
This document is issued within the frame and for the purpose of the SEDIMARK project. This project has

received funding from the European Union’s Horizon Europe Framework Programme under Grant Agreement

No. 101070074. The opinions expressed and arguments employed herein do not necessarily reflect the

official views of the European Commission.

[The dissemination of this document reflects only the author’s view, and the European Commission is not responsible for any

use that may be made of the information it contains.

This document and its content are the property of the SEDIMARK Consortium. The content of all or parts of this document can

be used and distributed provided that the SEDIMARK project and the document are properly referenced.

Each SEDIMARK Partner may use this document in conformity with the SEDIMARK Consortium Grant Agreement provisions.

SEcure Decentralised Intelligent Data

MARKetplace

D5.3 Integrated releases of the SEDIMARK

platform. Second version

Keywords:

Three parallel streams, intelligence, orchestration, marketplace, decentralisation, AI assets,

software components, functional/non-functional requirements, continuous integration,

continuous delivery, SEDIMARK platform, backend and frontend integration

Document Identification
Contractual delivery date: 31/12/2024

Actual delivery date: 15/01/2025

Responsible beneficiary: WINGS

Contributing beneficiaries: WINGS, UC, EVIDEN, LINKS, SURREY, EGM, SIE, NUID

UCD, INRIA

Dissemination level: PU

Version: v1.0

Status: Final

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 2 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors

Name Partner

Panagiotis Vlacheas

Grigorios Koutantos

WINGS

Pablo Sotres

Luis Sánchez

Juan Ramón Santana

Jorge Lanza

UC

Stefan Jarcau

Gabriel Danciu

Septimiu Nechifor

SIE

Maxime Costalonga

Cesar Caramazana Zarzosa

Joaquin Garcia

ATOS/EVIDEN

Elias Tragos

Erika Duriakova

Diarmuid O’Reilly-Morgan

Honghui Du

NUID UCD

Tarek Elsaleh SURREY

Shahin Abdoul Soukour

Nikolaos Georgantas

INRIA

Franck Le Gall

Thomas Bousselin

EGM

Document Identification

Related WP WP5 Related

Deliverables(s):

SEDIMARK_D5.1,

SEDIMARK_D5.2

Document

reference:

SEDIMARK_D5.3 Total number of

pages:

79

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 3 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

List of Contributors

Name Partner

Michele Festa

Alberto Carelli

LINKS

Document History

ToCs 13/11/2024 WINGS First draft of ToCs

0.1 15/11/2024 UC Added content to Sections 2 and 3

0.11 26/11/2024 WINGS Initial version with reconstructed ToCs

based on UC’s suggestions

0.2 2/12/2024 SIE Added content to Section 3 MVI

0.3 3/12/2024 SIE Updated content to Section 3 MVI

0.31 3/12/2024 WINGS Introduction and Executive Summary

0.32 4/12/2024 SIE Update Section 3

0.4 5/12/2024 WINGS Update Section 4

0.41 6/12/2024 UCD Update Section 3

0.5 10/12/2024 SIE, ATOS/EVIDEN Structural and content changes in

Section 3

0.51 11/12/2024 ATOS/EVIDEN Added content to Section 3.

0.6 11/12/2024 SURREY, SIE,

ATOS/EVIDEN

Update content to Section 3.3, Section

4

0.6 13/12/2024 INRIA Update Section 3.2.1.3

0.61 12/12/2024 WINGS Fill Section 6 and acronyms table

0.62 13/12/2024 UC Fill Section 2

0.63 16/12/2024 UC, LINKS Updated content to Sections 3 and 4

0.64 17/12/2024 WINGS Update content to Section 3

0.7 17/12/2024 EGM Update content to Section 3 (NGSI-LD

Broker integration, Connection to

MinIO)

0.71 18/12/2024 WINGS Update Section 5

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 4 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

0.72 19/12/2024 SIE, WINGS, UC Integration specification screenshots

from GitHub

0.75 20/12/2024 WINGS Formatting, template fitting, cleaning,

etc.

0.8 14/01/2024 ATOS/EVIDEN Quality Review From

1.0 15/01/2025 ATOS/EVIDEN FINAL VERSION TO BE SUBMITTED

Quality Control

Role Who (Partner short name) Approval date

Reviewer 1 John Tsogias & Nikos Babis (MYT) 07/01/2025

Reviewer2 Thomas Bousselin (EGM) 06/01/2025

Quality manager María Guadalupe Rodríguez (EVIDEN) 14/01/2025

Project Coordinator Miguel Angel Esbri (EVIDEN) 15/01/2025

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 5 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information .. 2

1 Introduction ... 12

1.1 Purpose of the document .. 12

1.2 Relation to other work packages and tasks ... 12

1.3 Structure of the document ... 12

2 Second integrated release of SEDIMARK platform ... 14

3 From seven independent scenarios PoCs to three parallel streams 16

3.1 Minimum Viable Marketplace (MVM) ... 17

3.1.1 Sub-streams breakdown and components specification18

3.1.2 Integration specification ...24

3.2 Minimum Viable Intelligence (MVI) .. 26

3.2.1 Define sub-streams and provide high-level description26

3.2.2 Integration specification ...53

3.3 Backend and Frontend Integration Overview ... 55

3.3.1 Define sub-streams and provide a high-level description55

3.3.2 Integration specification ...61

4 Cross-check the updated functional and non-functional requirements 64

5 Integration plan for the final release .. 76

6 Conclusions .. 77

7 Bibliography .. 78

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 6 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

List of Tables

Table 1 Functional requirements status of fulfilment ...64

Table 2 Non-functional requirements status of fulfilment ..74

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 7 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1 General view of the functional components and the current system view15

Figure 2 Transferring the seven Proof-of-Concept scenarios to three parallel streams17

Figure 3 Participant onboarding components ...18

Figure 4 SEDIMARK smart contract architecture ..19

Figure 5 Offering management components ...20

Figure 6 Detail of components involved in the offering population and discovery stages21

Figure 7 Asset exchange components ..23

Figure 8 The MVM issue dashboard on the git repository (1) ...24

Figure 9 The MVM issue dashboard on the git repository (2) ...25

Figure 10 MVI Architecture ...27

Figure 11 MinIO credentials ...28

Figure 12 Data Curation block ..29

Figure 13 Context Broker saving flow ...31

Figure 14 Federated learning block ..32

Figure 15 Integration flow between AI orchestrator and model optimisation modules34

Figure 16 Interface for uploading the dataset to train and evaluate the model.35

Figure 17 Options for selecting the hyperparameters of the XGBoost Regressor model.......35

Figure 18 User interface for selecting the train-test split percentages for the uploaded

dataset. ..36

Figure 19 Table displaying a comparison of the predicted values and the true values for

energy consumption. ..37

Figure 20 Visualisation of feature importances from the dataset ...37

Figure 21 Line plot comparing the predicted vs. true values of mean daily energy

consumption for each instance in the test set. ..38

Figure 22 Scatter plot of predictions vs. true values ...38

Figure 23 MLFlow UI ..40

Figure 24 MLFlow storing block ..41

Figure 25 MLFlow loading and prediction block ..42

Figure 26 MageAI Data Loader block ...43

Figure 27 Energy consumption dataset features...43

Figure 28 Process of splitting the dataset using MageAI Data Splitter block44

Figure 29 Scaling using the Data Scale block of MageAI ..44

Figure 30 XGBoost model tuning/training using MLFlow ..45

Figure 31 MLFlow code for XGBoost model ...46

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 8 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 32 Stored model, dataset, metrics and artifacts in MLFlow (1)47

