leveraging Mage Al’s capabilities for streamlined data handling (Figure 5). Starting
with the data loading phase, the pipeline retrieves the data (i.e., weather information such as
temperature forecasts) from an NGSI-LD Context Broker, specifically the Stellio context broker
[12]. This data is then processed and formatted, preparing it for the subsequent stages of the
pipeline, which can include data prediction or any of the modules in the data processing
pipeline, such as anomaly detection, deduplication, or value imputation. Mage.ai uses a unified
method to launch all underlying components.

Finally, the pipeline concludes with the data export stage, where the results are integrated
back into the original dataset (depending on user preferences). There is also the option to
export this enriched dataset back to the NGSI-LD context broker, closing the loop in the data
processing cycle.

# Download new version 0.9.43 1+ orig

To streamline development and promote reuse across different scenarios, dedicated pipeline
templates have been developed for each project, pilot, and use case. These predefined
pipelines form the foundation of the SEDIMARK Toolbox templates, offering users a set of
ready-made configurations to kickstart their own data processing workflows.

By providing consistent structures and reducing the need for repetitive setup, these templates
help accelerate deployment while ensuring alignment with common data standards. Figure 6
showcases a selection of these templates, which are further described as follows:

An anomaly detection pipeline template that retrieves dataset
assets from the SEDIMARK Marketplace via the NGSI-LD Context Broker and applies a
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custom-built AnomalyDetectionModule to identify and annotate anomalous data points.
This pipeline template was validated in the EGM pilot's weather dataset use case.

A machine learning pipeline template that integrates LightGBM with
MLflow for model training, storage, and inference. LightGBM is a fast, open-source
gradient boosting framework known for its high efficiency, scalability, and accuracy,
particularly on large tabular datasets. This pipeline template was evaluated in the EGM
pilot's water flow use case, where it trained on historical sensor data to forecast future
values.

A utility pipeline template that facilitates the import and
export of assets to and from the NGSI-LD Context Broker, enabling seamless integration
with the SEDIMARK Marketplace for standardized asset sharing and interoperability.

A utility pipeline template is available that facilitates the use of the
deFLight SEDIMARK Marketplace asset service, which can be configured to operate
either as a server or a client in a federated learning setup. deFLight is a SEDIMARK tool
for decentralised machine learning described in SEDIMARK _D3.3 [5].

Additionally, the Orchestrator features a pipeline-builder interface that allows users to
assemble custom pipelines from predefined template blocks. When further customization is
needed, users can even generate new blocks dynamically by leveraging large language
models, enabling Al-assisted code generation and supporting a low-code or no-code
development approach, as detailed in the next section. Some of the pre-built template blocks
are illustrated in Figure 7 and can be categorized as follows:

Usually, the starting point of a pipeline, data loader blocks are used to
load various types of resources, ranging from files and databases to services. These
resources serve as the main input for the transformer blocks, some examples of such
blocks are PostgresSQL Loader, NGSI-LD Loader and deFLight.

These blocks apply transformations to the input data, such as cleaning,
normalization, enrichment, or feature engineering. They act as intermediate steps in the
pipeline, modifying and preparing the data for subsequent processing or analysis. Some
examples of blocks include Normalization, Standard Scaling and Support Vector
Classifier.

Positioned at the end of the pipeline, data exporters handle the output
of the transformed data, saving it to a target destination such as a file, database, or
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external service. Some examples of data exporter blocks are MLFlow Saver, NGSI-LD
Exporter and Minio Exporter.

The Orchestrator Ul is designed as a user-friendly platform accessible to both technical and
non-technical users. It enables users to create, execute, and monitor complex Al workflows
with ease. To support this, the dashboard is built to emphasizes accessibility with a clean
layout that organizes related information using colour coding and icons for quick identification.

The interface includes a suite of tools designed to provide detailed insights into pipeline
metrics, helping users effectively monitor performance. The Orchestrator Ul is tightly integrated
with a Mage.ai client, which manages all pipelines and provides access to predefined
templates. Both the Orchestrator and Mage.ai will be deployed as part of the SEDIMARK
toolbox, and the templates are stored inside Mage.ai. The Mage.ai client URL is specified in
the deployment configuration.

The platform enables users to create new pipelines either from predefined templates or by
assembling them from blocks—these can be predefined or custom-generated. Additionally,
users can load existing pipelines as needed.

The pipeline loading process is done using the Pipelines menu, which renders the new pipeline
in a dedicated tab, as depicted in Figure 8. The platform supports multiple instances of the
same pipeline running in parallel, enhancing workflow efficiency. Moreover, for each rendered
pipeline, users can access logs at the block level and across all pipelines runs, along with
hardware-related performance metrics.

Customization of pipelines is facilitated by setting variables on each block in Magei.ai, with
values inputted upon execution of the pipeline.
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Another feature of the Pipeline Orchestrator Ul is the Pipeline Creator, interface illustrated in
Figure 9, which enables users to build custom pipelines using predefined block templates
stored in Mage.ai, while also offering the ability to create custom blocks using an integrated
block generator function. This function allows users to provide a prompt, resulting in a custom

block that can be used immediately in the Orchestrator Ul or saved for future use and
modifications within Mage.ai.
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The Pipeline Orchestrator also includes support for two federated learning services: Fleviden
and deFLight, described in detail in section 5.2. These allow users to either offer a federated
learning asset or utilize one they have previously purchased. Assets can be managed through
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dedicated menus, where users can view existing assets as illustrated in Figure 10, or create
new ones directly from the interface.

Asset Manager

Figure 10: Asset Manager Interface.

3.5 Data quality metrics

As previously stated, improved data quality is of utmost importance to SEDIMARK, allowing
both for data providers to increase their revenue, and for the training of improved ML models
There has been a lot of research into data quality metrics and tools, which has resulted in four
main data quality “dimensions” that basically look at the structure of the dataset, without going
into much detail on the usability of the dataset for some specific purpose. SEDIMARK
acknowledges that most of the datasets that will be generated, processed and shared will be
mostly used for machine learning purposes. Data providers can use their datasets to gain
knowledge from them, extract predictions or use them to guide their decision-making
processes, while consumers can use the datasets i.e. for research purposes.

The four main data quality dimensions considered in the literature [9],[13] are accuracy,
completeness, consistency and timeliness. However, SEDIMARK extends the data quality
dimensions and defines more detailed and ML-related data quality metrics, to give (i) data
providers more insights into their datasets and (ii) researchers and data consumers more in-
depth information regarding how useful the datasets might be for them. Considering that
SEDIMARK assumes two different types of datasets, data quality metrics can be split into two
categories: (i) metrics per data point, useful for data streaming datasets and (ii) overall dataset
metrics, useful mainly for static datasets. However, some overall dataset metrics are computed
based on calculations using the metrics per data point.

3.5.1 Generic data quality metrics
The following are the considered generic metrics for data quality within SEDIMARK:
3.5.1.1 Accuracy

This is considered as the most important metric for the quality of a whole dataset, but usually
it is the most difficult to measure, since it assumes that there is some knowledge about the
“correct” points or the model of the “real world” entity that the dataset represents, so that it is
possible to measure the distance of the dataset points from the “real-world”. Usually, this
requires external input to measure. Inspired by [9], SEDIMARK defines the following metrics:
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This indicates how close the measurement value is to the ground
truth. The equation below shows the distance between the observed value and the
reference value, taking the units of the observation value:

Datapoint Accuracy = |observedValue — refValue)|

: There have been many different proposals about ways to measure
data accuracy for an entire dataset, but, considering the metric about the datapoint
accuracy defined above, usually the equation used is:

number of "accurate" observations

Dataset Accuracy = -
y total number of observations

However, this assumes that there will be a way to assess the “accuracy” of the
observations in the dataset, probably using the “Datapoint Accuracy” metric, if the
reference value is known.

The Completeness metric can be split into two separate metrics, based on if it is a static or a
streaming dataset.

Streaming completeness represents the number of missed
measurements within a given time window. The equation below incorporates three key
parameters: rate, inter-arrival time value; n, number of missed measurements observed;
and window, time window of observation. This completeness parameter can be expressed

either as a part per unit or as a percentage:
window — n - rate

Streaming Completeness = -
9 p window

This is a metric inspired by [9] that measures if a dataset
is complete or if there are some records or observations that are missing either as a whole
or parts of the entries. Considering that a dataset might comprise entries that have
different fields (columns), missing values can be either complete rows of entries or some
specific fields in a row. A measure of completeness is given in the following equations:

total number of missing fields per entry

Dataset C let 1=1-
araset Lompreteness. total number of fields

which sums the number of missing cells in a table over the total number of cells or
total number of missing entries

Dataset Completeness_ 2 =1 — -
total number of expected entries

which sums the number of missing rows in a table over the number of expected rows.
or

num of entries with at least one field missing

Dataset Completeness_ 3 =1 — -
total number of entries

which sums the number of rows with at least one cell missing over the total number of
rows.
The usage of the respective metric depends on the target usage of the dataset.

Precision refers to the dispersion of values within a dataset, typically assessed through the
dataset's standard deviation. The equation below shows the standard deviation formula used,
where the variables involved are: y, mean of the values in the dataset; n, number of samples
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in the set; and x;, the i-th element of the dataset. The precision outcome aligns with the units
of the dataset’s values:

Liz1 (i — 1)?
n

Precision =

Normally consistency is measured for datasets that are stored on different systems and is used
to measure the number of records that match across the different systems. However,
SEDIMARK inspired by [9] adopts a different interpretation of consistency, which measures
how well the data points relate to their semantic rules or constraints. In this respect, the
consistency metric uses the following equation:

total number of entries following the semantic rules

Consistency = -
y total number of entries

This metric normally measures how “current” or “recent” is a data entry for a specific task at
hand. For example, when dealing with measurements from sensors, the timeliness of the data
point can be measured on the difference between the current time and the timestamp when
the measurement was taken. Within SEDIMARK, timeliness is measured via the following
equation inspired by [9]:

Recency

Timeli = 0,1
imeliness = max( Volatility

)

where
Recency = (time of storage) — (time observation was last updated)
and Volatility is the time length for which data remain valid.

Timeliness can also be calculated in data streaming scenarios in a recursive way by calculating
a weighted average between the previous and the newly calculated mean update time. This
allows consumers to appreciate the age or punctuality of data items. The equation below
involves several parameters: a, correction factor belonging to the range [0,1]; rawTimeliness,
raw value of the newly calculated update time; meanTimelinesi.s, mean value of the update
time of the previous iteration; and meanTimeliness;, mean value of the update time calculated
in the current iteration.

meanTimeliness; = a - meanTimeliness;_; + (1 — a) - rawTimeliness

Apart from the above mentioned “generic” data quality metrics, SEDIMARK defines and uses
quality metrics that are more oriented towards the machine learning usage of the datasets.

This metric shows how many unique records or labels (categories) exist in each of the features
of the dataset.

This metric is computed as presented above, comparing the values against a predefined range
of values, which is assumed to be defined by the data provider.
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This metric is used for measuring the imbalance between the different classes/labels for each
feature of the dataset. Within SEDIMARK, class imbalance is measured using three metrics:

which is the most commonly used metric in the literature and simply
calculates the ratio of the sample size of the majority class over the sample size of the
minority class, using the following formula when there are only two classes in the sample
set:

) number of samples in majority class
Imbalance Ratio =

number of samples in minority class

When there are multiple classes, the calculation of the imbalance ratio becomes more
complicated and there have been multiple approaches to doing it, (i) by just using the
majority and the minority class, (ii) by summing the minority classes or (iii) by using entirely
different metrics specifically designed for multiclass problems, such as the “imbalance
degree” [14].

[18],[19], which measures the imbalance of the classes in a
feature of a data set by computing the normalised entropy of the class sizes, measured
by:

Cc

. 1 N, N
Normalised Class Entropy (NCE) = — 109(0) Z P log o
k

=1
[20], which was proposed to handle multi-
class imbalance based on the likelihood ratio test, computed by:

< N
LRID = —Zanln—
cny

k=1

This is measured for time-series datasets as the mean difference between consecutive entries
of timestamps in the dataset. This can show i.e. if the dataset has entries taken at regular
intervals or not and can be used also as metric of time consistency and of time completeness.

This metric is basically used for time-series datasets that are gathering measurements at fixed
intervals. The regularity of the dataset can be used to compute if the dataset is complete in the
given time period of the measurements by comparing the number of observations against the
number of expected observations. For example, if there is a sensor that measures temperature
every 10 minutes, the expected number of observations within 1 day is 6*24=144 observations.
If the dataset for that day consists of 110 observations, it means that the completeness is
110/144=76.39%. So, the formula to compute time completeness in SEDIMARK is the
following:

number of observations

Time Completeness = — - -
number of missing observations + number of observations

where the “number of missing observations” is calculated using the regularity and finding out
gaps between consecutive measurements that are bigger than the median difference between
consecutive measurements.
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This is measured by comparing couples of features of the dataset and measuring how
well/badly they correlate with each other. Taking the average of all couples gives the average
feature correlation of the dataset. High correlation between features shows a linear
dependency, so this metric can be exploited by users to remove highly correlated features from
input to ML model training processes, since they will have very similar effect. To measure that
the “corr()” function of pandas data frames is used.

This metric measures the dependency of couples of features on a regression model. To
measure that, inspired by [16] SEDIMARK built a function that aims to predict each feature by
using the other “N-1” features and predict the Pearson correlation between the prediction
results.

This metric measures the overlap of classes/labels within a feature and how they can be
differentiated (or not) using the other features. Class overlap occurs when instances of some
of the labels of a feature are mapped on the same area of a feature space, showing that they
have many similarities. Although there are many metrics used to measure class overlap,
currently SEDIMARK uses Fisher's discriminant ratio as defined in [21],[22] due to its simplicity.

This metric measures how similar or different are the values within a feature column.
SEDIMARK adopts the unalikeability coefficient as described in [24] using the following
equation:

Unalikeability = 1 — Ziﬂ(%)z,

where k; is the number of samples of class “i”, “n” is the total number of observations in the
feature column and “c” is the number of classes of the feature column.

This metric uses the output of the outlier detection models of SEDIMARK’s data curation
pipeline and measures the number of values detected by the model to be outliers or noise.

As it is critical to improve the quality of data assets, it is also important to keep track of the
proportion to which a data asset being produced is by artificial (synthetic) processes rather
than occurring naturally. This is especially the case in relation to handling original data assets
with missing data points. Inspired by [15], a measure for this can be as follows:

Asyn

Artificiality = ———
Asyn + Aorg

Whereby Ao is the number of the original data in the dataset, and the Asyn is the amount of
artificial data that have been generated through a synthetic process.

Metrics to analyse time series data can be very useful for data providers that aim to use their
data for modelling and interpretation. A time series data can be stationary when its statistical
properties, such as mean, variance and covariance, aren’t dependent on the time upon which
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the data series is observed [75]. In other words, a data series is stationary when there is no
link between a value and its previous values. To calculate stationarity in SEDIMARK, the
Augmented Dickey Fuller test [75] and the Kwiatkowski-Phillips-Schmidt-Shin test [76] have
been implemented using the statsmodels [77] python library. Both tests provide several values
for a result i.e. the test statistic, the p-value and the critical values at 1%, 5% and 10% levels.
The easiest way to interpret the result is using the p-value and comparing it to a significance
level (usually 5%). If the p-value is higher than the significance value then it means that the
data series is non-stationary.

Entropy in machine learning can be used to measure the uncertainty in the dataset about the
outcome of a variable and the level of disorder in the dataset. This can be used to evaluate the
ability of a model to make predictions using that dataset. Entropy in Information theory was
defined by Shannon in the seminal paper [78] using the below formula, which has been
implemented in the data profiling module using python:

n
Entropy = — Z Pk * log, pi
k=0

For measuring the multicollinearity in multivariate time series, SEDIMARK has implemented
the Variance Inflation Factor (VIF) [21]. This metric indicates how much the variance of an
estimated regression coefficient increases when the predictors are correlated. A high VIF
signifies that the feature can be linearly predicted from others. In SEDIMARK, we use the
“variance_inflation_factor” of the statsmodel python library [78]. This function gives a double
value as a result and assumes that if the value is above 5 then the two variables are highly
colinear.

Another metric for correlation between two variables in a multivariate data series is the
Predictive Power Score (PPS), defined in [79]. The score aims to detect both linear and non-
linear correlations between two variables. In SEDIMARK we use the ppscore library [79] for
calculating the PPS. The output is a value between 0 and 1, with 1 showing the highest
correlation (or predictive power) between the two variables.

Data Profiling is a functional component of the SEDIMARK architecture that provides a single
solution for users of the data processing pipeline to gather insights about the quality of their
data. Data Profiling is usually the process of examining, analysing and presenting useful
summaries to the users so that they can identify problems with their data and find out ways to
improve them. There has been a lot of work done to build data profilers in the past, but most
of the existing tools are either dedicated to specific types of data or are focused on general
descriptions of datasets, without going into too much detail about the usability of the datasets
for machine learning purposes.

Example of tools for data profiling are the following:

Pandas is one of the most used libraries in Python for handling data
frames and performing data analytics tasks. Pandas offers the “describe()” function to provide
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descriptive statistics about the data frames, analysing both numerical and categorical data
series. The SEDIMARK Data Profiling component exploits the pandas “describe” function to
get a quick overview of some statistics of the dataset, including number of rows, unique rows,
mean values, etc.

[25]: This is a python library that provides simple ways to get statistics about
datasets, featuring an easy to use interface and graphs, together with a large number of
metrics, including both general statistics and more data-analysis oriented statistics.

[26]: IBM provides an API for assessing the quality of data, including data
profiling. It provides insights about class parity, class overlap, data homogeneity,
completeness, outlier detection, etc. However, the APl and the backbone code for computing
these statistics are not open source.

The Data Profiling component of SEDIMARK is part of the Data Curation Enabler as discussed
in SEDIMARK _D2.3 [4] and shown in Figure 3. The Data Profiling component is considered
as the first step in data curation, taking as input the dataset formatted in the internal
SEDIMARK format (which is a new data source class as a wrapper above a pandas data
frame). The Data Profiling component is tightly integrated with the Data Quality Evaluation
component which assesses the quality of the incoming data. In the current implementation,
both components are integrated into a single python module that does both the profiling and
the quality assessment using the metrics described in the previous section.

Within SEDIMARK, the Data Profiling module is split into two parts:

Providing statistics about the dataset (which corresponds to the Data Profiling
component):

Number of features.

Number of entries (observations).

Total number and percentage of missing cells.

Total size of the dataset and size per feature column.

Providing statistics based on the data type of the feature column (which
corresponds to the Data Quality Evaluation component).

The feature-specific statistics of the dataset are based on the data type:
columns:
Percentage of missing, duplicate, unique cells.
Min/max/average/std/median values.

25%, 50%, 75% percentiles, which shows the value point below which lie the 25%, 50%
or 75% of the data values.

Histogram, which shows the frequency of the distribution of the data points across the
range of the values.

Consistency (data within ranges that are pre-defined).

Skewness, which measures the shape of the distribution of the feature, and basically
shows if the distribution is symmetric or asymmetric. It can be negative (showing that
the tail of the distribution is on the left side), zero (symmetric distribution) or positive
(showing that the tails is on the right side).
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Kurtosis, shows the shape of the distribution, with a normal distribution having a value
of 3. Values less than 3 mean that the distribution is platykurtic, while a value greater
than 3 means that the distribution is leptokurtic.

Mean absolute deviation, which is the mean absolute distance of each data point from
the mean of the distribution.

columns:
Name, type, missing, duplicates, unique.
Label frequency.
Imbalance statistics.

(string) columns:

Name, type, missing, duplicates, unique.
Min/max/average/median length of string and the histogram.
Label frequency per label (assuming it's a label/class columns).

Imbalance statistics (imbalance ratio (IR), imbalance degree, log likelihood index,
tangential imbalance index, normalised entropy).

Class overlap, measured by Fisher's discriminant ratio: higher values == higher
complexity - classes can't be differentiated by the features.

Unalikeability, as a measure of how similar/different the values in the column are (0 ==
all the same, 1==all different).

columns:
Name, datatype, missing, duplicates, unique.
Minimum/maximum data difference between consecutive values.

Mean, median, interquartile range (iqr), standard deviation (std), regularity
(mean/median difference between consecutive dates) for the column values.

Histogram of date differences.

Regularity.

Number of missing values based on regularity.
Completeness based on regularity.

For streaming data, the profiling of the data and the evaluation of their quality within the
SEDIMARK streaming pipeline, relies on a trusted external source for accuracy (AEMET [23]
in the case of temperature in the city of Santander), and on an NGSI-LD Context Broker with
support for storing temporal values for the rest of the dimensions. The output of the streaming
data quality module is based on an aggregation of the values of the assessed dimensions,
selected upon the user's request. This way, a data point quality characterisation is obtained,
allowing the user or the consuming application to have all the necessary knowledge to decide
which pieces of data to use or not, i.e., whether they meet their quality requirements or not.
Figure 11 shows a representative scheme of the module depicting the input needed and the
outputs expected.
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As shown in Figure 3, data cleaning within SEDIMARK consists of four main modules: (i) outlier
detection, (ii) noise removal, (iii) deduplication and (iv) missing value imputation. Aiming to
have a consistent and homogeneous way to execute the functions in these modules, so that it
is easier to be launched by the Data Processing Orchestration, all modules have been
developed in a similar way, as it is depicted in Figure 12. All modules have the same predefined
way to get the data as input and these are being managed by a “pre-processing” function,
which transforms the data to the format required by the internal cleaning module. Then, the
processed data are forwarded to the cleaning algorithm, which does the cleaning job and
forwards the results to the “post processing” module that creates the output data in a
predefined format to be handled by the Data Processing Orchestration. Depending on the user
configuration, the output data can be either the “cleaned” data (i.e. with the outliers or the
duplicates removed) or the original input dataset with annotations, flagging the entries that
were found to be outliers, noise or duplicates or the entries that were imputed.
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An Al-Based Ouitlier Detection (OD) tool harnesses the power of machine learning to identify
anomalies in multi-dimensional data. Utilizing advanced algorithms like the Isolation Forest
and One-Class SVM, outlier detection scans through datasets to differentiate regular data
points from outliers. Combining several approaches in a common module provides a robust
mechanism for outlier detection, allowing data scientists and analysts to clean their datasets
effectively and ensuring the integrity of any subsequent data analysis or machine learning
model training.

SEDIMARK considers outlier detection as a key mechanism to improve the quality of datasets,
reducing the amount of low-quality data, while contributing to reducing the size of datasets and
in the end improving the machine learning models built on top of these cleaned datasets.
Considering the type of dataset, SEDIMARK has developed components for outlier detection
on both offline and streaming datasets, as discussed in the next paragraphs.

The goal of Outlier Detection (OD) in a data pipeline is to identify and potentially remove data
points that are highly anomalous and appear to be generated by a data generation process
differing from the one that the data scientist wants to model. The presence of anomalies in
data can cause severe problems for downstream ML models, and can also indicate that the
data has been corrupted or even maliciously poisoned [38] SEDIMARK will aim to either
remove or clearly flag as many anomalies as possible within the datasets published to its
marketplace, based on the configuration or preferences set by the data provider.

There are numerous algorithms for tabular anomaly detection, with popular approaches
including Local Outlier Factor (LOF), One class Support Vector Machine, and recently deep
learning based approaches such as Deep Support Vector Data Description (SVDD) [35] or
classifying anomalies per their autoencoder reconstruction error [33]. These algorithms can be
classified broadly as based on a) a statistical model, b) density c) distance d) clustering e)
isolation f) ensembles and g) subspaces [27]. However, the same outlier detection methods
cannot be naively applied in the case of time series data, where the sequential dependency
between data points introduces an extra dimension that can be key for recognising outliers
[37]. As such, while tabular anomaly detection algorithms will most often work on the raw data
points, in the case of time series data the algorithms generally process chunks or trajectories
of the data, classifying these as anomalous.

An additional problem in anomaly detection is that the OD algorithms themselves generally
output only raw outlier scores and probabilities, with classification determined by the
application of a threshold. While it is customary to set this according to an a priori assumption
about the dataset (e.g. that 1% will be outliers) the number of outliers in a dataset is not
generally known by the data scientist cleaning the data. As such a number of techniques such
as AUC Percentage (AUCP) [36], gamma Gaussian Mixture Models (gammaGMM) [34] and
Generalised Extreme Studentized Deviation ESD (GESD) [28] exist to automatically determine
this threshold automatically by processing the raw anomaly scores.
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The SEDIMARK outlier detection module is built in a generic way so that it can easily
incorporate a number of existing libraries, avoiding the effort of re-implementing well-known
outlier detection algorithms from scratch. The SEDIMARK outlier detection module currently
makes use of two key libraries for outlier detection, namely PYOD [40] for the case of tabular
data, an adaption of the benchmarking suite TimeSeAD [85]. Both PYOD and TimeSeAD
include a large number of unsupervised OD approaches, such as traditional machine learning
methods like KNN based methods [29], one class Support Vector Machines (SVMs) [30], or
simple autoregression models [31] in the case of time series, as well as modern deep learning
algorithms such as autoencoders, or in the case of time-series data, Long Short Term Memory
(LSTM) based methods [32]. In addition, SEDIMARK makes use of the PyThresh library [39]
to automatically set anomaly thresholds, with included methods such as AUCP, gammaGMM
and GESD.

As such, the Anomaly detection module follows the flow shown in Figure 13 where input data
first undergo pre-processing to be PYOD/TimeSeAD compatible and then pass through outlier
detection and thresholding algorithms. After that, the data are post processed, where they are
either annotated with outlier descriptors (a Boolean indicating threshold result, and the raw
outlier score), or the outliers are discarded.

At present, SEDIMARK includes the following algorithms from PYOD:

Angle based outlier detection, classifying anomalies based on the variance of their
cosine scores to their neighbours.

Neural anomaly model, classifying data points according to their
reconstruction error when passed through an autoencoder.

Takes the average of several base detectors, trained on subsets of the
data features.

Histogram Based Outlier Selection, assumes feature independence and then
constructs histograms to infer the extent to which data points are outliers.

: Isolation Forest, which classifies outliers based on their average path length in a
forest of partition trees.

A K-Nearest-Neighbours based approach which takes a data points distance to its
kth neighbour as an estimate of its outlierness.

Local Outlier Factor, which compares the densities of data points with respect to
their neighbours.

Takes the Minimum covariance distance in a gaussian distributed dataset as the
degree of outlierness.
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One-class Support Vector Machine, which fits a decision boundary around the
assumed normal training data.

Projects the data using Principal Component Analysis, taking the projected distance
of a data point as its degree of outlierness.

Deep One Class classification for outlier detection, which encloses learned
representations of the data within a hypersphere, with the distance from the centroid then
used as the degree of outlierness.

TimeSeAD provides four general classes of algorithms, namely:

A number of well known baseline algorithms such as those based on nearest
neighbours, PCA, or decision trees.

Autoencoder based models that are trained to compress and then
reconstruct their own input, with the reconstruction error used as a signal for outlier
detection.

Models based on autoregressive prediction, where the prediction error of
subsequent timesteps is used as the main signal for outlier detection.

Contains a number of not readily classified algorithms such as THOC [86] and
NCAD [87].

A drawback of the traditional approach to outlier detection is that it requires either domain
expertise, or a number of labelled outliers, in order to be able to properly assess and thus
finetune an outlier detection pipeline component to a new dataset. Outliers can themselves
often be highly domain dependent, and thus without expert involvement it is difficult to assess
whether retrieved data points are in fact outliers or not.

In the realm of data cleaning, streaming data processing presents unique challenges
compared to offline (batch) data processing. Streaming data cleaning involves the continuous
and real-time cleansing of data as they are generated, necessitating immediate actions to
ensure data quality and reliability. This is in stark contrast to offline data cleaning, where data
are accumulated over time and cleaned in bulk. The critical difference lies in the immediacy
and ongoing nature of streaming data cleaning: it requires rapid and continuous cleaning
mechanisms, which are crucial for applications demanding quick and accurate decision-
making, such as real-time monitoring systems, fraud detection, and live financial trading. On
the other hand, offline data cleaning is more suitable for scenarios where immediate data
quality is not as critical, allowing for more thorough and comprehensive cleaning processes for
large datasets, albeit with some delay in data readiness. Streaming data cleaning demands
high scalability, performance, and robust error handling due to its dynamic nature, while offline
cleaning allows for more extensive and deep cleaning processes, suitable for large-scale data
analyses where time is not a pressing factor.

River [41], a specialised Python library for online machine learning, is particularly adept at
handling the complexities of streaming data. It provides a range of tools and algorithms for
real-time analysis and processing, making it an ideal choice for applications that require
immediate, continuous data handling, such as in Internet of Things (loT) devices, financial
market analysis, or web activity monitoring. In the context of SEDIMARK, River plays a crucial
role in the data cleaning process for streaming data. Recognizing the inherent challenges in
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managing and maintaining the quality of streaming data, SEDIMARK leverages River's
advanced functionalities for effective data cleaning. This includes a comprehensive suite of
outlier detection methods, each tailored to specific types of data and anomalies.

For outlier detection, SEDIMARK includes several robust methods inherited from River:

This method utilises a Gaussian distribution to score anomalies,
identifying data points that significantly deviate from the expected distribution.

Ideal for high-dimensional data, HST uses space-partitioning
trees to detect regions with lower data point density, indicating potential anomalies.

LOF measures the local density deviation of a data point
compared to its neighbours, making it effective for identifying local outliers within the data.

This method employs a one-class support vector machine to isolate
outliers, particularly useful in datasets where outliers and normal data points are distinctly
separable.

It filters out data points that lie beyond defined quantile ranges, based on
a scoring function, effectively identifying extreme values (values that are above a specific
percentage).

This technique scores outliers based on their absolute
deviation from the mean, relative to the standard deviation, ideal for datasets where such
deviations are indicative of anomalies.

It applies a predefined threshold to identify anomalies, suitable for
situations where the threshold for anomalous behaviour is known.

Furthermore, a novel anomaly detection algorithm based on the Exponentially Weighted
Moving Average [120] has been also implemented. This algorithm is intended to achieve the
highest possible detection precision while maintaining a computational time compatible and
appropriate to the system. Three variants of the algorithm, each considering different options
for its model updating, have been defined. Each variant shows different adaptability to different
use cases and scenarios.

Given the dynamic nature of such data streams, it is appropriate to consider moving average-
based solutions. EWMA performs better than the other methods in terms of capturing the trend
and seasonality of the data. In other words, EWMA-based methods have the lowest forecasting
error as they capture substantial changes faster than others. Generally, this kind of method is
used to remove noise from the time series and smooth it, thus allowing further data processing
techniques to face fewer challenges. This method can be represented by the equation below,
where x stands for the observation being evaluated and a for the smooth factor. As can be
seen, this a factor denotes the weight given to the most recent values, thus allowing the EWMA
method to be more robust against changes in the trend.
Xi, i=1

a-xi+(1—a) EWMA,_,, i>1

The proposed algorithm for real-time anomaly detection in data streams is based on a
threshold approach. As a core operation, for each received observation, an expected value is
calculated through EWMA, and upper and lower bound values are set using the standard
deviation of the dataset. When the current observation falls outside these limits, it is considered
an anomaly. It is worth noting that the estimation of both the expected value and the limits is

EWMA,; = {
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performed using the information available in the model prior to the arrival of this new
observation, in order to avoid biasing the results.

Three variants of the algorithm have been developed, each improving the performance and
detection results of the previous one, as well as its capacity to adapt to changes and variations
of the time series to be evaluated. They all allow for the following input parameters: records,
indicating the number of values to be used in the EWMA calculation; threshold, being the sigma
factor; a, corresponding to the EWMA importance factor. Additionally, there is another
configurable parameter that determines the maximum number of values included in the model.

The first variant, so-called “without update”, is characterised by not updating the model as new
observations arrive. In other words, the model is based on a static photograph of the training
data against which estimations are made. Although such a model may not seem to be useful
for any scenario, it is possible to find use cases where the time series does not vary
significantly from its initial state, except for the so-called anomalies. Hence, this would allow
for a simpler and computationally faster model. Nevertheless, considering the use case on
which we are focusing (i.e., variable time series from IoT environments), this option is not so
well suited.

The second variant compensates the previous one’s main problem by updating the model,
hence we have named it “with update”. In this case, the model used for performing the
estimations is updated every time an observation is recorded, without differentiating between
detected anomalies and inliers (i.e., the model update is done whether the observation is
qualified as outlier or inlier). This approach adapts better to the behaviour of the time series
that have been used to assess the proposed solutions, although the occurrence of several
anomalies together can spoil the performance of the algorithm, as they are biasing the model
towards dirty data. However, in use cases where sudden changes can occur and last over
time, this version of the algorithm is capable of adapting even in the face of a sequence of
false positives.

Finally, the last variant of the algorithm performs a smart update of the model, i.e., the update
only occurs when the assessed observation is determined not to be an anomaly (i.e., the model
update is done only if the observation is qualified as inlier). Thus, the model data is clean and
truly captures the trend and seasonality of the time series. This latter variant is known as “with
smart update”.

The streaming outlier detection module of SEDIMARK follows the same concepts as discussed
in the main data cleaning section, namely it is generically built as a wrapper on top of River to
allow the easy execution of the cleaning models from the Data Processing Orchestration. In
the end, the output of the module includes the processed data point (or batch) with the detected
outliers flagged as such.

The loT process generates an enormous amount of data. When the data collected from loT
sensors is of poor quality, due to measurement error or environmental factors such as
atmospheric or electromagnetic disturbances, it will create noisy data (random undesired
fluctuations or errors) and low signal-to-noise ratios (SNRs). This leads to distortion of the
original signal, difficult analyses and interpretations of the base patterns, reduction in the
quality of predictions, and in fine misdirection of Smart Services. Beyond the 10T domain, noisy
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data exists in many application domains, such as communications, acoustics, or biomedical
engineering [42].

Although the noisy values can be reduced using high precision sensors with inbuilt noise
reduction mechanisms, such sensors come at a cost and that limits their deployment. Hence,
noise reduction or cancellation is a crucial step in signal processing, to produce quality
diagnostics and forecasting results. Noise cancellation techniques enhance the signal in the
original form by removing unwanted elements from the measurements [43].

The complex and misunderstood causes of noise in measurements, and the time-varying
environment, result in multiple kinds of noise, to name a few: Gaussian noise, white noise,
periodic noise, impulse noise, coloured noise, and heteroscedastic noise. Noise prediction for
noise cancellation is hence a very arduous task and should ideally consist of a system that can
automatically adapt to the environmental changes [42]. The challenge is to detect the actual
useful signals within a strongly noisy background, particularly when the noise is non-stationary.
If the chosen processing method can effectively predict and eliminate the noise, then the result
is ideal. Otherwise, the noise will not be cancelled, and the original signal will be weakened
[42].

There exists a very broad range of methods and techniques that try to cancel or mitigate noise
in time series data. The choice of the method depends on the specific characteristics of the
noise and data system, the presence of trends, seasonality, the SNR level, the objectives of
noise reduction.

Adaptive and Neural network based noise cancellation methods are specific to a signal. They
rely on learning from historical or reference data to distinguish signal from noise. That makes
them efficient and able to remove complex noise but decrease the ease of use of such
methods.

Adaptive noise cancellation filters are widely used in communication and signal processing
systems. A comparison of three popular adaptive filtering algorithms used for real-time noise
reduction is given in [42]: (1) Least Mean Squares (LMS) filter: Minimizes the error between
the clean signal and the filter output. It is limited in the occurrence of outburst interferences.;
(2) Normalized LMS (NLMS) filter: Normalizes the filter coefficients depending on the input
signal’s energy. Useful when the amplitude varies significantly; (3) Recursive Least Squares
(RLS) filter: Minimizes the sum of errors with time. Outperforms LMS and NLMS techniques
due to its high convergence speed and efficiency.

Among neural network-based approaches, a particularly promising technique is the Denoising
Autoencoder (DAE) [121]. DAE is a type of deep learning model designed specifically to
remove noise from input signals by learning to reconstruct the original, clean signal from noisy
data. The DAE is trained using pairs of clean and artificially corrupted signals, allowing it to
learn the underlying statistical regularities of the clean signal. Once trained, it can be used to
denoise previously unseen noisy inputs.