Figure 33 Stored model, dataset, metrics and artifacts in MLFlow (2)47

Figure 34Asset Description Generation ..48

Figure 35 Asset Description Use ..48

Figure 36 Common Asset Properties to be captured by Orchestrator49

Figure 37 Data Asset Properties ...49

Figure 38 AI Model Asset Properties ..50

Figure 39 Service Asset Properties ..50

Figure 40 MVI stream task monitoring in GitHub repository (1) ...54

Figure 41 MVI stream task monitoring in GitHub repository (2) ...55

Figure 42 Example of marketplace dashboard UI to manage consumed offerings61

Figure 43 The MVM-MVI issue dashboard on the git repository (1)62

Figure 44 The MVM-MVI issue dashboard on the git repository (2)63

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 9 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation / Acronym Description

AI Artificial Intelligence

API Application Programming Interface

AWS Amazon Web Service

CI/CD Continuous Integration and Continuous Delivery/Continuous

Deployment

CSV Comma Separated Values

CWL Common Workflow Language

DID Decentralised Identifier

DLT Distributed Ledger Technology

DSP Data Space Protocol

Dx,y Deliverable number y belonging to WP x

EDC Eclipse Dataspace Components

EVM Ethereum Virtual Machine

GUI Graphical User Interface

H-REQ High-priority Requirements

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

ID Identity Document

IOTA Internet of Things Application

JSON JavaScript Object Notation

ML Machine Learning

MVI Minimum Viable Intelligence

MVM Minimum Viable Marketplace

NFT Non-fungible Token

NGSI-LD Next Generation Service Interfaces for Linked Data

ODRL Open Digital Rights Language

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 10 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Abbreviation / Acronym Description

P2P Peer to Peer

PoC Proof of Concept

REST Representational State Transfer

SC Smart Contract

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

VC Verifiable Credential

VDR Verifiable Data Registry

URI Uniform Resource Identifier

URL Uniform Resource Locator

XLS Microsoft Excel Spreadsheet

YAML Yet Another Markup Language

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 11 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

The current document is the third deliverable of WP5 and reports the results of Task 5.2

activities regarding continuous platform integration. Building upon the foundational work

presented in SEDIMARK_D5.2 [1], this deliverable focuses on the enhancement and

refinement of the platform’s capabilities through the incorporation of Minimum Viable

Marketplace (MVM) and Minimum Viable Intelligence (MVI) functionalities. It emphasises the

integration of decentralised data and service-sharing frameworks, advanced AI-driven tools,

secure components based on Distributed Ledger Technology (DLT), APIs, and platform-wide

testing. These components are designed to address medium and high-priority requirements

for interoperability, trustworthiness, data quality, etc, and they were developed and described

in WP3 “Distributed data quality management and interoperability” and WP4 “Secure data

sharing in a decentralised Marketplace”.

The three streams will be analysed by the leaders and their contributors on the following topics:

• Sub-stream breakdown and component specification: Scope of the stream, task by task

description, updates in the components, meaningful visualisation and solid text

accompanying the figures.

• Integration specifications: Integration steps (inter/intra component communication, setup

monitoring and logging, CI/CD implementation) accompanied by GitHub screenshots.

The second release achieves the following milestones:

• Successful integration of core enablers such as AI Orchestrator, Data Space Enabler and

DLT enabler.

• Enhanced implementations focusing on participant onboarding, data quality, offering

lifecycle management, asset exchange, and distributed AI training.

• Streamlined APIs and interfaces, ensuring seamless communication across platform

components and external participants.

• Deployment-ready solutions validated against real-world use cases to ensure scalability

and reliability.

Following the structure of SEDIMARK_D5.2, it is important to ensure that the requirements

specified in WP2 architecture and Tasks T2.1-T2.4, summarised with the SEDIMARK_D2.3

[2], are fulfilled at all implementation phases. To serve this need, there are updated tables

correlating all the medium-priority recommended requirements (M-REC) that were promised

to be fulfilled for the second version of the platform, added to the existing high-priority

requirements (H-REQ). The target is to monitor the status of fulfilment and in which stream

they are addressed. The table covers both the functional and non-functional requirements.

The final part of the document provides an overview of the final integrated release of the

SEDIMARK platform. The idea is to provide all the toolbox functionalities, where all

components are in place and the system is optimised for performance purposes. Also, no hard

coding is needed, and all the kinds of requirements will be fulfilled. The integration in this way

will consider the timeplan for releasing the SEDIMARK integrated platform, as described in

SEDIMARK_D5.1 [3]. Through continuous iterations, SEDIMARK is positioned as a robust,

secure, and efficient decentralised marketplace for data and services.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 12 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

The main purpose of the deliverable is to report the outcomes of the second integrated release

of the SEDIMARK platform. This version builds on the architectural foundations established in

SEDIMARK_D5.1 and SEDIMARK_D5.2 and defined in SEDIMARK_D2.3, incorporating

refined functionalities and addressing gaps identified during the first release. Leveraging the

seven independent PoCs scenarios developed in the first version, now the consortium

introduces three complementary streams; the Minimum Viable Marketplace (MVM), the

Minimum Viable Intelligence (MVI) and the combined Minimum Viable Marketplace - Minimum

Viable Intelligence (MVM-MVI) stream which connects the backend and the frontend view. All

streams together, cover the toolbox functionalities required for the second version of the

platform. The overall goal is to present a version of the platform that encompasses all

fundamental functionalities and addresses both medium and high-priority requirements. It

serves as a comprehensive reference for understanding the progress in platform integration

and highlights challenges and lessons learned.

1.2 Relation to other work packages and tasks

This deliverable is the outcome of Task 5.2 (Platform continuous integration) and is the

continuation of the work done during the second year of the project especially in Task T5.1

(Integration and Evaluation plan and methodologies). SEDIMARK_D5.3 is a follow-up

deliverable of SEDIMARK_D5.2, elaborating on the scenarios developed there but now the

work is being done in three parallel streams. The work presented in the document is strongly

related to the components and tools developed in WP3 and WP4, which involve the technical

aspects of the platform's development and create the overall decentralised marketplace, based

on the architecture design of Task T2.3, the interfaces specified in Task T2.4 and final version

of the architecture defined in SEDIMARK_D2.3. The output of SEDIMARK_D5.3 will also be

used as input to the upcoming activities of the remaining tasks (Task T5.3, Task T5.4) of WP5

for the three integrated releases of the SEDIMARK platform which will be presented in three

phases (M18-Mar. 2024, M27-Dec. 2024, M36-Sep. 2025) and analysed in the current

deliverable SEDIMARK_D5.3 (Integrated releases of the SEDIMARK platform. Second

version), and forthcoming deliverables SEDIMARK_D5.4 (Integrated releases of the

SEDIMARK platform. Final version). The final deliverable of WP5 will document further

progress and refinements to the platform. This gradual platform deployment allows

beneficiaries to gain valuable insights into performance and make any necessary adjustments

or improvements.

1.3 Structure of the document

This document is structured in 6 major chapters:

Chapter 1 is the current chapter, providing context, purpose, and connections to other tasks.

Chapter 2 details the new integration approach, status and components.

Chapter 3 is the main chapter of the deliverable and focuses on the conversion of the

independent PoCs scenarios to the three different streams that will be implemented and their

integration status.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 13 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Chapter 4 checks the correlation of the streams with the medium and high-priority

requirements of the revised architecture.