Generic noise cancellation methods have the advantage of working out of the box for every
signal. This means that data services using those methods will work out of the box on any
received signals
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We focused on three methods that needs minimal configuration and only use the last values
of the signal. the number of values used for the calculation is called window size and can be
configured. Specifying a greater window size will smooth the signal at the cost of decreasing
peaks value in the signal.

The weighted moving average (WMA) [122] smooths a signal by assigning varying weights to
past values, typically giving more importance to recent observations. This makes the filter more
responsive to short-term changes while still reducing noise. Unlike a simple moving average,
the WMA minimizes the lag by favouring the latest data, which is often more relevant in real-
time processing contexts (see Figure 14).
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The Savitzky-Golay filter [123] performs polynomial regression to smooth data while preserving
the shape and features of the signal. Unlike moving averages, the Savitzky-Golay filter
maintains sharp transitions in the data, making it suitable for biological and environmental
signals where feature preservation is crucial. In addition to the window size the polynomial
order can be adjusted to control the level of smoothing and fidelity (see Figure 15).
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Comparison of Noise removal methods on Menton sensor signal strength
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The Butterworth low-pass filter [124] is designed to have a maximally flat frequency response
in the passband. It removes high-frequency noise components while minimizing distortion in
the low-frequency signal range. In addition to the window size the cutoff frequency and filter
order can be adjusted to control what frequency the filter will keep or remove (see Figure 16).
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The different generic algorithms tested before are available on GitHub SEDIMARK repository
for noise cancellation [119]. The code is in python for easy integration in SEDIMARK data

pipeline. They also support being integrated in data streams using only the latest values to
compute the new value.
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3.7.3 Deduplication

Real world datasets can often include a large number of duplicate records, for instance due to
incorrect data entry or errors during the data collection process. This presents a pernicious
problem for data scientists seeking to model the underlying data distribution, as the duplicates
can often be hard to detect, and can often even require expert evaluation, while skewing
statistics and causing problems for the evaluation of downstream tasks. Broadly speaking, the
task of data deduplication aims to match pairs of records that are likely to be duplicates.
Generally, this is accomplished by introducing some notion of similarity between record pairs,
either by utilising a set of users specified rules, or with e.g. an ML classifier. The records can
then be clustered according to this similarity metric. Data deduplication is generally considered
to be a demanding computational problem, given the naive need to compare every pair of
records within the dataset with each other. Also, often there is only a very small amount of
labelled ‘training data’ to build an ML approach. More advanced recent approaches, such as
ActiveClean [44] seek to involve human input in guiding an ML process, by for instance having
an algorithm iteratively request labels for the samples about which it is least certain.

In its current state, SEDIMARK makes use of the record-linkage python library [45], which
relies upon user specified rules for data deduplication. These include e.g. setting specific
metrics for string similarity (e.g. Jaro-Winkler [125], [126] or Levenshtein distance [127]) and
allow the computing of how similar two records are to one another across a number of fields,
with a threshold then used to determine whether the records are duplicates or not. A downside
of this process is that it requires at least some human assessment of the dataset, and the
choice of which fields are likely to be worth inspecting for duplicate comparisons.

Data Full indexing  Block indexing

o o
[B1HBZ]

B1

8

B2
—
—
B1
|
R
B2
|
)
B2

|

B2

=88
ssnse

Figure 17: Comparison of full and block indexing methods.

As mentioned previously, one factor that significantly affects the performance and efficiency of
a data deduplication algorithm is the indexing method used. In a naive ‘full’ implementation, all
records within the dataset/database are compared against one another, which makes the
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complexity O(n?), but this can be greatly reduced by the choice of an appropriate heuristic and
method for retrieving likely pairs. The record-linkage library [45] allows for the use of Block
indexing - only comparing blocks of records that share a certain attribute in common, and the
additional SortedNeighbourhood indexing method, which allows the blocks to also include
records within e.g. a short edit distance. As shown in section 5.3.2 indexing methods greatly
increase the speed of the procedure, but with a resulting loss in terms of recall, as less potential
matches are considered. A comparison of full and block indexing methods is given in Figure
17. The raw data is shown on the left, with letter and number representing two features. In the
middle, n? comparisons are made between the data points. On the right, as the data points are
indexed by letter, much less comparisons are made.

Recent research has shown that large language models (LLMs) can be highly effective out of
the box for deduplication and the related task of entity matching, often surpassing state of the
art benchmark results despite not seeing any task specific training data [81][82]. As such, they
can be considered as something of an AutoML approach to deduplication, as they remove the
necessity for data scientists to provide labelled examples. Despite this, their use can often
incur a prohibitively high cost, especially for the most state of the art models. To this end, the
SEDIMARK deduplication module extends the popular Dedupe [83] package to integrate the
use of LLMs. Whereas Dedupe employs active learning to iteratively query users for labels for
uncertain data points, the SEDIMARK deduplication module instead roots these queries to a
user specified choice of LLM. In such a way, the labelling cost of training data is greatly
reduced. Once its internal ML model has been fitted to these labelled data points, Dedupe then
predicts duplicates for the rest of a dataset.

There are numerous reasons why missing values, or incomplete records, may appear in a
dataset, ranging from problems with the database that stores them, to network issues or faulty
data collection or entry. These missing values pose a severe problem to downstream ML
algorithms, which struggle to effectively handle “NaN” entries. While, in the case that the
number of missing values is small, the incomplete entries can simply be removed, above a
certain threshold this will impact the performance of any model trained on the resulting data
[46]. Thus, a popular area of research considers the correct method for imputing or replacing
the missing entries with their likely real values. Numerous methods exist for missing value
imputation, targeting multiple different types of data. They can generally be classified as either
statistical (e.g. Mean/Mode imputation, Linear/Logistic regression, or singular value
decomposition) or ML based techniques [46]. In general, ML based missing value imputation
methods will treat imputation as a classification or regression problem, attempting to predict
the missing values of a feature by modelling them based on other features in the dataset. A
generic functionality of a Value Imputation Module is shown in Figure 18, where the module
fills the gaps that it identifies in the dataset.

'l N

VALUE IMPUTATION
MODULE
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When it comes to imputing values, methods such as interpolation of Artificial Intelligence
techniques can be employed. Interpolation involves fitting known data to a function that allows
the estimation of missing data. On the other hand, Al-based methods estimate missing values
by leveraging available information, often using supervised learning approaches. In particular,
the k-Nearest Neighbour (kNN) algorithm is widely used for this purpose. It involves classifying
data values into clusters or categories based on their proximity to their k nearest neighbours.
Another popular ML based approach to missing value imputation for tabular data is iterative
imputation, whereby features are imputed one at a time using the other features in the dataset
as regressors, with the process iterated upon until some stopping criteria (such as accuracy)
is met. However, in its naive implementation iterative imputing is limited to one class of
regressor model, which might not necessarily be optimal for all of the features in the dataset
[47]. Other approaches exploit regularities of their particular domain to infer missing values,
such as for instance in the case of time series data where filling gaps by interpolating between
their neighbouring timesteps can often be quite effective.
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In SEDIMARK, the focus is on imputing missing values for both tabular and time series data.
SEDIMARK includes interpolation for imputing gaps in time series and leverages the impute module
of the scikit-learn python library to offer KNN and iterative imputation methods. At its current stage
of development, SEDIMARK also includes the Hyperimpute algorithm [47] (Figure 19), a method
that efficiently iterates through rounds of model selection for each feature column in a dataset.
As such, it doesn’t require the user to go through the process of choosing the appropriate
regressor for each feature in their dataset, and this can in some sense be considered an
“AutoML” solution to the problem of model selection for missing value imputation.

Similar to streaming outlier detection, SEDIMARK utilises River's functionalities for effective
missing value imputation. The Previousimputer replaces missing values with the last observed
value, suitable for time-series streaming data, while the Statimputer uses statistical measures
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(mean, median, mode) for imputation, effective in datasets with randomly distributed missing
values. These methods collectively enhance SEDIMARK's ability to maintain high data quality
standards in its streaming data marketplace. By integrating River's capabilities, SEDIMARK
not only ensures the integrity and reliability of its data but also streamlines the data cleaning
process, significantly reducing the need for extensive manual intervention.

Moreover, the EWMA algorithm that has been developed and presented in Section 3.7.1.2
have been adapted to update datastreams with missing data points by applying the inliner
model and including an inliner datapoint when a gap is detected.

Data augmentation is a popular technique that can serve multiple purposes within a machine
learning pipeline. Techniques such as interpolation can be used in time series data to
upsample or fill in missing gaps in the series. If given sufficient prior domain knowledge, data
augmentation techniques can be used to increase the volume of the training data, resulting in
the training of more robust models, with heightened model accuracy. This is especially
effective in the image processing/computer vision domain, where it is relatively easy to produce
additional images that intuitively fit a given class label, using simple transformations like
rotations, or adding noise or colour to the raw image. More recently, the model-based
generation of synthetic data has been pursued as a method to solve certain data problems.
On the one hand, a data provider might not want to grant access to their raw dataset, and in
this instance, it might be preferable to instead release synthetic data, on which an equivalent
machine learning model can still be learned. In the other instance, synthetic data might be
used to rebalance a dataset, especially in the instance where it perhaps presents a harmful
bias against one particular class. SEDIMARK will include data augmentation tools to address
all of these distinct scenarios - augmentation/generation for increasing the performance of
downstream ML models, augmentation for debiasing and rebalancing datasets, and synthetic
data generation for replacing the underlying dataset completely.
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A data provider might not wish to release their underlying dataset, but instead opt to make
available a synthetic alternative. The rise of deep learning has ushered in huge advances in
the modelling and then generation of synthetic data. Both Variational AutoEncoders (VAESs)
and Generative Adversarial Networks (GANs) are deep learning based methods that aim to
learn and then sample from the underlying distribution of the data. In the case of VAEs, this is
accomplished by training an autoencoder model to encode and reconstruct data samples, with
the use of a ‘reparameterization’ trick [48] allowing for the drawing of samples from a learned
gaussian latent space. In the case of GANs [49], two model components, a generator and a
discriminator play an alternating min-max game, in which the discriminator learns to separate
generated samples from true ones, while the generator aims to fool the discriminator into
classifying its samples as coming from the real data distribution. While the true ‘likeness’
between true and generated data is hard to evaluate when the underlying distribution is not
known, for practical purposes the fidelity of the generated synthetic data can be evaluated
intuitively, through comparing the performance of downstream machine learning models
trained on either the original or the synthetic data, as shown in Figure 20.

SEDIMARK will include tools allowing data providers to generate synthetic data. In its present
iteration, SEDIMARK makes use of methods present in the python library YData-Synthetic to
generate synthetic tabular data. This tool allows the user to select from a number of GAN
based models such as CTGAN [50] for tabular data generation. In addition, it includes a less
computationally demanding method (Gaussian Mixture Model) which represents the data
distribution as a mixture of gaussians from which new samples can be drawn, with the
implementation iteratively testing an increasing number of gaussian components to find the
best fit.

However, it is expected that much of the data processed by SEDIMARK will be of a time series
nature, where tabular methods will not work out of the box, as they generate Independent and
Identically Distributed (IID) samples without considering the time sequential dependency
between data points. In the case of time series generation, the user will be looking to sample
whole trajectories of data points. The process often suffers from the low number of distinct
trajectory examples that are available in the dataset to be modelled, compared to other
generative fields such as text or image generation, where there are huge public datasets
available allowing for the creation of general purpose generative models. Luckily, there has
been a significant amount of recent interest in the problem of time series generation, with
several methods published in high profile machine learning conferences.

The most recent version of the SEDIMARK data curation pipeline integrates the python library
TSGM [84], which features various GANs and VAEs that can be readily applied to time series.
These models generally run general generative approaches for synthetic data, but extend them
to generating sequences/trajectories rather than just singular data samples, thus ensuring that
time dependency is preserved in the generated sequences. We provide some experimental
results, displaying this tool's computational energy efficiency in section 5.3.6.

It is widely acknowledged that issues with data collection can inject harmful biases into
downstream machine learning models, for instance when data points corresponding to at risk
minorities are underrepresented in the training data. Additionally, datasets may be generally
unbalanced, with some minority classes having few examples present in training data. A further
use of data augmentation considers the problem of debiasing or balancing these datasets. A
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general method for this is to employ one of the synthetic data generation methods described
in the previous example, but to reweight its training data in favour of the minority classes one
wishes to remove bias against. The current version of the SEDIMARK data augmentation
module integrates the popular tool TabFairGAN [51]. TabFairGAN employs two phases of GAN
based training. In the first regular GAN training phase, the model is trained to match the regular
distribution of the training data. In the second phase, a fairness constraint is added to the loss
function, penalising the model for generating unfair samples. In this way it can be used to
generate synthetic samples that can then be used to debias a regular dataset.

Feature Engineering is one of the principal components in the SEDIMARK Al pipeline. It refers
to the pre-processing steps that select and transform the most relevant features, aka attributes,
from raw data, into features to be used in machine learning algorithms, such as predictive
models. Whence the goal of simplifying and speeding up data transformations while enhancing
model accuracy by keeping the most relevant attributes. Dimension reduction tackles the curse
of dimensionality that occurs due to the use of high-dimensional data which may increase the
cost of any mining algorithm and consists of mapping high-dimensional instances onto a lower-
dimensional representation while conserving the distances between instances. Dimension
reduction within SEDIMARK could also be used in non-high-dimensional spaces to represent
the data more effectively by compacting them differently.

Two main different dimensionality reduction categories are considered within SEDIMARK (see
Figure 21 that depicts the difference between them):

is the process of selecting a subset of the input features, i.e., the most
relevant and non-redundant features, without operating any sort of data transformation or
extraction. To do so, feature selection techniques mainly analyse and rank various
features to determine which ones are irrelevant and should be removed, which ones are
redundant and/or correlated, and which ones are most relevant and useful for the model
and should be prioritized.

that involves reducing the number of features to be processed using
dimensionality reduction techniques. It consists of extracting features from a dataset or
data stream to identify useful information. Without distorting the original feature space,
this compresses the set of features into manageable quantities for algorithms to process.
E.g., constructing from a set of input features in a high-dimensional space, a new set of
features in a lower-dimensional space.
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feature extraction feature selection

Dimension reduction techniques are widely used in machine learning algorithms and operate
by transforming and using the most relevant feature combinations, handling thus the curse of
dimensionality, in turn reducing space and time demands; this can be crucial for applications
such as classification and visualization. For this to happen, SEDIMARK implements and uses
some common dimension reduction techniques from the state-of-art and available in python
libraries, such as PCA, feature hashing, correlation, and random projection. These techniques
require an input parameter specifying the size of the output space of data dimensionality.

Several dimension reduction techniques have been proposed and used for offline purposes,
namely for static datasets. Hence, they cannot be used with data streams and have to be
adapted. For this to happen, multiple static techniques have been extended to the stream
setting. For instance, an extension of SEDIMARK could use an incremental version of PCA,
available in the scikit-learn python library, called IncrementalPCA which uses a window to
make PCA incremental, hashing trick, and random projection. Thanks to the fact that they are
data-independent techniques, the extension of the latter to the stream setting is easy. In the
SEDIMARK data processing and Al pipelines, dimension reduction is provided as a
component, and its techniques can be extended and used with batch and stream data.

AutoML could be used within SEDIMARK to facilitate the task and serve the purpose of
automatic hyperparameter optimization without the need to precisely specify which technique
to use with what parameter.

Machine learning algorithms have multiple hyper-parameters that are set prior to the learning
process and can directly affect the performance of the models. However, this task requires
domain knowledge and human expertise to perform manual hyper-parameter tuning (manually
trying out different hyper-parameter sets by hand), which is a hard and tedious task both for
expert and non-expert users. Another major drawback of the manual search is the fact that the
process is not easily reproducible. The latter is definitely important, especially for the progress
and improvement of scientific research in the machine learning field and for non-experts who
intend to use ML. Moreover, it is difficult to manage the manual hyper-parameter tuning task
when the number of parameters and the range of values is high, i.e., if one aims to apply an
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algorithm with five hyper-parameters, then these hyper-parameters need to be manually tuned
with different values on different datasets, and the best combination that achieves the highest
performance will be chosen.

To cope with the aforementioned issues, automatic search techniques have been proposed
under the emerging automated Machine Learning (AutoML) topic. AutoML supports
researchers and practitioners with the tedious work of manually designing ML and Al pipelines,
which include performing algorithm selection and tuning hyper-parameters.

A possible extension of the SEDIMARK data processing pipeline might use AutoML to
automate various tasks, mostly related with the configuration of the models that are being used
by the components of the pipeline. As discussed in the previous sections, users of the data
processing pipeline will be presented with many options for processing their data. One can
imagine that non-expert users will easily be confused regarding which component they have
to use, which model/algorithm of that component and which configuration of the
hyperparameters of that model/algorithm in order to best process their dataset. Manual testing
can take time, so SEDIMARK aims to provide the tools to automate the process of selecting
the best-performing model and identifying its corresponding optimal set of hyper-parameters
that best fit each dataset and each user preferences.

Users of the data processing pipeline will be provided with AutoML tools which will make the
use of the data processing components both easier and more accessible for SEDIMARK
participants. With the integration of AutoML into SEDIMARK, the next integration steps could
involve enhancing other aspects of the data processing pipeline to fully leverage the potential
of automated model selection and tuning relative to the data fed to the platform. This holistic
approach will ensure that each stage of the pipeline is optimized for efficiency and
effectiveness.

One of the key aspects is that data pre-processing and feature engineering to handle diverse
data types and structures will be executed more effectively. Expanding the range of explored
models through AutoML and automating model validation will also be an effect of choosing
AutoML. Creating intuitive interfaces for interacting with the AutoML system and providing
educational resources to assist users of varying expertise levels will also be a benefit of this
choice.

Currently, we have developed an AutoML approach for data stream learning. The few existing
AutoML solutions for stream learning mainly rely on random search or genetic algorithms,
which struggle to maintain high performance in dynamic environments. By contrast, leading
methods in batch learning such as the Sequential Model-based Algorithm Configuration
(SMAC) [107] leverage model-based approaches, suggesting opportunities for improvement
in stream settings.

In an attempt at filling this gap, we introduce OnlineSMAC, a model-based optimizer for data
streams. OnlineSMAC combines Bayesian optimization with an extension of the SMAC
optimizer to dynamically select optimal processing pipelines and hyperparameters.

The basic principle of Bayesian optimisation is to hold an incumbent model (the current best
one) and generate new configurations to try to overcome the incumbent. The new
configurations are generated according to a surrogate model, a model that estimates the
behaviour of the function we are optimising. The surrogate model will pick configurations it
estimates they will have a chance of being better than the incumbent or will explore a new part
of the domain.
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In OSMAC, we split the stream in a succession of 1000-instance long windows. At the start of
a window, we use the surrogate model to generate 3 new configurations and add 2 fully random
ones and a copy of the incumbent. We train these 6 candidate configurations over the duration
of the window. When the window ends, we compare the performance of the candidates and
the best one becomes the new incumbent for the next window.

This setup provides an efficient optimiser for AutoML on data streams, showing that Bayesian
optimisation is possible and useful beyond batch AutoML.

Through this current and future efforts, SEDIMARK is set to offer a comprehensive, automated,
and user-friendly Data Processing Pipeline, enhancing the efficiency and applicability of
machine learning models across various user groups and applications.
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4 Techniques for reducing energy consumption of
data technologies

The environmental impact of computing technologies has become an increasing concern,
particularly in big data processing and machine learning, where computationally intensive
processes consume vast amounts of energy and generate significant carbon emissions. As
state-of-the-art ML models grow exponentially in size, their demand for computational power
scales accordingly, amplifying their carbon footprint and increasing the environmental cost
associated with data storage and transfer. In response to these challenges, recent research
has focused on optimising ML model training and inference to improve energy efficiency while
maintaining performance. SEDIMARK aligns with these efforts by implementing strategies to
minimise environmental impact of its ML processes. This chapter outlines several approaches
that SEDIMARK will adopt to enhance energy efficiency in ML and data management based
on what performed in the first version of the deliverable and the work so far towards this
direction. Section 4.2 explores strategies for reducing energy consumption during ML training,
including coreset selection, data distillation and dimension reduction. Section 4.3 presents
techniques to optimize model efficiency, such as model compression, quantisation, pruning
and low-rank factorisation. Section 4.4 examines how dimension reduction can lower the
environmental costs of data sharing. Section 4.5 addresses energy-efficient data storage
solutions. Section 4.6 develops the concept of a lightweight SEDIMARK toolbox designed for
edge device compatibility.

Training modern ML models requires substantial computational resources, often involving
repeated processing of large datasets using power-intensive hardware such as GPUs and
TPUs. This escalation in energy use has multiple implications:

Increased energy consumption makes ML training financially prohibitive for smaller
organizations posing high operational costs.

Environmental constraints as ML-driven energy demand raises carbon emissions,
particularly when relying on non-renewable energy sources.

High power usage can stress existing energy grids, challenging the long-term
sustainability of Al development causing infrastructure problems.

To mitigate these effects, SEDIMARK prioritizes improving data efficiency during ML training.
By reducing the volume of data required for model development, the framework lowers
computational costs while maintaining model accuracy. This approach is critical for minimizing
the environmental footprint of ML workflows.

This section highlights three key techniques for optimizing data efficiency in ML training;
coreset selection (reducing dataset size while preserving essential information), data
distillation (compressing knowledge from large datasets into smaller, more efficient forms), and
dimensionality reduction (eliminating redundant features to minimise computational overhead).

Document name:|D3.2 Energy efficient Al-based toolset for improving data quality. Page: 57 of 118

Reference: SEDIMARK_D3.2 |Dissemination: PU Version: | 1.0 | Status: Final



R

SEpIMARK

Coreset selection [57],[58] is a compression technique that selects a smaller representative
subset of data from a larger dataset while preserving its key properties. This enables machine
learning models to be trained more efficiently, using less data and computational resources,
while still aiming to preserve the quality and accuracy of the models trained on the complete
data. Coreset selection is particularly valuable in scenarios where computational efficiency is
crucial and when dealing with massive datasets that are costly or impractical to use in their
entirety for training purposes. In the context of SEDIMARK, coreset selection could be applied
in several innovative ways to enhance its functionality and efficiency:

: SEDIMARK can utilise coresets to facilitate efficient
distributed training across its decentralised network. By allowing each node to hold a
coreset instead of the full dataset, the network can minimise the data transmission
overhead and reduce training times, leading to significant energy savings.

: When nodes need to communicate or synchronize datasets,
transmitting coresets instead of full datasets can reduce the required bandwidth and
enable faster, more efficient data sharing.

: For nodes operating in environments with
limited computational resources, such as |loT devices or mobile phones, coresets can
enable these devices to participate in the ML training process without the need for high
computational power.

: When developing new models or experimenting with different
algorithms, SEDIMARK users could employ coresets for rapid prototyping, allowing for
quick iterations over model design with less computational cost.

Different from coreset selection, data distillation [59],[60] in machine learning involves
significantly reducing the size of a dataset by creating synthetic data that captures the essential
information of the original data. This process allows the training and tuning of machine learning
algorithms efficiently, akin to using the complete dataset. In SEDIMARK, in addition to
achieving energy reductions akin to those from coreset selection, data distillation can also be
leveraged to enhance its privacy protection capabilities in several ways:

: By distilling data to only its essential features,
SEDIMARK can share insightful synthetic data across its network without exposing the
raw data, which might contain sensitive user information.

: Distilled datasets can be designed to exclude personally identifiable
information, allowing the platform to utilize and share data while adhering to privacy
regulations and user consent.

: A smaller, distilled dataset minimizes the risk of data breaches,
as less real information is stored and transmitted, reducing the exposure of user data.

In decentralised ML three main costs are associated with the learning process: (i) the
communication cost, (ii) the cost of training time and (iii) the final model accuracy. Achieving
high accuracy while keeping the cost of training time low in decentralised ML often incurs high
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communication costs. On the other hand, decreasing the communication costs while
maintaining high accuracy leads to high model training costs, since with sparse communication
between the working nodes it takes longer for the decentralised ML model to converge. The
goal of SEDIMARK is to develop energy-efficient ML solutions, therefore the ML models
implemented within the project aim to find a balance between high accuracy and low
communication and training time overhead. Inspired by [61], in decentralised ML settings, two
distinct contexts can be distinguished:

, wWhere the amount of coordination between
computing nodes is sparse. In this setting, some global coordination is still required.
Computing nodes must agree on the hyperparameters of the learning algorithm, such as
the number of latent factors, and must have commonly agreed identifiers for the items in
the product database.

, Where each computing node knows the number
of cooperating computing nodes and global synchronisation is possible, with any pair of
computing nodes able to send and receive parameters and coordination data between
each other.

One of the main advantages of SCL is that it is closely following the implementation of a
centralised ML algorithm and therefore, it generally follows the accuracy of the centralised
algorithm. However, this comes at the expense of a heavy communication overhead, requiring
n all-to-all synchronisations per epoch (n being the number of nodes participating in the
learning process) to ensure that computing nodes keep their model parameters in sync. Note
that originally this approach was developed to suit large supercomputers, where it is possible
to control the overall number of workers and balance the data distribution in order to find the
best trade-off between the level of parallelisation (i.e. the overall number of computing nodes
involved) and the communication overhead. However, in SEDIMARK, the data is already pre-
allocated, and the overall number of participating computing nodes cannot be easily controlled.
The high communication cost can have a significant impact on the efficiency of the distributed
computation.

In contrast, WCL provides a communication-efficient alternative. The main advantage of this
approach is that a computing node communicates only with a small subset of other computing
nodes during the exchange of the model data. However, this reduced communication can
mean that the global ML algorithm needs a substantial number of epochs to converge since
this approach is inherently slower at distributing the contribution of training data to the model
across the entire network of participating computing nodes. SEDIMARK aims to develop an
efficient decentralised ML interface, focusing on minimising the communication overhead and
minimising the training time of the global model. Therefore, SEDIMARK aims to develop a
hybrid approach combining weak and strong coordination. As demonstrated in [61], the
communication-intensive strongly coordinated algorithm can be used to boost the model
parameters into a part of the solution space in which the model can converge to a good
solution. The remaining convergence steps can then be computed by the weakly coordinated
approach, reducing the high communication overhead in the later stages of learning when it is
no longer necessary.

The goal of this hybrid approach is two-fold: (i) minimise the communication and model training
costs while simultaneously (ii) maximise the model accuracy. As discussed above, SCL will
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address the model's training costs, while WCL will keep the communication overhead at a
minimum.

One of the main reasons for the slow training time of WCL is the fact that all computing nodes
start from random model parameters. This, together with sparse communication of the
algorithm, results in longer training times as the algorithm requires some time to distribute the
data across the entire network.

For simplicity and for proof-of-concept scenarios SEDIMARK has opted for using the SCL,
assuming that the number of cooperating computing nodes is known beforehand. This is
realised within SEDIMARK because all participating nodes are using the marketplace to get
the model assets and thus the initiators of the decentralised ML process can know at any given
point in time which participants are members of the process.

The accuracy of today’s machine learning models has significantly improved over the past
decade. However, this improvement comes with the price of massive, over-parametrised
models causing high energy consumption and unacceptable delays in inference which is often
performed in real-time. To address the above issues a large body of research has formed with
the main goal of improving the efficiency of machine learning models while also maintaining
optimal accuracy. Taking inspiration from [62], SEDIMARK focuses on reducing the memory
footprint and computational cost of the machine learning models and hence focuses on five
main approaches for model compression:

methods that exploit statistical redundancy in the data to
compress the size of the model without error.

- the goal of this approach is to decrease the size of model weights. Broadly
speaking, this is achieved by reducing the precision of model weights from the high-
precision floating point representation to the low-precision floating point or integer
representation. This achieves a compact model representation.

- the focus of this approach is to remove neurons with small saliency (sensitivity)
from the neural network. This achieves a sparse computational graph with a smaller
memory footprint. The approach can be further structured into:

Unstructured pruning, which removes all salient neurons achieving aggressive pruning.
However, this leads to sparse matrix operations which can be hard to accelerate.

Structured pruning focusing on removing groups of parameters. On the plus side,
aggressive unstructured pruning still allows for dense matrix representation but can
lead to a significant loss of model accuracy.

- this approach uses the large model as an input in the Al
algorithm to produce a smaller, more compact model.

- these techniques use factorisation to represent the weight
matrix with a product of two smaller matrices.

- Mixed precision is an optimisation technique
that uses lower numerical precision such as 16-bit or 8-bit formats instead of standard 32-
bit floating point for model training and inference. This approach reduces memory usage
and computational load while maintaining comparable model accuracy. It is supported by
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most modern hardware accelerators and is commonly used to improve execution speed
and energy efficiency across a range of machine learning applications. It offers a balanced
trade-off between efficiency and accuracy and is commonly used as a standard
configuration for benchmarking other optimisation methods such as quantisation or low-
rank adaptation.

Different model compression techniques can be applied to different ML models. For instance,
Deep neural networks can be compressed using all compression methods listed above. In
contrast, more traditional machine learning models, such as decision trees or random forests,
can be compressed using pruning or quantisation techniques [63]. SEDIMARK aims to develop
a small number of approaches covering all four compression methods. This will allow the
potential user to choose the compression technique best suited to their model.

Lossless compression techniques can be applied in federated learning (FL) to reduce the size
of exchanged model parameters without affecting model accuracy. By compressing local
updates before transmission, communication efficiency can be improved while preserving the
integrity of the training process.

In typical FL setups, multiple edge devices train models locally on sensitive data and send the
resulting updates to a central server for aggregation. However, the repeated exchange of large
model parameters introduces significant communication overhead and energy consumption—
especially in vanilla FL topologies, where the central server handles all aggregation. Efficient
compression methods are therefore essential to mitigate these bottlenecks.

Lossless compression is a type of data compression that exploits statistical redundancy in the
data to reduce its size without any information loss. It is mainly used in applications where
preserving the data's integrity is required or highly desirable (such as in text documents or
executable files). In contrast, lossy compression is that in which the uncompressed data is not
identical to the original, which usually comes as a trade-off between the accuracy or fidelity of
the data and the achieved compression rates, allowing for significantly smaller file sizes at the
cost of some loss in quality or precision.

Some common lossless compression methods are: substitution coders [100]-also known as
dictionary coders-, where the data is converted to text strings that are then substituted by the
index in a dictionary; entropy coding [101], which encodes common sequences in data using
fewer bits than less frequent or rare sequences; or run-length encoding [102], which
compresses consecutive occurrences of the same value by representing them as a single
value followed by the number of repetitions. Although general purpose encoders are common
and widely used, most techniques are optimized for a particular type of data (images, text,
audio, etc.) to better exploit its statistical properties. Many algorithms combine two or more
techniques to further increase the compression ratio they can achieve. Some of the most
extended are:

which assigns variable-length codes to the input symbols, with frequent
symbols being encoded using shorter codes.

which identifies repeated sequences in the data with a sliding
window and dynamically builds a dictionary of variable size. The two main algorithms from
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this family are LZ77 and LZ78 [103], which serve as basis for other variants such as LZMA
(Lempel-Ziv-Markov) or LZW (Lempel-Ziv-Welch).

[104] a widespread algorithm that combines LZ77 and Huffman coding.

[105] a family of entropy coding algorithms that encodes
the information as natural numbers.

[106] which reorders the input data to achieve longer
sequences of repeated symbols before applying run-length encoding techniques.

These algorithms have been implemented in several software that are widely used for many
applications. For example, GZIP, Zlib, Brotli, Zstd, Zopfli, Bzip2, Snappy or LZ4, to name a
few. Although modern algorithms are high performant, lossless compression techniques are
limited by the statistical properties of the input data, as data with no redundancy cannot be
compressed.

In the context of machine learning, deep learning models typically present high entropy,
consisting of large set of floating-point numbers with a seemingly random distribution. Since
data with high entropy is difficult to compress, lossless methods usually fail to achieve high
compression ratios. As a conclusion, lossless compression should only be used in applications
where achieving the highest accuracy is prioritized over communication costs and storage size.

In Federated Learning, inter-agent communication is one of the most critical steps for the
training to be carried out successfully. Since bandwidth is limited, efficient communication is
required to avoid bottlenecks.

Fleviden [5] offers a lossless compression solution to optimize the size of the exchanged
messages in use cases where model integrity and high accuracy are desirable. As Fleviden
messages contain more than just the model’s updates, the solution is agnostic to the type of
input data contained in the messages (formatted as JSON-serializable dictionaries). The
solution is implemented as a package of compression pods that encode and decode Python
dictionaries efficiently, with several available options that can be tuned to the case at hand. To
comply with the JSON-serializable requirement of all Fleviden modules, these pods perform
the following steps:

where dictionaries are converted to byte objects. Two binary serialization
formats are implemented, namely, MessagePack [129] and CBOR2 (Concise Binary
Object Representation [128]). The first is slightly faster and more compact, but the latter
supports advanced data types, which expands on the agnosticism of Fleviden’s
COMpressor.

applying one of the algorithms available as Python packages, such as
Zstd (Zstandard) or LZMA. Zstd is faster and the default choice for most use cases. LZMA
is more computationally expensive but achieves greater compression ratios. A trade-off
must be made between speed and ratio, so users must select one or the other according
to their needs.

Because byte objects are not JSON-serializable, they must be encoded
as strings before generating the final output. A base64 encoding block is used for this
task, as it provides the best possible code with printable ASCII characters.
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The steps are executed in reverse order for the decoding and decompression of previously
encoded data. For the decoding pipeline to work as expected, the same compressor and binary
serialization format must be agreed upon. To enable interoperability with other pods, the output
message is another Python dictionary that contains the compressed and encoded information,
as well as additional metadata about the process, such as the achieved ratio. Because the
model is reconstructed without error, its performance is not compromised in any way.
Therefore, the only trade-offs are related to the cost in energy and time of the algorithms
themselves.

In a typical federated learning scenario, participants may use the compression pod as the first
contact layer between inter-agent communication, or to store models in a more compact file.
The attached metadata of the pod can be used to check that the decompression process was
successful or to gather compression metrics from different clients.

To address the communication efficiency challenge, quantization techniques have been
implemented to compress the size of messages exchanged between the clients and the server
during the FL process. These techniques fall under the category of lossy compression,
enabling a significant reduction in update sizes without the need to fully preserve the original
data, while still ensuring convergence of the global model.

In this context, the Quantized Stochastic Gradient Descent (QSGD) algorithm [130] was
integrated as a quantization method, due to its proven convergence guarantees for both
convex and non-convex optimization problems. QSGD transforms model parameters into
discrete levels controlled by a configurable parameter (s), followed by encoding them using
Elias Omega coding, a compression scheme that efficiently represents integer values—
especially when smaller values are more common, which is often the case in gradient updates.
Together, these mechanisms enable substantial communication savings with minimal impact
on model accuracy. This quantization strategy was implemented within the Fleviden federated
learning framework through the development of two new pods:

The pod, which performs the quantization and dequantization of model parameters
according to the QSGD scheme.

The pod, which encodes and decodes the quantized values using the Elias Omega
method.

These pods can be flexibly connected to other components such as the server, agents, and
aggregator modules. For instance, when the server receives updates from clients, they are
first passed through the pod for decoding, then through the pod to reconstruct the
approximate floating-point values before aggregation. The reverse process is used when
sending updates back to the clients.

A detailed description of the algorithms, including pseudocode, design details, and software
architecture diagrams, can be found in SEDIMARK _D3.1 [104]. Interested readers are referred
to that document for an in-depth technical overview of the quantized federated learning solution
and its integration within Fleviden.

The goal of pruning techniques is similar to the goal of quantisation and that is to produce more
compact models with a reduced memory footprint. However, in this case, rather than
compressing the model weights, pruning removes the redundant parameters or neurons. This
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happens when the weight coefficient is replicated or close to zero (0) or zero (0). The pruning
techniques can be categorised in various ways [64]:

Based on the symmetry of the pruned network into symmetric and asymmetric methods

Based on whether the pruning is performed after or during training into static or dynamic
pruning

Various elements can be pruned in deep neural networks [65] as follows:

- refers to removing the network weights based on some condition, such as for
example weights below some pre-defined threshold. This requires traversing weights one
by one, which can affect the running time.