Chapter 5 outlines the roadmap for the final integration release of the SEDIMARK platform.

Chapter 6 concludes the document, summarising the achievements and the next steps in

alignment with the objectives and the goals of the work package.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 14 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

2 Second integrated release of SEDIMARK

platform
The second release of the SEDIMARK platform is a significant milestone in our project. During

the previous period, the platform's capabilities were showcased through the seven

independent scenarios, each serving as a proof-of-concept for the implementation and results

of the different concepts explored within the project, that were identified and developed for the

first release. The focus of the work for the second release has been on the integration of such

capabilities so that this is the first step towards showcasing an actual implementation of the

system acting as a single artifact. This integrated system aims to demonstrate the versatility

and robustness of our architecture enabling support for more complex scenarios that involve

several steps of the lifecycle of an asset within the SEDIMARK Marketplace.

As the SEDIMARK platform evolves and improves throughout successive iterations, its

components will be incrementally enhanced and refined to improve performance and

functionality. The main goal of the work carried out for this second release has been to ensure

that previously independent functionalities can now run sequentially from the same set of

interfaces. This approach creates a more streamlined and cohesive workflow. In this regard,

the components that were behind those scenarios have been enhanced to improve their

performance and extend their functionalities, but, mainly, they have been tuned to be

integrated with the rest of components (which were supporting another of the initial PoCs

scenarios).

Last but not least, another key aspect that has been incorporated into the second release of

the SEDIMARK platform has been the mechanisms to easily deploy it. In this sense,

considering the system architecture that has been defined in SEDIMARK_D2.3 the deployment

of the SEDIMARK platform has two main aspects. On the one hand, the Baseline

Infrastructure, which is, essentially, the nodes supporting the Distributed Ledger Technology

network. In this regard, a network of nodes supporting Layer 1 and Layer 2 of the IOTA Tangle

has been deployed at the premises of several partners. This will be the network supporting the

execution of the pilot cases within the SEDIMARK project, but easy-to-follow documentation

has been created in case a different Baseline Infrastructure needs to be created. On the other

hand, the SEDIMARK Toolbox is the artifact that integrates most of the developments that

have been carried out in WP3 and WP4. Any participant willing to interact within the

SEDIMARK Marketplace is required to deploy their own instance of the SEDIMARK Toolbox.

Thus, the ease of the SEDIMARK Toolbox deployment has been, precisely, one of the key

objectives and focuses for the second release of the SEDIMARK platform.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 15 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 1 General view of the functional components and the current system view

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 16 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

3 From seven independent scenarios PoCs to

three parallel streams
In the previous phases of the SEDIMARK platform development, seven independent scenarios

PoCs were introduced instead of consolidating into an integrated platform right away, focusing

on validating individual functionalities of the platform and components of the architecture.

These PoCs demonstrated the feasibility of critical platform features addressing high-priority

requirements. To implement each scenario, a subset of the components under development

in the project were integrated, thereby presenting an initial version of the platform. For your

reminder, the PoCs scenarios were listed as the following shown below in the bullets and

Figure 2 but specific details can be found in the deliverables SEDIMARK_D5.1 and

SEDIMARK_D5.2.

• Data quality improvement

• Offering lifecycle

• Participants onboarding

• Asset (Data) exchange

• AI-related scenarios

• GUIs

• Open data enabler

However, as the platform matured, it became evident that an integration approach was

required to achieve a more solid methodology and exploit the full potential of the architecture.

To serve this purpose, the consortium proposed the transition from independent PoCs to three

parallel streams; Minimum Viable Marketplace (MVM), Minimum Viable Intelligence (MVI), and

their combined functionality Minimum Viable Marketplace - Minimum Viable Intelligence (MVM-

MVI) which correlates the backend and the frontend integration. This integration ensures that

platform components can operate cohesively, in an interoperable, scalable and trustworthy

manner, addressing complex use cases while meeting medium and high-priority requirements

promised for the second version of the platform.

• MVM: Focuses on providing the foundational marketplace functionalities, including

participant onboarding, offering registration, and secure data exchange.

• MVI: Implements AI-driven capabilities for data preparation and formatting, data analytics,

local and distributed model training and optimisation, asset exchange and others,

emphasizing decentralisation and privacy.

• Backend and frontend integration (MVM-MVI): Combines marketplace and intelligence

functionalities, creating a unified framework where participants can not only share and

discover data but also leverage AI tools for insights and optimisation in a user-friendly

manner.

This structured approach transforms the SEDIMARK platform from a collection of standalone

solutions into an integrated ecosystem capable of supporting diverse pilot applications. The

next subsections outline the process and the sub-streams of each stream and how they

operate and interact. A direct link to the GitHub repository is placed when required for the

reader’s ease.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 17 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 2 Transferring the seven Proof-of-Concept scenarios to three parallel streams

3.1 Minimum Viable Marketplace (MVM)

The Minimum Viable Marketplace (MVM) encompasses the basic set of components required

to facilitate the offering lifecycle and secure P2P asset exchange within the SEDIMARK

ecosystem. This framework ensures that all necessary elements are in place to support the

basic operations and interactions between participants, enabling a functional and efficient

marketplace environment. The marketplace stage includes critical processes such as offering

registration and negotiation, allowing participants to establish agreements to regulate

transaction terms. The subsequent asset exchange mechanisms are supported by secure

protocols that ensure the confidentiality and integrity of all communications. Additionally, the

MVM incorporates participant onboarding processes, where providers and consumers

generate credentials and cryptographic keys to ensure the security and authenticity of their

interactions.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 18 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

As a result, by focusing on the bare minimum requirements, the MVM ensures a secure and

effective marketplace, enabling smooth and trustworthy interactions between participants and

providing a solid foundation for future growth and development. Moreover, the emphasis on

security and trustworthiness helps build a robust and resilient marketplace that can adapt to

evolving needs and challenges.

3.1.1 Sub-streams breakdown and components specification

The integration work carried out to achieve MVM can be divided into three distinct sub-streams:

participant onboarding, offering management, and asset exchange.

3.1.1.1 Participant onboarding

Participant onboarding includes the various steps that each new user must follow to become

a SEDIMARK participant and to generate and obtain the necessary cryptographic

objects/credentials required to establish trusted and secure interactions in the marketplace

context. Figure 3 illustrates the various components involved in this process. From the user's

perspective, the SEDIMARK Marketplace Frontend (depicted in the lower part of the figure)

provides a simplified interface that facilitates interaction with the underlying complex system.

Figure 3 Participant onboarding components

Once the user has supplied their profile information and completed the required steps, the

SEDIMARK frontend will directly interact with the DLT Booth component, leveraging the

REGISTRY

Smart Contracts Platform

IOTA Wasp Network (DLT L2)

IDENTITY SC

FACTORY SC

Service Access Token

ROUTER SC

Fixed-Rate

Exchange

Other Exchanges

Verifiable Data Registry
IOTA Hornet Network (DLT L1)

[did:iota:lnk:…]

SEDIMARK

Marketplace

Frontend

DLT Booth

Identity/DID
management

IOTA
Stronghold

Booth API

Offering
tokenization

Crypto
operations

ISSUERS

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 19 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

functionalities offered by the Booth API. The DLT Booth is designed to streamline the

management of cryptographic operations, while also providing a secure storage for

credentials. In this regard, the available operations include the generation of the necessary

identity key pairs, the DID document generation and management, together with the handling

of its storage in the Verifiable Data Registry (VDR), and the interaction with the Issuer to obtain

a valid SEDIMARK Verifiable Credential (VC). This credential together with the participant's

private keys are subsequently stored within its IOTA stronghold vault. Furthermore, issuers

also engage with the Smart Contracts Platform, specifically the Identity Smart Contract (SC),

to enable credential revocation capabilities. The role of this SC is depicted in Figure 4, where

the whole SEDIMARK smart contract architecture [4] is represented.