- different from removing weights, this method refers to removing the redundant
neurons.

- when removing filters, these are first ranked according to their importance based
on a pre-defined metric and then the least important filters can be removed.

- another pruning approach looks at removing entire layers from deep networks.

SEDIMARK will provide a suite of pruning approaches based on the user needs. For example,
for users who wish to save energy during the training process, SEDIMARK will offer dynamic
pruning methods. On the other hand, for users who wish to reduce the memory and inference
cost of an existing model, a static pruning strategy might be more suitable. Similarly,
SEDIMARK will allow the user to choose the specific model elements they wish to prune and
will suggest suitable pruning approaches accordingly.

Knowledge distillation consists of two models, the large original model, which is also referred
to as the teacher model and a smaller representation of this larger model called the student
model. The goal of this approach is for the student model to learn the generalisation of the
teacher model [66]. Previous research showed that shallow student models are capable of
learning complex functions of the teacher models while maintaining nearly the same accuracy.
Summarising a recent survey on knowledge distillation [67], there are three main components
in this approach:

: the types of knowledge used to learn the student model can be further
classified into (i) response-based, (ii) feature-based and (iii) relation based. The goal of
(i) is to directly mimic the final prediction of the teacher model. This is achieved by feeding
the response of the last output of the teacher model into the student model. One of the
disadvantages of this approach is that it can only handle supervised learning. (ii) is an
extension of (i) in so far as rather than just learning the output of the final layer, the student
model also learns the outputs of the intermediate layers, also called the feature maps.
Finally (iii) rather than using the outputs of some specific layers, the focus of this approach
is on the relationships between the feature maps.

: this refers to the training approaches for teacher and student
models. Based on whether the student and teacher models are updated simultaneously
the distillation strategies can be divided into three categories: (i) offline, (ii) online and (iii)
self-distillation. The offline distillation approach is done in two steps, first, the teacher
model is built based on the training data and then the student model is built based on the

Document name:|D3.2 Energy efficient Al-based toolset for improving data quality. Page: 640f 118

Reference: SEDIMARK_D3.2 |Dissemination: PU Version: | 1.0 | Status: Final



R

SEpIMARK

knowledge from the teacher model. On the other hand, the online distillation strategy
learns both teacher and student models simultaneously. This approach often takes
advantage of parallel high-performance computing. Finally, self-distillation uses the same
networks for both teacher and student models. To better distinguish the three approaches
a good analogy is used in [67], where in method (i) the teacher teaches the student, in
method (ii) both teacher and student learn together and in the final method (iii) the student
learns by themself.

: this refers to the problem of the right design of structures
in teacher and student models. The general idea of knowledge distillation is to transform
the wider and deeper teacher model into a smaller and shallower student model.
Therefore, a student model can become one of the following options: (i) a model with
fewer layers and channels, (ii) preserved structure of the teacher model in quantised
version, (iii) keeping efficient basic operations, (iv) minimised model optimising global
structures and (v) same as the teacher.

In neural networks, the weights being shared among working nodes are represented as weight
matrices. Hence, the size of such weight matrices can be effectively reduced by low rank
factorisation methods. The goal of low rank factorisation is to represent the target matrix with
two or more smaller matrices. One of the most common low rank factorisation techniques is
Singular Value Decomposition (SVD). Two aspects of neural networks could be decomposed
into their low rank alternatives, (i) linear layers, and (ii) embeddings [68]. Some approaches
aim to decompose both aspects of neural networks. Model optimisation techniques utilising
low rank factorisation can become twice as fast in the learning process as their uncompressed
counterparts while showing only a 1% drop in the model accuracy [69],[70]. Low rank
factorisation methods can be used to speed-up tasks such as for example text character
recognition models, object detection and image retrieval [69]. SEDIMARK will provide
approaches such as SVD to the end user, and SEDIMARK will allow the user to choose
whether to apply the low-rank decomposition to the convolutional layer or the fully connected
layer, similar to the approach studied in [71].

Another use case of low-rank factorisation is the fine-tuning process of Large Language
Models (LLMs). Because LLMs often contain a very larger number of trainable parameters,
fine-tuning such models can require substantial memory and computational resources.
Therefore Low-Rank Adaptation of LLMs (LoRA) [80] can be incredibly useful to end users with
limited access to computational resources. This is achieved by freezing the pre-trained LLM
parameters and only train small representations of the pre-trained parameters in selected
layers during the fine-tuning process. In SEDIMARK, the Recommender Systems module
contains a retrieval algorithm which is based on neural sentence transformers, called the Bi-
Encoder. We added LoRA to the Bi-Encoder model to allow for more efficient fine-tuning
process of this model and we discuss the comparisons of the full model vs. the modified model
using LoRA in Section 5.3.7.

Reducing energy consumption during data sharing is a crucial aspect of optimizing machine
learning workflows, particularly when dealing with large-scale datasets. Data transfer across
networks, especially for high-volume, high-frequency processes such as model training and
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inference, can be a significant contributor to energy consumption. The environmental impact
of data sharing is amplified when vast amounts of data are continuously moved between
centralized servers, requiring substantial computational resources and network infrastructure.
This becomes particularly problematic in distributed systems, where data transfer between
remote edge devices and central cloud storage increases the overall energy footprint.
SEDIMARK aims to address these challenges by employing strategies that reduce the volume
of data shared without compromising model performance. One such approach is the use of
data compression techniques, which reduce the size of datasets before transmission. The use
of advanced algorithms that compress data with minimal loss of important information, can
significantly lower the energy required for storage and transmission. Furthermore, edge
computing is integrated into the framework, which ensures that data processing is done closer
to the source, reducing the need for large-scale data transfer to central systems. This
decentralized approach not only cuts down on energy costs associated with long-distance data
transfer but also helps to alleviate the strain on network infrastructures. Another technique that
SEDIMARK employs to reduce energy consumption during data sharing is the application of
data sparsity and pruning methods. By identifying and removing redundant or irrelevant data
points, the framework minimizes the amount of data that needs to be transmitted. Additionally,
data sharing can be optimized by using more energy-efficient protocols and transmission
methods, such as low-power wide-area networks (LPWAN) or other technologies designed for
low-energy data exchange.

As the SEDIMARK framework primarily features a decentralised approach to data
management at the edge, it is necessary to take into consideration energy consumption as a
result of data storage, which in cases of some providers will be crucial for maintaining
reasonable costs. Increasing energy efficiency in relation to data storage on the data level,
mainly involves reducing the storage footprint of artefacts produced during the data processing
pipeline, and the storage of the final Data Assets that will serve as part of the providers
Offerings.

In addition to data reduction methods such as deduplication as defined in Section 3.7.3,
compression techniques can also be used, in addition to aggregation methods where Data
Assets sources are co-located. Single-instance approaches can also be used at a higher level
in comparison to deduplication, whereby similar chunks within Data Assets can be removed
and linked to instead. Caching techniques can also be applied to Data Assets in cases where
access to them is frequent. The granularity of annotations for Data Assets has a significant
impact on the storage footprint, i.e. whether annotations are done on the atomic level of data
points or on the level of windows or batches of time-series data points.

In relation to Al Model Assets, pruning (Section 4.3.3) and knowledge distillation (Section
4.3.4) techniques can be applied. These methods can allow Al Model Assets to operate with
fewer computations, reducing the energy required for training and inference. Studies have
shown that pruning combined with distillation can significantly reduce training energy costs
while maintaining accuracy.

For intermediate artefacts generated as a by-product of a data processing pipeline as
illustrated in Section 3.3, “downcasting” can be used is to reduce the primitive datatypes used
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from one of a higher magnitude to a lower, such as float64 to float16, as long as the
corresponding value is within the bounds of the smaller datatype.

More efficient datatypes can be adopted for data columns with a small number of unique
values, such as the case for labels. In the case of Pandas, function such as “Categorical’ and
“to_numeric”.

For certain types of dataset serializations, several compression formats can be applied to
significantly reduce the size footprint, such as in the case with pickle which supports gzip, bz2,
Zip, xz, and zstd.

Data Brokerage implementations are normally built upon well-established open-source
databases. How these databases are configured can have a significant impact on the storage
footprint. Data Providers are expected to produce data assets at different velocities and
volumes, and hence how their data assets are evolving need to be monitored to continuously
re-configure as per need and compute resource constraints of the hosting server.

In the case of the Stellio Context Broker (Section 3.3), the PostgreSQL database serves as
the underlying data store. Performance tuning tools can be used, which focus on configuration
settings for a set of application scenarios, in relation to storage requirements, especially for
shared_buffers which acts as the cache.

One effective strategy for reducing energy consumption in data technologies is to shift some
processing closer to where the data is generated (i.e., at the edge). In many scenarios, local
processing allows devices to reduce the frequency and volume of data sent to the cloud, which
can significantly lower energy consumption. This may lead to them being included “on the
sensor”, directly on the microcontroller unit (MCU) that reads the probe and controls the
sending of the data to the network. One can think of various ways to integrate such capabilities
into a dynamic data platform such as SEDIMARK. The current choice is to explore the
possibility of pushing processing algorithms from the platform to the MCU in the sensor by
using a bytecode language (WebAssembly) via some Edge Cloud orchestration services (see
SEDIMARK _D4.3 [6]). This allows the simplification of DevOPs operations by setting up a
single compilation chain on the cloud side, at the price of providing an implementation of the
SEDIMARK WebAssembly platform API for each MCU one wants to support. This brings the
main advantage of being able to integrate any kind of sensor, by any vendor, without requiring
them to set up a full compilation chain for their device on the Cloud side. The vendor will only
need to work on their device, making them compatible with the SEDIMARK API and protocols.

The choice of WebAssembly bytecode is driven by its fast adoption and support by major
vendors, its very compact size when compiled, the availability of bytecode interpreters and
compilers on all kind of platforms (including microcontrollers), and the availability of compilation
chains for various languages (including C++ or javascript for example).
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5 Trade-offs between performance, communication
cost and energy efficiency

Data processing may require significant computing resources to analyse the datasets,
depending both on the size of the dataset and the type of processing to be done or the selection
of the processing algorithm. Similarly, training machine learning models also require significant
resources, both when training data locally and in a distributed way. The previous section
presented techniques to reduce the energy consumption when training machine learning
models or when sharing data. However, these methods normally use less energy with the cost
of performance or accuracy. It is therefore critical to assess the trade-offs between energy
consumption, performance and communication cost in a way that data providers of consumers
can know the effects of targeting for (i) maximum energy efficiency against performance and
vice versa or (i) minimum communication cost against performance. This subsection presents
the final analysis of the trade-off results, expanding the initial analysis presented in the first
version of the deliverable SEDIMARK _D3.1 [74].

This section investigates the trade-offs between communication efficiency and the overall
model accuracy. The experiments and analysis are performed using deFLight, a tool that
enables federated learning and gossip learning approaches and is already implemented in
SEDIMARK and presented in more detail in SEDIMARK_D3.3 [5].

Experimental Setup:

: A small subset of the MNIST dataset is used [54]. This is a labelled dataset of
handwritten digits and the goal of an ML model is to correctly recognise such digits. To
mimic a real-world data distribution in decentralised systems, the dataset is divided
between the worker nodes in a non-IID fashion. In particular, each working node is
assigned 50% of the images attached to one label and the other 50% attached to another
label. A small portion of 1ID data distribution in the form of 100 IID images per working
node is also added.

: The nodes passively receive model weights from other participating
working nodes (in Gossip learning) or from the server (in Federated learning).
Communication percentage values C are set to [0.25,0.5,0.75,1.0]. In the context of
Federated learning this corresponds to the percentage of worker nodes participating in
the model aggregation step by the server and in the context of gossip learning this
corresponds to the percentage of communication peers for each worker node. A record
of the overall number of bits exchanged between participating nodes/server during the
learning process is also kept. The goal is to keep high accuracy while maintaining the
smallest possible communication cost (i.e. the number of bits exchanged).

The federated learning module for each communication setup is run over 10 runs and reports
the average across those runs. Figure 22 illustrates that the model has a smooth convergence
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curve achieving high model accuracy when the level of communication is set to 100%. On the
other hand, the convergence curve is not so smooth with the communication level of 25% also
resulting in a significant final performance drop of 0.23. However, note that by decreasing the
level of communication from 100% to 50% the drop in final model accuracy is just 0.05, while
being able to decrease the number of bits being sent around (at that point in time) by 5.8 billion
which equals significant energy savings, as shown in Figure 23.
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This experiment is averaged over 4 runs and the results are plotted in Figure 24. As expected,
the model achieves the best accuracy when the worker nodes are set to 100% communication.
However, by decreasing the level of communication to 50% a drop in accuracy from 0.98 to
0.97 is noted, while decreasing the level of communication by half, which in this case equals
to a whopping 276 billion bits saved from communicating (shown in Figure 25). This illustrates
how massive savings in energy consumption through communication volume can be achieved
with minimal impact on final model accuracy.
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In this section we further extend our experiments with deFlight to consider two newly
introduced topologies, Split Learning (SL) [90] and Federated Distillation (FD) [89]. We again
employ the MNIST dataset, setting aside 20% of the data to be randomly distributed between
all nodes, and with the remaining data assigning only 2 labels to each node, thus creating a
non-iid split. In the case of gossip learning, we use a fully connected graph. Both SL and FD
are implemented without any server-side aggregation of model weights. We then allow the
experiments to run for 2 hours each. In Figure 28 and Figure 29, we then plot a rolling mean
(with window size 50) of the accuracy attained against a) the number of bits communicated
and b) the number of floating point operations per second (FLOPS) in one forward pass of a
model, multiplied by the total number of forward passes conducted by the clients at each point
in time.
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We observe that, while Federated is unsurprisingly more efficient in terms of communication,
Gossip employs somewhat less FLOPS in order to reach a similar level of accuracy. FD shows
great benefit in terms of the communication cost, and this is due to the fact that instead of
communicating full model weights, it is only sending the logits for a relatively small number of
datapoints. On the other hand, SL incurs a high communication cost, as it needs to
communicate tensors and gradients after every batch of data that is processed. However, it is
fairly efficient in terms of FLOPS, likely, because the central model is being trained
asynchronously. The good performance of FD in terms of flops might be ascribed to the fact
that the global portion of data used to share logits is IID.

In this experiment we leverage Fleviden to analyse the trade-off between accuracy and
communication cost in a Federated Learning scenario. Like in the previous experiment
conducted with DeFLight, we will train a Convolutional Neural Network for the classification of
the MNIST dataset, measuring the differences in accuracy and loss when the number of
participants N in a training round is limited to a percentage C of the whole federation —i.e., only
N*C clients train and contribute to the round aggregation—. The dataset has been divided into
ten subsets where, to emulate a typical Federated Learning casuistic, each subset contains
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80% of the samples of one label and 20% of the rest —i.e., client zero will have most of the digit
zero images, and so on. The resulting label distribution per client can be seen in Figure 28.

Label Distribution per Client

Client ID
mm Client 0
B Client 1
mmm Client 2
N Client 3
B Client 4
mmm Client 5
mmm Client 6
mmm Client 7

Client 8
mmm Client 9

5000 4

4000

3000 4

Count

20004

1000 +

Digit Label
Figure 28: Label distribution per client in the experiment, where each client represents most of
the samples for each digit label (highly imbalanced distribution)

The communication cost per round is measured in terms of the total number of bytes
exchanged between clients and the aggregation server. The accuracy is measured over a
uniformly distributed test set at the server at the end of each round. A FedAverage strategy is
used for the aggregation. In total, 15 rounds are completed per experiment run. Regarding
local training configuration, clients train the model for 1 epoch with a randomly selected subset
of 3000 samples. The reason behind this limitation is to homogenize the number of images
used in different clients, since the total number of samples varies depending on the digit.

The experiment evaluates the test accuracy for C in [0.2, 0.4, 0.6, 0.8, 1.0]. The subset of
clients in a round when C<1.0 is chosen randomly. The resulting accuracy curve obtained is
shown in Figure 29.

Accuracy vs %clients per round
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Figure 29: Accuracy versus number of clients per FL round
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Due to the use of the toy dataset and the expressiveness of the CNN, all models eventually
reach an accuracy around 0.98, although, as an obvious result, the higher the number of
participants, the faster convergence occurs. In this case, however, differences between C=0.6,
C=0.8 and C=1.0 are practically negligible. As can be seen in Figure 30 below, each client
represents around 7 MB in the total sent to the server, which means that we could save almost
30 MB per round with no detrimental effects.

Average size client-server messages

80,00
70,00

60,00 57,83

50,00
43,37

MB

28,91
30,00

20,00
14,46

10,00

1 08 0.6 0.4 02

%clients per round

The results are, as expected, similar to those achieved in the deFLight experiment.

Even though in this toy scenario the CNN model is not too large for communication to become
prohibitive, applying lossless compression in our federated learning setup can help us reduce
the size of the message exchanges at a relatively small computational cost. To do so, we
leverage Fleviden’s compressor pod to encode and decode messages before client-server
communication takes place.

The compressor pod is configured to use MessagePack as the binary serialization format,
Zstandard as the compression algorithm —which prioritizes speed over compression ratio—,
and base64 as the string code for JSON-serialization. Every other parameter is the same as
in the previous setup. Since, by definition, lossless compression doesn’t modify the values of
the model’s weights, the accuracy curve is practically identical to the one in Figure 29, so it is
omitted here. In terms of communication cost, Figure 31 shows the average number of bytes
sent to the server in a round, for C=[0.2, 0.4, 0.6, 0.8, 1], compared with the vanilla scenario
with no compression.
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Average size client-server messages (Lossless compression)
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The achieved compression ratio is around 5.4, which reduces the size obtained with C=1.0 to
a lower value than the one with C=0.2 and no compression. Because Zstd is very fast, the cost
in terms of time is negligible in comparison with the local training time. As such, the benefits
outweigh the drawbacks; however, in lossless compression the ratio that can be obtained is
always upper bounded. To further compress the size of the messages, a quantization
approach must be used.