Both the SEDIMARK Marketplace Frontend [5] and the DLT Booth [6] components are part of

the SEDIMARK toolbox, which is deployed on the participant domain per their particular

relevant security policies and restrictions. The Registry [7] and Issuer [8], however, are

components deployed by the Baseline Infrastructure Facilitators and therefore reside in the

cloud. For this reason, communication between the first is considered to happen in a local

context.

Figure 4 SEDIMARK smart contract architecture

3.1.1.2 Offering management

The offering management sub-stream focuses on controlling the life-cycle of all offerings within

the system, ensuring their trustworthy registration and tokenisation and enabling their

accessibility by any potential consumer in the Marketplace. Figure 5 illustrates the various

components associated with this functionality, organised by the specific stage they are

involved in i) creation, modification and withdrawal; ii) registration; iii) population; and iv)

discovery.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 20 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 5 Offering management components

Once the offering document has been created as a result of the interactions in the upper layers,

the Offering Manager [9] component acts as a local gateway to initiate offering registration.

Initially, it leverages the interoperability enabler to perform a syntactic and semantic validation

of the provided offering. After successful validation, the document is hashed and stored in the

Self-Listing for later retrieval. The result of such hash, together with the public URL of the

stored offering, serves as input to the Booth API operation responsible for tokenizing the

offering using the Factory SC from the Registry. The result of this process is the generation of

an ERC721 token (NFT) representing the offering as a whole together with a set of ERC20

tokens representing the ownership of a contract for that particular offering, as depicted in

Figure 4.

As part of the offering tokenisation mechanism, a series of events are generated by the Smart

Contract Platform. A Catalogue Coordinator can consume these events to synchronize the

content of the Registry with any Offering Catalogue. In particular, SEDIMARK provides a

reference implementation of such a component [10], which is detailed in Figure 6. In addition

to real-time event-based synchronisation, any Catalogue Coordinator can query the Factory

SC to obtain a list of all existing NFTs that represent the existing offerings in the Marketplace.

With this information, the coordinator can later crawl each provider’s self-listing to retrieve the

complete offering description and validate the hash to ensure it has not been modified since it

was registered. How each specific Catalogue Coordinator then populates their catalogue is

technology-dependent. The SEDIMARK Catalogue [11] relies on a central global triple store

to support SPARQL-based semantic queries, so the Catalogue Coordinator sends every newly

discovered offering to that endpoint. This same endpoint is targeted by the SEDIMARK

Marketplace Frontend for supporting the discovery stage. It is interesting to note that another

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 21 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Catalogue Coordinator is envisioned to generate a local Offerings Cache exploited by the

Recommender during the discovery stage.

Figure 6 Detail of components involved in the offering population and discovery stages

3.1.1.3 Asset exchange

The asset exchange sub-stream encompasses all the mechanisms that facilitate and

guarantee the secure exchange of assets between pairs of SEDIMARK participants. In this

sense, and by leveraging cryptographic techniques and DLT technologies, this stage ensures

that exchanges are recorded immutably, providing a verifiable trail of transactions in a

distributed ledger that enhances the trustworthiness of the system.

Figure 7 shows the set of components and interactions that collectively enable the provision

of asset exchange-related functionalities. This diagram provides a comprehensive overview of

the subsystem, highlighting the different elements involved, which are deployed both as part

of the SEDIMARK baseline infrastructure as well as on every individual participant domain.

The main elements of this sub-stream are as follows: the SEDIMARK dataspace connector,

the DLT Booth, the SEDIMARK smart contract architecture, and the various backends, also

known as data sinks, which are used by providers to store the actual assets.

The SEDIMARK Dataspace Connector enables dataspace-related functionalities within the

MVM, serving as a gateway through which participants can interact among them within the

dataspace ecosystem. This way, by leveraging standardised interfaces, the SEDIMARK

Dataspace Connector ensures interoperable communication and data exchange between

different entities.

This component is based on the well-known Eclipse Dataspace Components (EDC) framework

and its connector, taking advantage of its robust and reliable control plane. The control plane

is compatible with the Data Space Protocol (DSP), ensuring that all interactions within the

dataspace adhere to established standards and protocols. Additionally, the EDC framework

also provides an extensible data plane that supports a variety of plugins, thereby enabling

interoperability with a wide range of asset storage technologies. This ensures that data can be

stored, accessed, and exchanged between different participants using different approaches.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 22 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

The flexibility inherent in this framework is essential for accommodating the heterogeneous

needs of participants within the dataspace. In this way, participants are able to use their

preferred storage solutions without compromising interoperability.

The SEDIMARK EDC Connector [12] builds on this framework to enhance trustworthiness and

decentralisation through the integration of DLT technologies and a smart contract architecture

within the control plane. By integrating DLT, the connector ensures that all transactions are

recorded on a decentralised ledger, enhancing transparency and reducing the risk of

tampering or fraud. This decentralised approach not only improves security but also fosters

greater trust among participants, as the immutable nature of the ledger provides a verifiable

record of all offering-related transactions.

Once an agreement over a specific existing offering has been reached between two

participants (a consumer and a provider) during the DSP-based negotiation phase, they

interact with the smart contract architecture, in particular with the Fixed-Rate exchange smart

contract. This smart contract facilitates the transfer of ownership of an ERC20 token to the

consumer account. This token represents a signed agreement linked to the specific offering

that was negotiated, which is represented by another NFT token, generated as the result of

the offering tokenisation procedure during the offering registration stage. This process is

illustrated in Figure 4. The smart contract ensures that the agreed-upon terms are executed

securely and transparently by automating the transfer and recording it on the DLT, providing a

verifiable and immutable record of the exchange.

In this particular context, the DLT Booth, as detailed in Figure 7, is the component responsible

for facilitating interactions between the dataspace and DLT domains. Moreover, it acts as a

bridge, offloading certain cryptographic operations and ensuring these processes are handled

efficiently and securely. In this regard, it manages interactions with the Ethereum Virtual

Machine (EVM), which is essential for executing smart contracts within the DLT environment.

Furthermore, the DLT Booth also functions as a secure wallet, safeguarding the cryptographic

credentials necessary for these operations. By securely storing and managing these

credentials, it ensures that all transactions and interactions are protected against unauthorised

access and potential security breaches. Overall, the introduction of the DLT Booth in the

system simplifies the integration of DLT technology within the dataspace framework.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 23 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 7 Asset exchange components

Once an agreement over an offering is reached, the offering procurement process, which

ultimately leads to the actual asset exchange, can start. As introduced before, the asset

exchange process relies on the data plane, a critical component that handles the actual

transfer of data assets between participants. This transfer can follow different models, such as

pull, push, or mixed. In the pull model, the consumer initiates the data transfer by requesting

the asset from the provider. In contrast, the push model involves the provider initiating the

transfer and sending the data asset to a destination indicated by the consumer. Finally, the

mixed model combines elements of both pull and push approaches, allowing for more flexible

and dynamic data exchange scenarios.