In this experiment, we leverage Fleviden’s quantization pod and compare the accuracy and
compression ratio achieved for different setups of the QSGD algorithm. Namely, we vary the
number of quantization levels (L) parameter in L= [175, 200, 225, 250, 500, 2000]. These
values have been selected heuristically through a preliminary experiment, because QSGD is
sensitive to the model size, and thus there is not a rule of thumb for the proper selection range.
The higher the number of levels, the fewer the reconstruction error of the decoding, and the
higher the computational cost of the encoding. All clients participate in every round (C=1.0),
but the other hyperparameters remain the same.

The accuracy curves obtained are shown in Figure 32 below.
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Accuracy vs quantization levels

Round

On the other hand, the number of megabytes exchanged for each L is shown in Figure 33. For
reference, the sizes without compression and with Zstd are included in the chart.

Average size of client-server messages (Quantization)

72,28

Mg

Regarding accuracy: QSGD quantization step pushes values to zero and decreases the
dynamic range of the input, which translates into reducing the expressiveness of the CNN and
consequently worsening the performance. When L=2000 (lowest quantization error), the final
accuracy reaches 0.96, which is a 0.02 loss with respect to lossless techniques. The
computational cost of encoding and decoding is, however, too high, to the point that it takes
several times the training time of an epoch. On the other end, L=175 impacts much more
significantly on the performance, with a drop of 0.15 that can be considered too drastic to justify
its use. Further lowering the number of quantization levels results in unstable training and the
curves do not converge. Regarding the compression ratio: the gain is quite significant with
respect to Zstd. With L=2000, the ratio is around 36, which increases up to 80 with L=175. A
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good balance between the two is found at 225, where the accuracy decreases only to
approximately 0.94, with a ratio of 72 and acceptable encoding-decoding time. It is important
to highlight that the classification problem is not very hard, and the dataset contains enough
samples to make the stochastic gradient descent smooth. In other more realistic scenarios,
the user should evaluate the trade-off more carefully and tune the number of quantization
levels to find the optimal spot in the trade-off.

This section investigates the energy efficiency trade-offs for a number of modules that are
already implemented within SEDIMARK. The performance of three modules is considered: (i)
the deFLight distributed learning module (described in SEDIMARK_D3.3 [§]), (ii) the Data
Deduplication and (iii) Anomaly Detection modules within the data pipeline. All three of these
modules offer a number of parameters or different methods for which the trade-off between
their computational efficiency and performance on a dataset can be examined. In the following
experiments, the popular python package eco2ai [53] is employed to estimate the CO:
consumption of the target algorithms.

Additionally, in this section performance evaluation of other techniques that have been
integrated within the SEDIMARK Toolbox (i.e. timeseries and data streams anomaly detection,
synthetic data generation, low-rank factorisation, time-series forecasting and offering
generation) are also presented.

This section considers the CO: efficiency of the federated learning scenario implemented with
the deFLight distributed learning component of SEDIMARK as the amount of client-server
communication is adjusted. Following the protocol described in greater detail in section 5.2,
ten non-IID training subsets of the MNIST dataset are created, and small convolutional neural
networks at each node are trained. Each experiment is run for 100 iterations and both the
accuracy attained and the COz output as measured by eco2ai are compared.
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In Figure 34, the CO- cost of running a full 100 rounds is observed to increase with the amount
of communication but in Figure 35 there is a trade-off here in the final accuracy attained.
However, Figure 36 shows that for any given target accuracy, running with higher
communication is actually more CO. efficient. With greater communication, the algorithm
converges much faster, which is demonstrated further in section 5.2. However, full or even
high communication can be quite unlikely in real world settings. As such, going forward the
DeFLight SEDIMARK module might target a) more efficient sampling of nodes and b) non-IID

Document name:|D3.2 Energy efficient Al-based toolset for improving data quality. Page: 78 0f 118

Reference: SEDIMARK_D3.2 |Dissemination: PU Version: | 1.0 | Status: Final



R

robust aggregation and distributed model training techniques such as e.g. FedProx [55], in
order to decrease the CO, consumption in low communication non-IID settings.

As described in section 3.7.3, the deduplication module includes an indexing component with
a significant effect on the computational cost of reaching a deduplication solution. Naively
indexing the dataset results in comparisons taking place between all pairs of records and thus
an O(n?) runtime complexity. However, there are two supplemental methods included - Block
and SortedNeighbourhood Index, which greatly reduce the number of comparisons made. The
Block method only compares records that agree on a specific variable - for instance in a
dataset of restaurant records, it might only compare restaurants within the same city. The
SortedNeighbourhood indexing method extends this by also including records within their
neighbourhood - e.g. perhaps if there are likely to be small spelling mistakes in the city name,
these will be compared to. The three methods are run on the Fodor/Zagat restaurant dataset,
which has ground truth duplicate labels [72]. For the indexing methods, the ‘city’ feature in the
dataset is used as an efficient way to draw out blocks of the data. Precision, recall and CO.
consumption are recorded and compared for the three indexing methods.
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In Figure 37 the high CO; cost of full indexing can be immediately observed. While ‘Block’
based indexing has a greatly reduced CO. cost, this increases somewhat for the
Neighbourhood method which also searches through neighbouring strings. In Figure 38,
negligible drops in precision for both of the block-based indexing methods are observed. On
the other hand, in Figure 39 it can be observed that recall is much higher for the full indexing
method, with a small drop for Neighbourhood, indicating that pure Block based indexing
causes us to miss comparing many records that would have been valid duplicates. Going
forward, the project’s intention is to explore further indexing methods that do not necessarily
sacrifice recall while still greatly reducing energy consumption compared to full indexing of the
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provided dataset. Smart data models might also be exploited to automatically select
performant features on which to index the data.

The SEDIMARK Anomaly Detection module contains a large number of different models,
which might be suited to different kinds of datasets. This section compares a large number of
algorithms on a generic tabular anomaly detection task. This work considers the tabular
anomaly detection task for which PYOD is built and experiments are run on the thyroid dataset
introduced by [56]. 11 models are considered: ABOD, AutoEncoder, Feature Bagging, HBOS,
Isolation Forest, KNN, LOF, MCD, OCSVM, PCA and DeepSVDD (discussed in section 3.7.1).
As the focus of this experiment is to show how a naive user might interact with these modules,
they are deployed using their default parameters from the PYOD library. As a performance
metric, the Receiver Operating Characteristic Area Under the Curve (ROC AUC) score is used,
measured against the true labels provided in the dataset.
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Comparing the results in Figure 40 and Figure 41, one can see that unlike the algorithms in
the previous sections, anomaly detection does not appear to show a clear trend between the
energy consumption produced and performance on the given task, with one of the lowest cost
models (HBOS) actually attaining the best performance. Furthermore, one of the most energy
consuming methods (DeepSVDD) has the lowest performance overall. This signals towards a
problem in the deployment of unsupervised methods - as the methods do not optimise directly
against a ground truth, it is hard to know a priori that e.g. a model with more parameters might
better fit the data. Indeed, this is in line with the problem of unsupervised model selection
discussed in section 3.7.1. As such, going forward, SEDIMARK seeks to further understand
the series of trade-offs implicit in fitting unsupervised methods in the absence of ground truth
data. SEDIMARK plans to employ some of the AutoML methods referenced earlier in the
deliverable (sections 3.7.1 and 3.10) to optimise both for energy consumption and accuracy.

The SEDIMARK Anomaly Detection module also integrates a large number of time series
anomaly detection algorithms through the TimeSeAD [85] benchmark. In this section we briefly
deploy the algorithms with their default hyperparameters on a section of the SMD dataset [88].
For algorithms requiring training, we set the number of epochs to 10. We largely adopt the
evaluation process from [85]. We train the models on clean training data, then evaluate them
on the contaminated test data against the set of withheld anomaly labels (which aren’t required
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for training). We measure performance using the best f1 metric suggested by the same

authors, and we record the co2 cost for our experimental runs in Table 2.

Table 2: Data Processing requirement analysis.

basellnes 0 2743 2 5605
baselines hbos 0.2929 0.1156
baselines iforest 0.3579 0.1465
baselines iqr_ad 0.1841 0.0707
baselines kmeans 0.3705 0.0713
baselines knn 0.4337 2.9676
baselines oos_ad 0.184 0.0715
baselines pca_ad 0.3999 0.0624
baselines wmd_ad 0.7073 0.062
prediction Istm_prediction_filonov 0.2216 0.1692
prediction Istm_prediction_malhotra 0.7072 0.6427
prediction tcn_prediction_he 0.7227 0.6114
prediction tcn_prediction_munir 0.3198 0.5374
reconstruction anomtransf 0.1838 5.8506
reconstruction autoformer 0.1936 1.6414
reconstruction dense_ae 0.3815 0.5127
reconstruction etsformer 0.1941 2.2693
reconstruction fedformer 0.1861 8.1379
reconstruction genad 0.1838 1.6139
reconstruction Istm_ae 0.5468 0.6523
reconstruction Istm_max_ae 0.1841 0.6713
reconstruction mscred 0.1838 12.3292
reconstruction stgat_mad 0.4162 2.2248
reconstruction timesnet 0.2717 22.8043
reconstruction untrained_Istm_ae 0.3944 0.8002
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reconstruction usad 0.1839 1.0528
other Istm_ae_ocsvm 0.1838 1.1864
other mtad_gat 0.4399 1.9327
other ncad 0.1874 3.8797
other thoc 0.2027 6.3633
generative donut 0.599 0.7524
generative gmm_vae 0.6841 0.9859
generative Istm_vae_park 0.6978 1.0306
generative Istm_vae_soelch 0.6864 1.29

generative sis_vae 0.5387 29.7981
generative beatgan 0.2043 23.8155
generative Istm_vae_gan 0.2044 1.4443
generative madgan 0.2003 9.1934
generative tadgan 0.1845 1.6854

As with the results in the previous section, there is no clear relationship between the
computational cost of the algorithms and their performance on the dataset. This signals both
the necessity for human oversight in the anomaly detection process, and the problems raised
about many of the benchmarks in the field, for instance the performance of extremely simple
predictors on many of the field’'s benchmark datasets [94].

This section details the evaluation and performance characterisation process of the proposed
solution for outlier detection in data streams described in Section 3.7.1.2. In order to be able
to thoroughly discuss the proposed algorithm, the same evaluations have been carried out on
the algorithms available in the River framework [41]. This framework promotes online machine
learning for streaming data in Python and therefore provides a suitable reference for
comparison.

The experiments were carried out using a dataset from the Santander pilot case platform, more
specifically from a temperature sensor. These observations are historical values from January
1st to September 16th (2021), with a periodicity of approximately 5 minutes. Therefore, in total
there are about 75,000 observations. This dataset has been divided into two separate portions:
45,000 observations as a training dataset and the remaining 30,000 observations as an
evaluation or test dataset. The training dataset is classified as clean, while 40 randomly
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assigned anomalies have been forced into the evaluation dataset, so that the efficiency of the
algorithms' detections can be subsequently evaluated. Figure 42 depicts the dataset used for
the experiments. The training dataset is represented by a blue line, while the evaluation dataset
is plotted with a light green line. In addition, the introduced anomalies are marked with dark
green dots.
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It is important to note that, since the algorithms are focused on data streams, the evaluation
dataset has been injected in a way that simulates the production of a sensor device, i.e., on
an observation-by-observation basis.

In order to fully characterise the algorithm proposed against the River’'s algorithms, two
different analyses have been conducted. Firstly, we report the results of the detection
capabilities of the algorithms, measured by metrics such as Precision or Recall. Secondly, we
provide the results obtained in terms of the algorithms' time performance

Considering the evaluation of the detection capabilities, as mentioned above, the algorithms
have been exposed to the same dataset, i.e., the same training values and the same evaluation
data stream.

The following metrics are used for the assessment of the evaluated algorithms’ detection
capacity: Precision, Recall, F1-score and AUC-ROC. Precision quantifies the proportion of
observations correctly identified as anomalies out of all the points flagged as anomalies by the
model. Recall measures the fraction of anomalous observations correctly identified as such.
F1-score provides the balance between Precision and Recall and is commonly employed as
the preferred metric for algorithm comparison. Finally, AUC-ROC represents the likelihood of
the model correctly identifying anomalies. The equations representing the first three metrics
are given in (2), (3) and (4), respectively, where TP is the number of True Positives (anomalies
correctly identified), FP is the number of False Positives (normal observations identified as
anomalies) and FN is the number of False Negatives (anomalies not identified).

Precision =TP/(TP + FP) (2)
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Recall =TP/(TP + FN) (3)
F1score =TP/(TP + (FP + FN)/2) (4)

Once the assessment methods are known, Table 3 and Table 4 present the numerical results
obtained. The first table shows the detection results obtained for the three aforementioned
variants of the proposed algorithm. In order to be able to properly illustrate and expose the
different characteristics of the variants, several combinations of parameters are included in
Table 3: th stands for threshold; and a is the EWMA importance factor. Alternatively, Table 4
shows the results obtained by the algorithms provided within the River framework, which will
later be used for comparison.

Table 3: Detection metrics of the EWMA-based proposed algorithm.

Precision Recall F1-score AUC-ROC
records‘ th ‘ o

0.2 0.0009 0.5 0.0017 0.3487
1'1 0.8 0.0009 05 0.0017 0.3487

Without - 0.2 0.0009 0.5 0.0017 0.3693
update 0.8 0.0009 0.5 0.0018 0.3734
0.2 0.0009 0.5 0.0019 0.3965

e 0.8 0.001 05 0.0019 0.4028

0.2 0.9524 1.0 0.9756 0.9999

1'1 0.8 0.5132 0.975 0.6724 0.9869

0.2 0.975 0.975 0.975 0.9875

12112 0.8 0.5652 0.975 0.7156 0.987

0.2 1.0 0.95 0.9744 0.975

" 0.8 0.7091 0.975 0.8211 0.9872

0.2 0.9524 1.0 0.9756 0.9999

1'1 0.8 0.9512 0.975 0.963 0.9875

With - 0.2 0.975 0.975 0.975 0.9875
smart update 0.8 0.975 0.975 0.975 0.9875
0.2 1.0 0.95 0.9744 0.975

- 0.8 0.975 0.975 0.975 0.9875

As mentioned, Table 3 shows the Precision, Recall, F1-score and AUC-ROC results obtained
for each of the combinations of the proposed algorithm presented. Previously, it was stated
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that the changes in the variants involved the updating of the model, which is based on EWMA.
For that reason, the a parameter plays such an important role in obtaining a good detection. A
higher value of a implies a higher weight or greater importance to the latest value of the time
series, as was shown in Section 3.7.1.2. Taking this into account, it is evident that the
performance of the second variant, “with update”, is greatly affected by this parameter, since
there are certain cases where the last value of the time series corresponds to an outlier, which
distorts the results. In contrast, in the third variant, the model does not include these anomalies,
as they have been already detected and removed, and is, therefore, relatively unaffected by

the a parameter.

Table 4: Detection metrics of the River algorithms.

Gaussian Scorer

Half Space Trees
tree_h=4

wndw =12

Local Outlier
Factor

One Class SVM

Precision | Recall

F1-score

AUC-ROC

wndw = 12
grc_prd =1 0.0055 1.0 0.011 0.8797
th=0.9
n_trees =10
0.4066 | 0.925  0.5649 0.9616
th=0.8
n_trees =10
1.0 0.65 0.7879 0.9616
th=0.9
n_trees =15
0.5692 | 0.925 | 0.7048 0.962
th=0.8
n_trees =15
- 1.0 0.425 | 0.5965 0.7125
th=0.9
n_trees =20
. 0.4368 0.95 0.5984 0.9742
th=0.7
n_trees = 20
- 0.9722 | 0.875 | 0.9211 0.9375
th=0.8
n_neigh =12
0.3824 | 0.975 @ 0.5493 0.9864
th=0.9
nu = 0.005
0.0032 0.35 0.0064 0.6033
th=0.9

Parameters note: wndw stands for window size; grc_prd stands for graph
convolution predicted value; th stands for threshold; n_trees stands for number of
trees; tree_h stands for tree heigh; n_neigh stands for number of neighbours; and

nu is upper bound on the fraction of training errors.
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Based on the results reported, there is evidence showing that for the type of dataset used and
its behaviour over time, the third variant of the proposed algorithm (i.e., the one “with smart
update”) shows the best performance metrics at all levels. This variant exhibit values higher
than 0.95 in each metric.

Furthermore, beyond the results shown in Table 3, the best performance obtained by the “with
smart update” variant is through the combination (records = 12, threshold = 1.3, a = 0.3),
obtaining values of Precision = 1.0, Recall = 0.975, F1-score = 0.9873, and AUC-ROC =
0.9875. This combination is graphically depicted in Figure 43, where the test dataset is
represented by a light green line, the anomalies introduced synthetically are plotted with dark
green dots, and the anomalies detected by the algorithm are shown with red circles.
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Table 4 provides the performance results obtained with the algorithms available in River.
Gaussian Scorer, Half Space Trees, Local Outlier Factor and One Class SVM algorithms have
been used, all in their versions for data streams. The best combinations have been selected
after a thorough process to analyse which parameters worked best for each algorithm. Note
that the only algorithm that achieves proper detection values is Half Space Trees, with its best
combination on (num_trees = 20, tree_height = 4, window_size = 12, threshold = 0.8) and
metrics of Precision = 0.9722, Recall = 0.875, F1-score = 0.9211, and AUC-ROC = 0.9375.
The remaining algorithms do not behave adequately with the dataset used.

Figure 44 displays the graphical results of the detection of the Half Space Trees algorithm
when configured to use the parameters that showed best detection performance. As in Figure
43, the test dataset is represented by a light green line, the introduced anomalies are marked
with dark green dots, and finally the anomalies detected by the algorithm appear as red circles.