The data plane's capacity to support these different transfer models, along with its extensibility

through the creation of new plugins to support additional technologies, ensures that the asset

exchange process can be tailored to align with the specific requirements and preferences of

the participants. This flexibility accommodates different types of assets and storage solutions.

Examples of compatible technologies are, among others, REST APIs or AWS S3 API.

While the specific behaviour of each individual data plane plugin varies depending on the

backend technology employed for asset transfer, they all share a common approach to

authorisation. The previously acquired ERC20 token, obtained to represent an agreement on

a specific offering, serves as the basis for authorisation purposes. Ownership of this token

must be verified during the communication between participants to initiate the offering

procurement process. Additional validations will be performed based on SEDIMARK Verifiable

Credentials and the specific ODRL policies included in the offering agreement. Once

authorisation is validated, technology-dependent interactions with the involved backend

components will configure and control the asset exchange process. One example of such

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 24 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

interaction would be to use a storage API to generate compatible temporal access credentials

that are then notified to the consumer.

3.1.2 Integration specification

Figures 8-9 present the current status of the tasks that need to be completed in order to

integrate the MVM components. This board will be continuously updated to keep track of the

integration progress.

Figure 8 The MVM issue dashboard on the git repository (1)

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 25 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 9 The MVM issue dashboard on the git repository (2)

The relevant link for the GitHub repository is: [18]

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 26 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

3.2 Minimum Viable Intelligence (MVI)

The Minimum Viable Intelligence (MVI) represent the core AI-driven functionalities of the

SEDIMARK platform, enabling intelligent data processing capabilities, analytics, decision

making and asset/data exchange within a decentralised framework. MVI bridges data

providers and data consumers by leveraging advanced AI techniques, including federated

learning, data curation, and distributed model training, to extract actionable insights while

ensuring data privacy and security. By integrating AI orchestrators, data preprocessing

pipelines, and distributed machine learning frameworks, MVI ensures the platform delivers

robust intelligence capabilities and encourages participants to enhance data usability and

unlock the full potential of the platform’s decentralised marketplace. These features are

particularly critical for supporting use cases such as data quality validation, predictive analytics,

and event detection in real-time, making SEDIMARK a scalable and efficient data and services

marketplace.

3.2.1 Define sub-streams and provide high-level description

The Minimum Viable Intelligence (MVI) contains the basic set of components required to

facilitate the data processing pipeline management as well as the AI orchestration pipeline

management within the SEDIMARK ecosystem. In Figure 10, we have presented from up to

down, from the producer to the consumer (lower part of the image), how the involved

components interact with each other.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 27 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 10 MVI Architecture

In what follows we will provide explanations for each component from the above diagram,

focusing on orchestration of the AI models, data processing pipelines, and overall marketplace

interactions.

Mage.AI is a framework that allows modelling of the transformation and integration of any data.

The modules that are integrated in the Mage.AI are:

• Data Curation which represents blocks that perform cleaning, profiling and deduplication

of the input data.

• Data Formatter which transforms data from NGSI-LD, JSON to pandas’ data frames, thus

standardizing data formats.

• NGSI-LD Broker Save/Load. This block facilitates data reading and storage from and to

the NGSI-LD broker. It also allows the user to select the entity where data will be stored

to.

• Model Training/Optimisation supports the development and tunning of the parameters of

the AI models for specific use cases.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 28 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

The model management is realised with the help of MLFlow. MinIO serves as data storage for

information resulting from training such as metrics, plots, confusion matrixes, etc.

The Orchestrator UI application connects users with pipelines defined in Mage.AI to set various

parameters of the block or simply run them.

The same interface connects users with AI orchestrators which implies using tools like

Shamrock or Fleviden.

The MVM includes a Global Catalogue that allows for organising asset descriptions (assets

like data, AI models, and pipelines). These asset descriptions will enable the customer to

discover the assets. Assets will be then made available to the customer via Connectors.

A Connector facilitates data exchange and interaction with NGSI-LD broker ensuring secure

data flow between the Catalogue, Mage.AI and other MVM modules.

The NGSI-LD broker acts as a central hub for metadata, actual data and AI pipeline and asset

descriptors.

Users can interact with the system through the orchestrator UI to manipulate existing pipelines.

3.2.1.1 Data storage

Set up MinIO for Data Storage and Access

The setup for MinIO is managed via a Docker Compose configuration file, which deploys MinIO

alongside all other components included in the SEDIMARK MVI Toolbox. The specific

configuration details for deploying MinIO will be outlined in Section 3.2.1.12.

MinIO will serve as a storage solution for models generated by AI pipelines executed in Mage,

as well as for other artifacts associated with these models. While MinIO can also be utilised

for storing data that cannot be directly saved to the NGSI-LD broker, this will not be its primary

purpose.

MinIO will primarily be accessed through interactions between the components of the toolbox,

triggered by specific flows initiated by the user. That said, direct access to MinIO is also

possible using the credentials specified in the Docker Compose configuration, as shown in

Figure 11. By using the ROOT credentials, the toolbox user can access the MinIO interface at

http://localhost:9000 after deployment to view all stored data.

Figure 11 MinIO credentials

MinIO is utilised within the platform to showcase the functionality of the marketplace, but it is

not the sole or primary storage solution. Providers will have the flexibility to specify the source

of their data, which can be stored using any storage method of their choice.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 29 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

3.2.1.2 Data Processing

Integration between MageAI and Data Curation tools

Data Curation is a Python module developed as part of the SEDIMARK project to assist in

cleaning and enriching data. A summary of the actions that can be performed using this module

is outlined below:

• Anomaly detection/annotation

• Data deduplication

• Interpolation of missing data

• Data profiling

All these functions will be implemented as Mage AI template blocks that can be imported inside

a pipeline based on the needs of a particular pipeline.

An example of a block for data curation tools can be seen in Figure 12:

Figure 12 Data Curation block

Integration between MageAI and Data Formatter

Data Formatter is a collection of Python modules and scripts designed to standardize data

formats both during the execution of a pipeline in Mage AI and at its conclusion, ensuring

consistent data storage. To achieve this, NGSI-LD was selected as the primary format for

saving and retaining most, if not all, data for future use within the SEDIMARK Marketplace.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 30 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

However, the Data Formatter can also support CSV and XLS/XLSX formats, enabling flexibility

when dealing with data in various formats.

The integration between Mage AI and the Data Formatter will be achieved through template

blocks created in Mage. These blocks will be incorporated into data processing pipelines to

handle data conversion and formatting into NGSI-LD, either at the beginning or the end of the

pipeline.

Data Quality Annotation is performed after the data processing pipelines and is designed to

add quality annotations directly to the output (i.e., pandas DataFrame) of the pipeline. These

annotations can be applied either at the attribute level (to specific columns or features) or the

instance level (to entire rows).

To transform the enriched Dataframe into the NGSI-LD format, the Data Mapper is utilised.

The integration between Mage AI and these two components will be achieved through the use

of template blocks designed within Mage.

Regarding the AI pipeline, two new components are currently in progress to enable the

dynamic transformation and restoration of DataFrames. The first component (Data

Transformation) is performed after the Data Formatter and is designed to extract relevant data

from the NGSI-LD data in the Broker, creating a focused subset (DataFrame) specifically for

AI model training. The second one (Data Restoration) ensures the original structure is restored

by mapping the prediction back to the full data, maintaining consistency and coherence.

Finally, an NGSI-LD output is generated thanks to the Data Mapper and can be stored back to

the Broker.

All these components will be integrated in Mage AI.

Integration between MageAI and Context broker for loading/saving

The context broker in the case of the MVI architecture will be the NGSI-LD broker, this broker

will be used to standardize the data format inside the SEDIMARK Marketplace.

The broker, like all other components in the toolbox, will be deployed as a Docker container.

Interaction between Mage and the Context Broker will occur at the end of a pipeline via

template blocks. These blocks will first collect all the information related to a specific asset. In

SEDIMARK, assets can be categorised as data assets, AI/ML model assets, or pipeline assets.

The collected information will then be converted into NGSI-LD format and saved in the Context

Broker. If the asset is a data asset, the associated data will also be stored in the broker. Figure

13 presents the flow of data, starting from Mage and going until the context broker.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 31 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 13 Context Broker saving flow

3.2.1.3 AI Orchestrator

The diagram in Figure 14 represents the flow of a Federated Learning process between an AI

Enabler Initiator and an AI Enabler Participant. This process is similar both in the Shamrock

tool as well as in the Fleviden tool which will be described in what follows.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 32 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 14 Federated learning block

The federated learning block comprises three main steps:

• Model initialisation

o The initiator begins training a decentralised model by setting manually the network

graph for participating nodes.

o The model description is sent to the participant who also performs a manual setup of

its local model.

• Training initialisation

o Both will initialize the model and start the distributed process.

o Local training occurs on each node.

• Iterative loop

o Each participant sends its local weights after a round of training.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 33 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

o The AI Orchestrator collects the weights from all participants, aggregates them and

updates the global model.

o The updated model weights are sent back to each participant who incorporates them in

their models to start the next training round.

o The process iterates for multiple rounds until the training converges.

Integration between AI Orchestrator and Shamrock

SEDIMARK provides Shamrock, a lightweight and composable tool for enabling distributed

training of machine learning models. Shamrock is based on a simple node architecture, where

nodes host datasets and machine learning models, and can be composed via the definition of

a topology to train local models while communicating and aggregating weights. In its current

implementation, Shamrock provides support for both Keras and PyTorch models, with Keras

allowing for training to take place in two additional backends - Jax and Tensorflow- provided

the model is defined using Keras syntax. Shamrock will feature additional support for both split

learning and federated distillation. Shamrock nodes may communicate both model weights, as

well as fully defined models in either Pytorch of Keras, and additional metadata, such as

sharing lists of peers in order to expand decentralised networks. Shamrock operates primarily

over a REST http API, with nodes operating Starlette servers, and features one-way request-

response communication.

Integration between AI orchestrator and Fleviden

SEDIMARK also provides Fleviden as an alternative framework for decentralised federated

learning. Fleviden follows a pipes-and-filters paradigm that allows users to define a highly

flexible computational graph by instantiating and connecting Fleviden pods. This flexibility is

what enables different training topologies, such as client-server, hierarchical or swarm

learning, as well as more complex custom scenarios. Currently, Fleviden supports Keras,

Pytorch and Scikit-Learn for training the models, and HTTP or Kafka-based communication

between agents. Additionally, Fleviden offers privacy-preserving mechanisms, model

performance monitoring through MLFlow, and several compression and quantisation

techniques to reduce the energy consumption of the process.

Integration between AI orchestrator and model optimisation modules

The interaction between the AI orchestrator and the model optimisation modules begins with

an AI pipeline created in Mage, utilizing various block templates that contain code from the

model optimisation modules. Through configurable parameters, the optimisation process can

be fine-tuned for a specific dataset and model.

At the end of the AI pipeline, a dedicated block will save the asset description of the resulting

model into the context broker and store the model itself in the AI orchestrator. In the MVI

architecture, the AI orchestrator is represented by the MLFlow and MinIO components. The

integration workflow from the AI pipeline to the AI orchestrator is illustrated in Figure 15.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 34 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 15 Integration flow between AI orchestrator and model optimisation modules

3.2.1.4 Local Model Training

Local model training automatisation and interface design

The design of interfaces for local model training enables participants to interact with the training

pipeline via both GUIs and APIs….

The GUI provides a user-friendly interface for initiating and monitoring local model training

tasks. Key features include:

• Dataset selection: The user retrieves a dataset from the marketplace using file upload

mechanisms (drag and drop) to choose datasets. An indicative interface is shown in

Figure 16.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 35 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 16 Interface for uploading the dataset to train and evaluate the model.

• Model configuration: The user chooses from a series of interactive forms for selecting

model types, defining hyperparameters, and choosing training schedules (Figure 17).

Figure 17 Options for selecting the hyperparameters of the XGBoost Regressor model

• Parameter selection and model tuning: Users have the option to set the parameters for

the XGB model. Then, they can click a “Tune and Train” button to perform hyperparameter

tuning and train the model with the best parameters (Figure 18).

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 36 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 18 User interface for selecting the train-test split percentages for the uploaded dataset.

• Model evaluation and results visualisation: After training, the UI displays model

performance metrics and evaluation results. Users can view graphical comparisons, such

as predictions vs. true values, to analyse the model's accuracy and mean daily

consumption predictions. The following dashboards illustrate how the chain of the results

is displayed on the interface (Figure 19-22).

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 37 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 19 Table displaying a comparison of the predicted values and the true values for energy

consumption.

Figure 20 Visualisation of feature importances from the dataset

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 38 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 21 Line plot comparing the predicted vs. true values of mean daily energy consumption

for each instance in the test set.

The graph shows that the model captures the general trend of energy consumption, particularly

for low-to-moderate values. While the model slightly underpredicts peaks, it performs well in

aligning with the overall behaviour of the data.

Figure 22 Scatter plot of predictions vs. true values

The above scatter plot highlights that the model performs reliably for lower energy values

where predictions align closely with the actual values. Although deviations increase for higher

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 39 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

values, the overall pattern follows the expected trend, indicating the model’s potential with

further refinement.

The purpose of the whole analysis is to help the user assess how closely the model's

predictions align with the actual values, identify areas where the model might overpredict or

underpredict energy consumption, and provide a visual overview of the model’s accuracy and

performance across the entire test set. More details can be found in the GitHub project

repository here: [20]

3.2.1.5 Distributed Model Training

Toolbox Deployment for Shamrock

Shamrock is a distributed machine learning tool available through the SEDIMARK toolbox.

Shamrock is deployed as a Python package, which is subsequently imported by MageAI.

Users can then use the functionality of Shamrock through the MageAI pipeline. In particular,

users will be able to select a particular Keras or Pytorch model to train in the distributed

settings. Moreover, users can choose from several distributed learning topologies and the

specific model part for communication (i.e. model weights or model description). An example

of running a decentralised model training in the federated learning topology is shown in Section

3.2.1.3.

Toolbox deployment for Fleviden

Fleviden is another federated learning tool that SEDIMARK toolbox also developed as a

Python framework. After installing the Fleviden library, users will be able to define and

customize their federated learning scenario, for example, defining the topology (Client-Server,

Hierarchical, Swarm Learning, etc), the training framework (Keras, Pytorch, Sklearn), the

communication protocol (HTTP, Kafka), the kind of data the model will process (tabular, image,

etc.), and additional features (compression techniques, privacy preservation, client-selection,

etc). Clients will be able to subscribe and unsubscribe dynamically to a federated learning

network, being able to join already initiated training processes.