Comparing both best combinations, the proposed algorithm using the “with smart update”
variant and Half Space Trees, it can be seen that the former offers better and more stable
detection values throughout the four metrics, as summarised in Table 3 and Table 4. Not only
does this hold true in its best combination, but also over a range of them. Moreover, the

Document name:|D3.2 Energy efficient Al-based toolset for improving data quality. Page: 88 0f 118

Reference: SEDIMARK_D3.2 |Dissemination: PU Version: | 1.0 | Status: Final



difference in performances is illustrated graphically, i.e., which anomalies have been detected,
which have been overlooked and which normal instances have been incorrectly identified as
anomalies in Figure 43 and Figure 44.
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Figure 44: Anomaly detection performance of the Half Space Trees algorithm by River.
Configuration parameters are: num_trees = 20, tree_height = 4, window_size =12 and
threshold = 0.8.

Concerning the second phase of the performance characterisation and comparison, it focuses
on the computational time of the algorithms (i.e., the delay introduced in the detection of an
outlier within the data stream). To this end, 300 Monte Carlo simulations have been performed
for each of the algorithms configured with the parameters that made them have their best
detection performance, monitoring both the training and assessment time of each of the
incoming observations. All these tests have been carried out on an Ubuntu 20.04.6 LTS
machine (2 CPU cores, 2.4 GHz clock, 16GB RAM). The resulting values are presented in
Table 5. The total computation time values from the beginning of the training to the assessment
of the last observation and the mean evaluation time per observation are provided. Note that
the training dataset is composed of 45,000 measurements while the test dataset is composed
of 30,000 records.

Table 5: Time performance results.

Total time (s) Mean detection time (ms)

Without update 5.9 0.197

(records: 12, th: 1.6, a: 0.4)

With update

(records: 12, th: 1.1, a:0.2) 127.76 4.259

With smart update

(records: 12, th: 1.3, a:0.3) 133.91 4.463
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Total time (s) Mean detection time (ms)

5.11 0.17

Gaussian scorer
(wndw: 12, grc_prd: 1, th: 0.9)

Half Space Trees

(n_trees: 20, tree_h: 4, wndw: 11.2 0.373
12, th: 0.8)

Local Outlier Factor
(n_neigh: 12, th: 0.9)

One Class SVM
(nu =0.005)

366.09 12.2

5.46 0.182

Parameters note: wndw stands for window size; grc_prd stands for graph convolution
predicted value; th stands for threshold; n_trees stands for number of trees; tree h
stands for tree heigh; n_neigh stands for number of neighbours; and nu is upper bound
on the fraction of training errors.

Table 5 demonstrates that, among the variants of the proposed algorithm, the computation
time increases considerably in the two approaches that update the model. It is obvious as they
do not keep the static photograph of the training dataset but include the new information and
have to recalculate the model continuously. However, this comes as the trade-off for high
precision. As for the algorithms provided by the River framework, Gaussian Scorer is the
fastest, followed by One Class SVM. Nevertheless, these two algorithms together with Local
Outlier Factor do not pose a strong challenge to the proposed algorithm due to their poor
detection performance. In contrast, Half Space Trees has proper performance values,
exhibiting an actually comparable trade-off with our proposed EWMA-based algorithm.

On the one hand, the proposed algorithm presented better detection values versus worse
computation time, while Half Space Trees, the best of the River algorithms, showed lower
detection delay versus poorer detection metrics. According to the needs and requirements of
the use case, i.e., depending on whether the priority must lie in the speed of detection or in its
accuracy, one or the other should be chosen.

5.3.6 Performance of synthetic data generation vs computational cost.

The SEDIMARK Data Augmentation module features the ability to generate purely synthetic
datasets which can then be used to train downstream machine learning models, providing a
useful alternative to data providers who might not wish to share their raw data within the
SEDIMARK marketplace. The SEDIMARK Data Augmentation module contains a number of
methods, however as these methods generally rely upon expensive neural network models as
their generation backbone, the synthetic data generation incurs a large computational cost. In
this section, we briefly compare the computational cost and the output performance of a
downstream machine learning model on time series data. To this end, we train a machine
learning model on the time series data and then compare performance when we train further
machine learning models on synthetic datasets generated with increasing computational cost
with the VAE component of the augmentation module. We vary the computational cost by
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increasing the number of training epochs for which the synthetic data generation is run. We
employ the stock and energy time series datasets used by [92], and adapt the evaluation code
and procedure from [93], using the S4 [91] model as the baseline for downstream performance.
We then report the mean squared error of the baseline trained on both real and synthetic data
as we increase the number of synthetic training epochs. Results are shown in Figure 45.
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On both datasets we observe that with increased computation, the predictive power of the
synthetic data approaches that of the original training data. On the Energy dataset, this effect
happens in only a small number of epochs, after which additional computation doesn’t help to
further increase its predictive power and in fact overfits the model. On the Stock dataset, the
trend continues downwards. This highlights the necessity of overseeing the synthetic data
generation process, perhaps by employing a validation procedure to guide early stopping.

The goal of this section is to investigate the application of the low-rank adaptation (LoRA) in
the fine-tuning process of SEDIMARK’s recommender module (as described in Section 4.3.5).
The goal of applying the low-rank representation is to make fine-tuning process more efficient
by drastically decreasing the number of trainable parameters.

In this experiment we use the Bi-Encoder model [95], whose goal is to retrieve relevant
datasets based on the given query. This is achieved using two separate sentence encoders
from the transformer model. The model is then trained using a contrastive loss and hard
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negatives selected using BM25 retrieval [96] from the training dataset. To add LoRA to the Bi-
Encoder model we use the peft (Parameter-Efficent Fine-tuning) library [97]. We compare the
Vanilla (i.e. the full model) vs. LoRA approaches studying (i) the model performance and (ii)
the parameter efficiency in both approaches. For (i) we report the test accuracy selected from
the best accuracy reported on the validation set; and for (ii) we report the number of trainable
parameters. The implementation of LoRA-based bi-encoder is available in our GitHub
repository [98].

In this experiment we use the Datafinder dataset [99] containing train queries generated using
the Galactica LLM incorporating information from abstracts of relevant research papers. The
test queries were generated by human annotators. Additionally, we further divide the train set
into train/validation sets at the ratio of 90/10 to fine-tune the Bi-Encoder model. Overall, this
dataset contains 2687 datasets, 1024 train queries and 257 test queries.

m Precision@10 (P@10) # Trainable Params

Bi-Encoder: Full 0.168 ~22M
Bi-Encoder: LoRA 0.162 |3.57% ~110K [99.59%

The results in Table 6 illustrate a massive saving in the computational resources (memory and
compute cost) required for fine-tuning the Bi-Encoder model if LORA is applied. The accuracy
is measured in terms of Precision@10, which is the proportion of recommended items in the
top-10 set that are relevant for the user. In particular, applying LoRA decreases the number of
trainable parameters by more than 21M, which is a decrease of over 99% resulting in only
slightly decreased accuracy of 3.57%.

In this section, we investigate the effectiveness of Coreset Selection and Data Distillation
methods for improving efficiency in SEDIMARK. We aim to evaluate these methods in terms
of accuracy, runtime, data size, and overall efficiency. The results of these experiments will
provide practical guidance for deploying scalable, resource-aware machine learning
workflows, directly supporting SEDIMARK’s objective of enabling high-quality and energy-
efficient data marketplaces.

In our experiments, we use two widely used public datasets to simulate different
dataset sizes that might be encountered in real-world scenarios: Statlog (large) [108] and
Water Potability (medium) [109].

The Statlog (Landsat Satellite) Data Set contains multispectral values of pixels in satellite
images of the Earth’s surface. The primary objective is to classify each pixel into one of
six land cover types (such as soil, vegetation, or water) based on 36 spectral attributes.
The dataset consists of 6,435 instances and is widely used as a benchmark for multi-class
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classification tasks, especially in the remote sensing and environmental monitoring
domains.

The Water Potability dataset focuses on water quality assessment. Each sample consists
of nine physicochemical properties (such as pH, hardness, solids, and turbidity), and the
target variable indicates whether the water is potable (safe for human consumption). The
dataset contains 3,276 instances and is commonly employed for binary classification
tasks, particularly in environmental data analysis and public health applications.

These datasets enable us to systematically evaluate the performance and efficiency of
the proposed methods across different domains and data scales.

For data distillation, we include:

PCA K-means [110] Applies K-means clustering in the principal component space to
capture key data variations.

For , We include:
Random Sampling: Randomly selects a subset of data points from the original dataset.

K-means [111]: Clusters data using K-means and selects representative points from each
cluster.

Greedy k-Center [112]: Selects data points that maximize coverage of the dataset by
iteratively choosing the farthest points.

Facility Location [113]: Selects a subset of points that best represent the entire dataset
based on facility location optimization.

Influence [114]: Picks samples with high influence scores, aiming to retain critical points
for model performance.

Random Projection K-means [115]: Applies K-means clustering after projecting data to a
lower-dimensional space.

DBSCAN [116]: Uses density-based clustering to identify representative points.

Gradient Coreset [117]:: Utilises gradient-based selection to retain samples that most
impact model updates.

DPP Diversity [118] Maximises diversity in the selected subset using Determinantal Point
Processes.

By including these diverse algorithms, our evaluation provides a comprehensive comparison
of mainstream distillation and coreset strategies, covering a broad spectrum from random and
clustering-based methods to optimisation-driven and diversity-focused approaches.

To ensure the reliability and statistical significance of our results, each experiment is
independently repeated 10 times. For every method and dataset combination, we report the
average value of each evaluation metric across these 10 runs. For all experiments, each
dataset is randomly split into training and test sets using an 80/20 ratio. Within the training set,
we further apply coreset selection or data distillation to obtain reduced subsets at varying sizes:
1%, 5%, 10%, 15%, and 20% of the training data. For the downstream classification task, we
employ a Support Vector Machine (SVM) as the classifier. This approach enables us to
systematically evaluate the impact of subset size on model performance. By averaging over
multiple runs and systematically varying the subset size, we mitigate the effects of randomness
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and provide a robust assessment of the comparative performance and efficiency of different
methods.

To facilitate a fair and intuitive comparison across different subset
selection and data distillation methods, we report all performance results in terms of relative
metrics. These relative metrics allow us to directly assess how well each method preserves
model performance or improves efficiency compared to using the full dataset.

Each relative metric is calculated by dividing the value obtained from the model trained on the
coreset or distilled subset by the value obtained from the model trained on the full dataset. The
result is typically expressed as a percentage. For example, relative accuracy indicates the
proportion of accuracy retained when using a subset instead of the entire dataset. In this report,
the same approach is applied to relative ROC-AUC, relative training time, and other metrics,
providing a straightforward way to compare the effectiveness and efficiency of different
methods.

Figure 46 and Figure 47 show the relative classification accuracy achieved by different subset
selection and distillation methods as the subset size varies on the Water Potability and Statlog
datasets, respectively.

On the Water Potability dataset (Figure 46), excellent classification performance can be
achieved even with very small subsets. For example, when using just 5% of the training data,
which corresponds to approximately 131 samples, most methods are able to achieve nearly
the same accuracy as using the full dataset. This suggests that, for this binary classification
problem, both coreset and distillation methods are highly data-efficient, and that increasing the
subset size beyond this point provides little additional benefit.

On the Statlog dataset (Figure 47), most selection methods continue to perform well as the
subset size increases. Random sampling, k-means, and pca_kmeans maintain consistently
high relative accuracy, indicating that they generalize effectively even in a more complex, multi-
class scenario. However, some methods such as dbscan, gradient, and random_projection
show reduced accuracy when the subset size is very small, which may be due to difficulties in
adequately representing all classes under these conditions. Facility and DPP methods are not
shown in the Statlog results because, at small subset sizes, they often produced subsets
containing only a single class. This is a result of their diversity-based selection strategies,
which can sometimes favour the dominant class or the densest regions of the feature space
when the subset size is much smaller than the number of classes. As a consequence, these
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subsets are not suitable for multi-class model training, which limits the applicability of these

methods in such scenarios.
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Figure 46: Relative classification accuracy (%) of models trained on coreset/distilled subsets

Subset Size (%)

versus the full dataset, across different subset sizes and selection methods on Water
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Figure 47: Relative classification accuracy (%) of models trained on coreset/distilled subsets
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versus the full dataset, across different subset sizes and selection methods on Statlog.

Figure 48, Figure 49 (Water Potability) and Figure 50, Figure 51 (Statlog) present the absolute
and relative training time required by models trained on coreset or distilled subsets of different
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sizes. The results indicate a clear trend: as the subset size increases, training time increases
correspondingly for all methods, which is expected. However, when compared with the
accuracy results discussed previously, it becomes evident that substantial reductions in
training time can be achieved without sacrificing classification performance.

For the Water Potability dataset, most methods are able to achieve nearly 100% of the full-
dataset accuracy using only 5% of the training data, as shown in Figure 46. At the same time,
Figure 49 shows that training with such a small subset typically requires less than 1% of the
training time compared to using the full dataset. Even when increasing the subset size to 10%
or 20%, the relative training time remains a small fraction of the total, yet the classification
accuracy is almost indistinguishable from that obtained with the entire dataset. This
demonstrates the high data efficiency of subset selection and distillation methods for this
binary classification problem: excellent performance can be achieved with dramatically
reduced computational cost.
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Similar trends are observed for the Statlog dataset, although the relationship between subset
size, accuracy, and training time can be influenced by the multi-class nature of the problem.
As seen in Figure 47, most methods (such as random, k-means, and pca_kmeans) are able
to retain high relative accuracy when the subset size reaches 15-20%. According to Figure
51, at these subset sizes, the relative training time is only about 4-5% of that needed for the
full dataset. This means that it is possible to reach almost full classification performance while
using just a small fraction of the total training time. For smaller subset sizes, some methods
show lower accuracy, indicating that sufficient class diversity is important in multi-class tasks,
but the computational savings remain substantial.

Overall, these results show that by using only a small proportion of the training data, it is
possible to achieve both significant computational efficiency and high model performance. This
is particularly valuable in practical applications where training time or computational resources
are limited.
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Figure 50: Absolute training time of coreset/distilled subsets on Statlog.
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Figure 51: Relative training time (%) of coreset/distilled subset versus full dataset training time
on Statlog.
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5.3.9 Performance of Time Series Forecasting with Optimisation Techniques

The goal of this section is to analyse the performance of time-series multivariate forecasting
approach, CrossFormer, with diverse optimisation techniques. The performance evaluation
uses the evaluation feature designed within the CrossFormer component, including MAE,
MAPE, MSE, MSPE, RMSE and SCORE.

Performance of Forecasting with Quantization (FLOPS)

As tensor calculations cost a significant amount of computational resources in deep learning
based time series forecasting approaches, different float precision settings of tensor may lead
to varied performance. Therefore, the model has been tested on the weather use case with
several float precision settings, comparing their forecasting performance. The result is given
in Table 7.

Table 7: Comparisons of performance over diverse float precision settings.

Float 64 3.2644 20.2673 4.2437
Float 32 3.9656 27.0471 4.8866
Float 16 5.3205 99.1768 6.9796

Forecasting with Pruning Techniques:

Building on the pruning techniques introduced in Section 4.3.3, we present the results of
applying pruning techniques to the CrossFormer model. The primary objective was to evaluate
how channel pruning affects the model's size, the number of parameters, floating-point
operations per second (FLOPs), memory usage, and performance metrics.

Structured (Channel) Pruning:

The results in Table 8 demonstrate that channel pruning is an effective method for reducing
the computational complexity of the CrossFormer model while also achieving substantial
memory savings. By targeting entire channels for pruning, this approach results in a model
that is not only smaller and faster but also uses significantly less memory, making it highly
appropriate for deployment in environments with limited resources.

Table 8: Impact of Channel Pruning on CrossFormer Model.

Parameters Size (MB) FLOPS Score
(GFLOPS)

Original Model 6.35 M 24.24 0.382 0.0932

Channel Pruned

Unstructured Pruning:

The findings from layer specific pruning in Table 9 highlight the effectiveness of this method in
maintaining a balance between reducing the computational load and preserving model
performance. Unlike uniform or unstructured pruning, where a fixed ratio or individual weights
are pruned across all layers, layer specific pruning allows for more nuanced and strategic
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reduction of parameters. This is evident in the relatively small performance degradation
observed even after reducing the model's size and parameter count by more than half.

By leveraging the Coefficient of Variation (CoV) and other weight statistics to determine layer
specific pruning ratios, this approach ensures that critical layers are preserved while less
important ones are pruned more aggressively. The success of this strategy is reflected in the
high scores, which are only slightly lower than those of the unpruned model. By selectively
pruning layers based on their importance, this method allows for substantial reductions in
model size without sacrificing the accuracy needed for effective video quality assessment

Table 9: Impact of Unstructured Pruning on CrossFormer Model.

Parameters Size (MB) FLOPS Score
(GFLOPS)

Orlgmal Model 6.35 M 24.24 0.382 0.0932

Unstructured
Pruned Model 2.98 M 11.37 0.383 0.0962

Hybrid pruning:

The results in Table 10 demonstrate the effectiveness of combining Layer specific and Channel
Pruning as a strategy for optimizing neural networks. This approach allows for a more targeted
reduction of model complexity by applying different pruning techniques that complement each
other. The significant reduction in model size, parameter count, and FLOPs, combined with
the retention of high scores, highlights the potential of this method for creating efficient, high-
performance models.

Table 10: Impact of Hybrid Pruning on CrossFormer Model.

Parameters Size (MB) FLOPS Score
(GFLOPS)

Orlglnal Model 6.35M 24.24 0.382 0.0932

Hybrid Pruned 1.45M 553 0.181 0.0927

Model

Key Observations:

o Channel Pruning reduces model size by ~48% (24.24MB — 11.62MB) and FLOPs by
~53% (0.382 — 0.181 GFLOPs) while maintaining competitive accuracy (6.526 MAE vs.
original 6.630). Ideal for edge deployment due to dense weights.

» Unstructured Pruning achieves ~47% size reduction (24.24MB — 11.37MB) but no
FLOPs reduction (0.382 GFLOPs retained). Improves MSE (128.03 vs. 132.62) but
requires sparse-aware hardware for acceleration.

e Combined Pruning combined with Unstructured Pruning delivers the highest compression
(78% fewer parameters, ~77% smaller size) and 53% fewer FLOPs, with the best MAE
(6.517) but slightly worse MSE (139.10). Balances sparsity and FLOPs reduction.
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The Offering Generator implements knowledge distillation to address efficiency challenges by
enabling smaller, more efficient models to learn from the capabilities of much larger teacher
models. This approach achieves comparable performance with significantly reduced
computational requirements. A compute-efficient model such as Qwen 2.5-3B serves as the
smaller student model, trained through knowledge distillation from a larger counterpart.