3.2.1.6 Model Management

Implement MLFlow for Experiment Tracking and Model Management

MLFlow is an open-source platform designed to streamline the management of machine

learning (ML) workflows. It provides tools for tracking experiments, packaging models, and

managing the deployment lifecycle, and is used to maintain reproducibility, collaboration, and

scalability in AI/ML projects.

MLFlow offers robust features for managing the machine learning lifecycle. It provides

experiment tracking by logging and visualizing metrics, parameters, and artifacts like models

and datasets, enabling efficient comparison and record-keeping. A centralised model registry

ensures versioning, metadata management, and stage transitions, with the ability to roll back

to previous versions.

MLFlow standardizes model packaging, allowing seamless deployment across environments

such as REST APIs, batch pipelines, embedded systems, or cloud platforms like AWS

SageMaker, Azure ML, and Kubernetes. It integrates smoothly with popular ML libraries such

as TensorFlow, PyTorch, XGBoost, and Scikit-Learn, as well as major data platforms like

Databricks and Apache Spark. With support for multiple programming languages, including

Python, R, and Java, MLFlow accommodates diverse technical teams effectively.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 40 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

MLFlow is deployed inside the SEDIMARK toolbox as a Docker container, to provide a

standardised way for the components deployed and ensure seamless communication between

the different components. Figure 23 presents the user interface of MLFlow, which can be used

by a user inside the SEDIMARK platform to see how the different models are stored and to

visualize the metadata around them, but communication with MLFlow will be done mostly

through code and API calls.

Figure 23 MLFlow UI

Integrate MLFlow with MageAI for Model Management

The integration between MLFlow and Mage AI will be done as for most of the other components

inside the MVI toolbox, through template blocks that will contain code for the following

operations:

• Storing trained models

• Getting trained models from storage to use for predictions

• Updating a model

These three operations will ensure seamless integration between Mage and MLFlow. The

template blocks will be parameterised to provide flexibility, accommodating various models

generated through different AI pipelines.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 41 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 24 MLFlow storing block

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 42 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 25 MLFlow loading and prediction block

Figure 24 illustrates a block for storing a trained model in MLFlow, while Figure 25

demonstrates a block for loading a trained model and performing predictions on a given

dataset.

Integrate MageAI with energy consumption data

The integration of MageAI with energy consumption data enables advanced data analytics and

machine learning workflows, particularly for time-series forecasting and energy demand

prediction. This integration brings automated machine learning (AutoML) capabilities into the

platform, simplifying the process of building, training, and deploying predictive models for

energy consumption patterns while maintaining privacy and data locality.

The data processing and model training pipeline that we have designed and implemented

consists of four sequential blocks:

• Data Loader block: Fetches and integrates the datasets from a GitHub repository

associated with the project. The processed dataset is saved for downstream tasks

(Figures 26-27).

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 43 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 26 MageAI Data Loader block

Figure 27 Energy consumption dataset features

• Data Splitter block: The dataset is split into training, test, and validation sets (Figure 28).

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 44 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 28 Process of splitting the dataset using MageAI Data Splitter block

• Data Scale block: Applies standard scaler to normalise the dataset (Figure 29). The basic

model we use is the XGBoostRegressor model.

Figure 29 Scaling using the Data Scale block of MageAI

Integrate MLFlow with the energy prediction model

MLFlow integration within the SEDIMARK platform is critical for managing the lifecycle of ML

prediction models. This integration allows the platform to streamline the process of model

tracking, versioning, and deployment while ensuring the reproducibility and scalability of

predictive analytics workflows.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 45 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

More specifically, the integration leverages the continuation of the previous pipelines with a

last Mage.AI block, namely the model block. We implemented the following processes:

• Hyperparameter Tuning and Model Training: The XGBoost model was tuned to identify

the best-performing parameters and used them to train the model.

• Model Deployment: The trained model was uploaded to the GitHub repository here: [20].

The model is also saved in a MinIO bucket for storage and further usage.

Figure 30 XGBoost model tuning/training using MLFlow

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 46 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 31 MLFlow code for XGBoost model

After running the code, the results are stored in the MLFlow as shown in Figures 32-33.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 47 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 32 Stored model, dataset, metrics and artifacts in MLFlow (1)

Figure 33 Stored model, dataset, metrics and artifacts in MLFlow (2)

3.2.1.7 Asset Description

As part of the Asset generation process through the Orchestrator, Asset Descriptions are

created as a by-product of the Asset itself. The Asset Description is used by Offering Manager

Clients (UI or API) for creating the Offering Descriptions that will be published in the

Marketplace Catalogue. The Connector will also use it to locate where the Asset is stored for

retrieval and exchange with the Consumer. The above steps are depicted in Figures 34-36.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 48 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 34 Asset Description Generation

Figure 35 Asset Description Use

The Asset Description holds properties for different aspects of an Asset. Among all types of

Assets - i.e. Data, AI Model and Service – common properties are defined.

Wallet

dashboard

DPP/AIP

Data Curation

Orchestrator

Data Formatter Data Mapper

NGSI-LD
Broker

(DataAssets)

Asset
Description

Asset

DID
Document

Users

NGSI-LD
Broker
(Asset

Descriptions)

Connector

NGSI-LD Broker
(Asset Descriptions)

Marketplace UI

Offering
Manager

(1) (2)

Offering Manager
API Client

(2)

NGSI-LD Broker
(DataAssets)

(1)

Minio
(AI Model Assets)

Data Plane

Control Plane

(3b)

(3a)

Consumer

Registry

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 49 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 36 Common Asset Properties to be captured by Orchestrator

Common properties include aspects of identification, description and tagging to provide context

to the Asset. It also holds temporal aspects relating to its creation and modification. Aspect of

usage is also provided, as well as provenance relating to dependencies used for the creation

of the Asset and what processing has been applied. To support the resolution of the Asset’s

location within the Provider’s storage enablement, endpoint information is also provided.

Modelling/ontology of data assets (information model)

For the DataAsset, specific properties are needed to be captured which relate to temporal

aspects, size, periodicity, and whether it is part of another DataAsset.

Figure 37 Data Asset Properties

Asset

identifier xsd:string
title xsd:string
creator xsd:anyURI
description xsd:string
publisher xsd:anyURI
issued xsd:dateTime
modified xsd:dateTime
keyword xsd:string
license xsd:string
version xsd:string
spatial xsd:anyURI
wasGeneratedBy xsd:anyURI
used xsd:anyURI
startedAtTime xsd:dateTime
endedAtTime xsd:dateTime
endpointURL xsd:anyURI
endpointMethod xsd:string

DataAsset

temporalResolution xsd:duration
size xsd:nonNegativeInteger
accrualPeriodicity dcterms:Frequency
inSeries xsd:anyURI

dcat:PeriodOfTime

startDate xsd:date
endDate xsd:date

dcat:temporal

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 50 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Modelling/ontology of AI assets and training services

Properties that need to be captured for the AI Model Asset are shown in Figure 38. These

mainly focus on the intended application of the Asset, specifics about its design such

algorithms, input/output parameters, formats it deals with, and whether it handles stream-

based DataAssets.

Figure 38 AI Model Asset Properties

As for ServiceAsset properties, interaction details need to be captured, as well as which

DataAssets it will provide in return.

Figure 39 Service Asset Properties

3.2.1.8 Toolbox deployment for NGSI-LD broker

The deployment for the NGSI-LD broker is done through a docker-compose file that deploys

all the needed containers for the broker to work.