To assess performance and efficiency, five optimisation techniques as discussed in Section
4.3 were applied to both Qwen 2.5-3B and the larger Qwen 2.5-7B variant:

Standard 16-bit floating-point precision model
Reduced precision model using 8-bit integers
: Further reduced precision using Normalized Float 4 (NF4) format
Low-Rank Adaptation for parameter-efficient fine-tuning
Combination of 4-bit quantization and LoRA for maximum efficiency

To illustrate the impact of these techniques, comparative results for both model sizes Qwen
2.5-3B and Qwen 2.5-7B are presented in Table 11 and Table 12, respectively. These results
allow for analysis of how optimisation effectiveness scales with model size while maintaining
a consistent architecture.

The optimisation techniques yielded significant improvements in memory efficiency and
trainable parameter counts. 8-bit quantization achieved moderate memory reduction (42—45%)
while maintaining the full parameter count of the baseline model, thereby retaining model
capacity with lower memory usage. In contrast, 4-bit quantization resulted in dramatic memory
savings (66—67%) along with a reduction in effective parameter count, making it the most
compact configuration. LORA preserved the overall model size but drastically reduced the
number of trainable parameters to just 0.1-0.2% of the total, allowing for highly efficient fine-
tuning. QLoRA combined the benefits of 4-bit quantization and LoRA, reducing memory usage
by 46-55% while keeping the number of trainable parameters minimal, offering an optimal
setup for efficient training.

The comparison between the 3B and 7B variants revealed key scaling behaviours across all
optimisation techniques. Memory efficiency remained consistent across model sizes, with 8-
bit and 4-bit quantization achieving similar percentage reductions approximately 42—45% and
66—67%, respectively. Parameter efficiency improved with scale, as evidenced by LoRA’s
trainable parameter share dropping from 0.2% in the 3B model to 0.1% in the 7B model,
highlighting increased relative benefits for larger models. Relative size reductions were also
stable across both variants, with roughly 7% reduction achieved through 4-bit quantization and
2x through 8-bit. Importantly, absolute memory savings were greater in the larger model, with
the 7B configuration saving 9.1 GB using 4-bit quantization compared to 4.0 GB in the 3B
model.
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5.3.10.3

To enhance robustness under variable context availability common in real-world deployment
scenarios a context curriculum learning strategy was applied. Training began with full context
access and progressively reduced it in successive stages, using context dropout rates of 30%,
60%, and 90%. This gradual reduction improved the model’s ability to generate structurally
valid JSSON-LD even when context was limited. Notably, the 7B model maintained superior
structural coherence under high dropout conditions, indicating stronger contextual reasoning
capabilities despite optimisation

Context Curriculum Learning

5.3.10.4

Selecting appropriate optimisation techniques in this context enables a reduction in
computational and environmental costs while preserving the semantic richness and structural
integrity of marketplace offerings.

Table 11: Optimisation Results for Qwen 2.5-7B Model.

Results

Qwen 2.5-7B Model

Technique Parameters Trainable Model Size| Memory Size
Parameters (MB) Usage (MB) | Reduction

Orlglnal Model |6.35 M 24 24 0.382 0.0932
Baseline 7,615,616,512 | 7,615,616,512 0.382 14,587 .4 1.00x%
(100.0%)
8-bit 7,615,616,512 | 1,090,199,040 2,943.0 8,418.3 2.00x
(14.3%)
4-bit 4,352,972,288 | 1,090,199,040 810.0 5,473.6 7.00%
(25.0%)
LoRA 7,625,709,056 10,092,544 5,900.0 14,625.9 1.00x
(0.1%)
QLoRA 4,363,064,832 10,092,544 3,254.0 7,851.3 1.75x%
(0.2%)

Table 12: Optimisation Results for Qwen 2.5-3B Model

Qwen 2.5-3

B Model

Technique Parameters Trainable | Model Size Memory Size
Parameters (MB) Usage (MB) | Reduction

Baseline 3,085,938,688 | 3,085,938,688 | 5,886.0 6,007.1 1.00%
(100.0%)

8-bit 3,085,938,688 @ 311,314,432 2,943.0 3,085,938,688 2.00x%
(10.1%)

Document name:|D3.2 Energy efficient Al-based toolset for improving data quality. Page: 102 0f 118

Reference: SEDIMARK_D3.2 |Dissemination: PU ‘Version: ‘ 1.0 | Status: Final




Qwen 2.5-3B Model

Technique Parameters Trainable | Model Size Memory Size
Parameters (MB) Usage (MB) | Reduction

4-bit 1,698,672,640 | 311,314,432 810.0 2,021.7 7.27x
(18.3%)

LoRA 3,093,311,488 = 7,372,800 5,900.0 6,035.2 1.00x
(0.2%)

QLORA 1,706,045,440 | 7,372,800 3,254.0 2,730.0 1.81x
(0.4%)

5.3.11 Performance of AutoML for data streams

We use model execution time as a proxy for energy consumption: on a CPU, power usage is
proportional to the time to finish the task.

We compare classification algorithms on several classic datasets, both real-world
(Covertype [131], Electricity [132], Sensors [133]) and synthetic (Banana, LED, RBF, SEA).
LED, RBF, and SEA also had variations with induced concept drift, both slow and fast.

We compare the models OnlineSMAC (ours), OnlineSMAC Ens (ours), Automated Streaming
Machine Learning [134], Auto Class [135], Adaptative Random Forest[136], Streaming
Random Patches [137], and Leveraging Bagging [138] (respectively abbreviated as OSMAC,
OSMAC Ens, ASML, AC, ARF, SRP, and LB). OSMAC, ASML, and AC are AutoML models,
the others are traditional ensemble models.

We measured the overall accuracy of the models in test-and-train mode and the time they
needed to process the datasets.

Figure 52 and Figure 53 report the average of the metrics over the datasets.
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Figure 52: Average accuracy of the models over the test datasets (note that the Y axis is
truncated for legibility). Higher is better.
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Figure 53: Average processing time (in seconds) of the models over the test datasets. Lower is
better.

For the accuracy, OSMAC, OSMAC Ens and ASML are equivalent. OSMAC Ens is the best
by an unsignificant margin.
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For the processing time, ARF, SRP, and LB are the best-performing models in this order thanks
to their relative simplicity. ASML and AC are the worst models in this comparison, AC needing
almost twice as long as OSMAC Ens, and ASML two and a half.
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Figure 54: Trade-off between accuracy and processing time. Models on the lower right are
better.

Figure 54 shows the trade-off between accuracy and runtime. The models OSMAC and
OSMAC Ens are on the optimality frontier, together with ARF.

The ensemble, non-adaptative methods are faster and use less energy, but they have a lower
overall accuracy. In contrast, ASML is very accurate but also slow.

This section investigates the different method to increase data storage efficiency. The
experiments and analysis are performed using Stellio, a NGSI-LD broker that store data and
enable easy interoperability as described in SEDIMARK 3.3 section 6.2.3.

In NGSI-LD the data is stored in entities. Each entity contains a list of attributes which can
have temporal evolution. To know what data is stored on the broker and detect inconsistent
behaviour we have developed a dashboard that let us follow in real time the number of entity,
attribute and temporal instances (each temporal instance represents a point in time of an
attribute) in the broker.
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stellioio)

#f~ Home > Dashboards > Monitoring Stellio Q search or jump to. @ak +v | O S @
Settings | Exitedt (NI

@ Lastéhours v Q@  Q Refresh v

v Overview
Number of types Number of entities Number of attributes Number of temporal instances
0 1017 13258 749910
v Types
v Entities
Top 50 entities wit the most instances List of types
entity_id Number of instances Type Number of Entities
urn:ngsi-ld:Sedimark: TrafficFlowObserved: 4709:Primary 148006 https://uri.etsi.org/ngsi-ld/default-context/Service 884
urn:sedimark:station:7 56060 https://smartdatamodels.org/dataModel Transportation/Roa 42
urn:sedimark:station:5 41005 https://uri.etsi.org/ngsi-ld/default-context/MonitoringSite 22
urn:sedimark:station:18 37534 https://vocab.egm.io/Device 7
urn:sedimark:station:9 36533 https://smartdatamodels.org/dataModel.Transportation/Cro' 5
urn:sedimark:station:13 32842 https://smartdatamodels.org/dataModel . Transportation/Traf 4
urn:sedimark:station:1 32767 https://vocab.sedimark.io/Park 3
urn:sedimark:station:12 29162 https://uri.etsi.org/ngsi-ld/default-context/DataAsset 1
urn:sedimark:station:21 28544 https://vocab.egm.io/UseCaseConfig 1
urn:sedimark:station:6 26641 https://sr org/dataModel Cr Tenan 1
v Attributes
Top 50 attributes with the most instances Top 50 entities with the oldest latest modification
attribute_name Number of instances entity_id Last modification
https://vocab.egm.io/flow 230455 urn:sedimark:300044499 12/03/2025 09:46:04
hitps://uri.etsi.org/ngsi-ld/default-context/indeksi 47828 urn:sedimark:300044494 12/03/2025 09:46:04
https://vocab.egm.io/no 47652 urn:sedimark:300044495 12/03/2025 09:46:04
https:/[vocab.egm.io/pm10 40708 urn:sedimark:300044496 12/03/2025 09:46:04

By directly looking at the database storage we have been able to estimate the following storing
costs

2500 bytes (1017 entity for a total of 2.5MB)
1100 bytes (13258 attributes for a total of 14.6MB)
650 bytes (749910 instances for a total of 487.4MB)

Some temporal representations are measured every 15 minutes for multiple consecutive
years. This explains the huge number of temporal instances present and consequently the fact
that most of the storage cost is taken by the temporal representation of attributes. Since most
of the cost of storage is taken by the temporal representation we will focus on optimizing it in
the next points.

Down sampling is a technique used to reduce the number of temporal instances by decreasing
the frequency of recorded values. Since most of the storage cost is due to temporal data, down
sampling offers a promising solution to significantly reduce the amount of data stored while
keeping the general trend of the attribute evolution.

Several strategies can be considered:

storing one value every n interval (e.g., every hour instead of
every 15 minutes).

storing aggregated values such as the average
over a fixed time window.
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These strategies allow for a trade-off between data volume and temporal precision. For
example, reducing the sampling rate from 15 minutes to 1-hour results in a 75% storage gain.
Aggregation-based down sampling needs some additional calculation but may preserve more
meaningful statistics.

In some use cases, fine-grained temporal data is essential and cannot be reduced without
losing important information. In such cases, down sampling is not applicable. However, when
high precision is not required, down sampling can lead to significant storage savings by
reducing the number of stored temporal instances.

Stellio, as a generic tool, must handle down sampling carefully to avoid unintended effects.
Introducing configurable down sampling mechanisms at the attribute level could provide
greater flexibility and efficiency. To ensure this remains fully interoperable, these mechanisms
should be discussed within the NGSI-LD specification, paving the way for broader adoption
and consistent implementation.

Database compression is another way to reduce storage size without modifying the data itself.
TimescaleDB, the database used in our setup, offers native compression for time-series data.
The trade-off is you have to decompressed data before accessing it. This decompression will
impact the request performance and may cause some errors if the compression is not
configured perfectly.

We experimented with the compression mechanism included in TimescaleDB, the tool that we
use for time-series data. One of the challenges of compression is to find good configuration.
For example, the first experiments gave a bigger data size after compression.

R I -~ 5T 3 =
i i ¢ S Q I

[] before_compression_table_bytes YV ¢ [[Jafter_compression_total_bytes YV ¢ [[]total_chunks V

6586368 11280384 1

After further investigation we found the segment by parameter that described how the elements
are grouped in the compression. A good practice is to find a parameter that is a natural way of
separating the table data. We tried segmenting the table by attribute and found way better
results. With a reduced size of 68% for 12000 data points and 82% for a million datapoints.

[ ] before_compression_table_bytes V¥ ¢ [[Jafter_compression_total_bytes ¥ ¢ [[]total_chunks ¥/
6397952 2056192 1
[[J before_compression_total_bytes %V ¢ ([Jafter_compression_total_bytes ¥ ¢ [([J total_chunks ¥/
1 1264173056 219676672 4
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5.4.3.2 Impact on request performances

Another important configuration is the interval after which data is compressed. Since recent
data is the most likely to be accessed and modified, setting a compression interval of one
month ensures that requests targeting recent data remain unaffected.

For requests targeting data outside of this interval, compression can have a performance
impact. The observed results are as follows:

Consumption Requests:

We observed an average performance degradation of 13—20 ms, corresponding to a 3%
slowdown for long-running queries and up to 15% for very fast requests.

Table 13: Compression performance impact on consumption request.

Request1 (Long) 9m 16s 1036 ms
Not compressed

Request1 (Long) 500 9m 22s 0 1051 ms
Not compressed

Request2 (Small) 100 26s 342ms 0 201 ms
Not compressed

Request2 (Small) 100 28s 452ms 0 214 ms
Not compressed

Modification Requests:

The performance impact is more pronounced for modification operations, with delays of up to
1.2 seconds. This is due to the need to decompress and recompress the entire chunk of data
affected by the modification. In our tests, the experimental setup created an unusually large
chunk (over one million columns), which do not reflect typical real-world scenarios.

Fortunately, chunk size is configurable, and by splitting the chunk we were able to reduce the
impact to 0.2 seconds. Further reductions in chunk size could yield even better performance.
However, it's important to note that smaller chunk sizes decrease compression efficiency,
resulting in less effective storage savings. Therefore, a careful trade-off between query
performance and storage optimization must be considered.

Table 14: Compression performance impact on modification request.

Not compressed 23 ms
Compressed 500 11m 24s 0 1276 ms
Compressed with reduced 100 2m 50s 0 238 ms
chunk
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6 Conclusions

One of the main goals of SEDIMARK is to provide easy to use tools for developers to
understand their datasets, process them and improve their quality before sharing them to the
marketplace, aiming to increase their value. As described in this series of documents,
SEDIMARK made significant steps towards the twin aims of improving data quality while
managing trade-offs with energy efficiency and environmental impact.

In Section 3, the current work on the SEDIMARK data pipeline was outlined, showing how a
set of data quality metrics has been implemented, alongside a number of data cleaning tools
and modules for orchestrating the pipeline and visualising its results. Work on implementing
the data pipeline has concluded successfully, with modules for data profiling, data cleaning
(anomaly detection, missing value imputation, deduplication), and data orchestration, as well
as data augmentation (data synthesis) and feature engineering (dimension reduction and
feature selection).

These modules were carefully designed and implemented based on the requirements
elicitation process of the SEDIMARK WP2, aiming to address the most important functionalities
that data providers need for assessing and improving the quality of their data, before these are
shared through the marketplace. The data quality pipeline as developed by SEDIMARK
balances efficiency and user friendliness and caters for users of different technical expertise.
Advanced users can exploit the maximum capabilities of the pipeline and its modules,
configuring themselves all the parameters of the models and designing new models using the
modules through the command line interface. However, novice users can benefit from
SEDIMARK's user interface through Mage.ai, where with minimum user intervention they can
take advantage of the full set of the SEDIMARK pipeline tools, being able to just set the
modules they want to execute and using default parameters. The SEDIMARK pipeline modules
are open sourced and uploaded on GitHub. This was agreed by the partners aiming to allow
the research community to improve and extend the modules and maximise impact.

In Section 4, the work for reducing the environmental impact of the data processing and Al
tools of SEDIMARK was outlined, with approaches discussed for carbon friendly model
training, inference, as well as reducing the impact of data sharing, communication and data
storage. These approaches included dimension reduction, data distillation and coreset
selection for reducing the model training cost. Quantisation, model pruning, model distillation
and low rank factorization have also been investigated for further optimising machine learning
models. Furthermore, it was analysed that there are viable methods for optimising
communication cost, as well as that of data sharing and storage.

In the final section, an extended number of experiments showed the trade-offs between
accuracy and environmental cost that are implicit in naively running the tools in the SEDIMARK
toolbox. These experiments emphasised that often the results can be counter intuitive, for
instance with full communication federated learning being more carbon efficient than low
communication, or worse performance coming from highly parameterised anomaly detection
algorithms. Additionally, it was shown that with Fleviden’s compression and quantisation
algorithms, the communication cost of distributed learning can be decreased significantly,
without a major impact on performance. Energy consumption can also be decreased in other
modules of the data processing pipeline using respective methods and parameters. For
example, in the deduplication module, by using different indexing methods the energy
consumption can be reduced significantly without an effect on precision. Similarly, in the
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anomaly detection module, the type of algorithm selected for detection can have a severe
effect on energy consumption, with some algorithms being very resource heavy without having
any benefit in terms of performance. Users of the module can then select themselves which
algorithm they want to use based on their target objectives. Regarding synthetic data
generation, it was shown that there is a trade-off between energy consumption in terms of
computation and how close to the real data the synthetic ones are.

Techniques for minimising energy consumption in model training were also shown to have
good results. For example, with low rank factorisation, data distillation and coreset selection
methods, the computation cost of model training can be significantly reduced, without changing
too much the model performance. In time series forecasting it was shown that model size and
FLOPS can be reduced almost by half with a minimum reduction in performance. For
techniques for offering generation, a reduction in computational and environmental cost can
be achieved while preserving the semantic richness and structural integrity of marketplace
offerings. It was also shown how AutoML can provide assistance to users to select models
with high performance. As such, SEDIMARK should emphasise the need for user guidance,
and automation, in their use of the pipeline.

To this end one conclusion is that SEDIMARK has managed to provide a set of tools that work
together to automate the data cleaning process, while emphasising energy efficiency in the
choices that it makes. SEDIMARK's toolbox is adaptive and user friendly, catering for the
diverse types of users that span from novice (using the user-friendly Uls) to experts (using
command line configurations). Both carbon and human hours are rapidly expended via naive
approaches to data cleaning, with results that might still be suboptimal. Thus, going forward,
a key aim of the final step of the integration work in WP5 is to further automate the pipeline,
so as to reduce both the human and energy costs associated with it.
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