The broker can be configured through environment variables that are documented in a

README file alongside the deployment ones, and are available at the following GitHub

repository link: [13]

As introduced in the previous paragraph, the NGSI-LD context broker available as part of the

toolbox serves 2 purposes:

• Storing the datasets assets, query-able as batch or stream (through subscription)

• Storing the asset descriptions, to allow the discovery of available datasets through a

RESTFUL API based on SEDIMARK Ontology.

AIModelAsset

category xsd:string
purpose xsd:string
algorithm xsd:string
serialization xsd:string
version xsd:string
execution xsd:string
size xsd:float
outputFormat xsd:string
handleStream xsd:boolean
inputFormat xsd:string
InputParameters xsd:string
outputFormat xsd:string
outputParameters xsd:string

DataAsset

OtherAsset (workflow)

hasTrainingDataset

hasDatasetProcessing

ServiceAsset

endpointURL xsd:anyURI
endpointDescription xsd:string
serviceConfig xsd:string

DataAssetservesDataset

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 51 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Rather than deploying 2 different brokers, it is recommended to make use of tenants such as

provided by the Stellio context broker [17]. As defined within the NGSI-LD Specification, the

concept of a tenant is that a user or group of users utilises a single instance of an NGSI-LD

Context Broker in isolation from other users or groups of users of the same instance, which

are considered to be different tenants. Thus, a multi-tenant NGSI-LD system is a system where

a single software instance is used by different users or groups of users, the tenants, where

any information related to one tenant (e.g. Entities, Subscriptions, Context Source

Registrations) are only visible to users of the same tenant, but not to users of a different tenant.

Within Stellio, multi-tenancy provides complete isolation of the tenant through the use of

different databases across tenants.

The multi-tenant deployment is not integrated by default in the configuration files. It will be

evaluated during the initial integration and adjusted if relevant.

3.2.1.9 Toolbox deployment for MageAI

Mage AI will be deployed through a docker-compose configuration, that can be found in the

GitHub repository for the SEDIMARK toolbox: [14] The deployment can be configured with the

help of the following environment variables

• PROJECT_NAME – Which is the name of the Mage AI deployment, best is to leave it as

in the configuration

• REQUIRE_USER_AUTHENTICATION – Specify if the deployment should have

authentication or not, the best is to leave it as in the configuration

3.2.1.10 Toolbox deployment for Mage API

Mage API is an API developed inside the SEDIMARK project and is the component that will

be used to interact with the Mage AI deployment, in order to automate as much as possible,

the interaction with Mage. The Readme for deploying Mage API is available in the following

GitHub repository alongside the other toolbox components: [15]

3.2.1.11 Toolbox deployment for MLFlow

As mentioned in Section 3.2.1.7 the deployment of MLFlow will be done through a docker-

compose file and the documentation for the configuration and deployment can be found at the

following GitHub repository link:

3.2.1.7 the deployment of MLFlow will be done through a docker-compose file and the

documentation for the configuration and deployment can be found at the following GitHub

repository link: [16]

3.2.1.12 Toolbox deployment for MinIO

As mentioned in Section 3.2.1.1 the deployment of MinIO will be done through a docker-

compose file and the documentation for the configuration and deployment can be found at the

following GitHub repository link: [21]

An integration with the Context Broker in charge of assets registration will be proposed in order

to make assets stored in Minio discoverable. For that purpose, we need a way to match a Minio

event with an existing attribute of an existing entity into the Context Broker (to create / update

/ delete the attribute depending on the event type).

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 52 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Out of the box, identifiers of a Minio object is the filename which is weak. However, it is possible

to add attributes and tags when creating an object. Tags do not seem to be transmitted into

notifications, so better use attributes, e.g.:

mc cp --attr "NGSILD-Entity-Id=urn:ngsi-ld:Entity:01;attributeName=MyFlowAsset "

MyFlow.zip minio/sedimark

Then the event contains:

 "object": {

 "key": "MyFlow.zip",

 "size": 2506,

 "eTag": "5e6daae961eae0eb8db73d05ca704d77",

 "contentType": "application/zip",

 "userMetadata": {

 "X-Amz-Meta-Attributename": "MyAsset ",

 "X-Amz-Meta-Ngsild-Entity-Id": "urn:ngsi-ld:Entity:01",

 "content-type": "application/zip"

 },

 "sequencer": "16C70A13B5B27130"

 }

3.2.1.13 Toolbox deployment for UI Orchestrator

UI Orchestrator is a web-based application designed to simplify the management and creation

of AI pipelines by serving as an intuitive wrapper around Mage AI.

Users can tag pipelines created in Mage AI as pre-processing, training, prediction, or

streaming, and these tags automatically organize pipelines into corresponding menus in the

interface. By accessing these menus, users can render pipelines, execute them by inputting

values for variables in each block, and view performance metrics and the execution history.

Additional features include pipeline deletion, name editing, and exporting in either CWL or

MageAI format.

A key feature of the platform is the ability to create pipelines by linking pre-existing blocks or

generating new ones with AI. Users can select blocks from templates or create custom blocks

by specifying a type and providing a prompt, with an LLM generating the block for immediate

use or saving it as a template. Custom templates can also be added to Mage AI to meet specific

needs.

The deployment of the UI Orchestrator is straightforward, ensuring that users can easily

integrate it into their existing infrastructure. The application is distributed as a containerized

service, enabling quick setup and scalability. To deploy the UI Orchestrator, users need to:

• Prepare the environment: Ensure access to a running Mage AI instance, along with the

appropriate credentials and URL.

• Install the application: Obtain the pre-configured Docker image from the SEDIMARK

container registry or build the image locally using the provided Dockerfile.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 53 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

• Configure connection parameters: During the setup, users specify the Mage AI instance

details through a simple configuration interface or environment variables, which establish

a secure connection between the UI Orchestrator and Mage AI.

• Run the service: Deploy the application using a single Docker command or within a

docker-compose setup, as provided in the SEDIMARK documentation.

Once deployed, the UI Orchestrator automatically detects pipelines and integrates seamlessly

with Mage AI, offering an intuitive interface for managing workflows. Deployment logs and

monitoring tools are included to verify a successful setup and resolve potential issues.

3.2.2 Integration specification

Figures 40-41 illustrate the current progress of tasks required for integrating the AI-related

functionalities into the SEDIMARK toolbox. This board will be regularly updated to monitor and

manage the integration process effectively.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 54 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 40 MVI stream task monitoring in GitHub repository (1)

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 55 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 41 MVI stream task monitoring in GitHub repository (2)

The respective GitHub link is: [17]

3.3 Backend and Frontend Integration Overview

The integration between backend and frontend components plays a crucial role in ensuring a

seamless user experience and effective communication between the layers of SEDIMARK

marketplace. This section aims to outline the key integration points, the flow of data, and the

mechanisms used to establish robust connectivity between the backend systems and frontend

interfaces. By detailing the structure and interactions, this section will provide a comprehensive

understanding of how the components come together to deliver a cohesive solution.

3.3.1 Define sub-streams and provide a high-level description

This section outlines the various sub-streams that establish the connection between backend

components and the SEDIMARK UI as well as the Orchestrator UI, as illustrated in Figure 6.

The primary objective of this section is to demonstrate how the backend seamlessly integrates

with the frontend to ensure that users of the SEDIMARK marketplace enjoy a smooth and

intuitive experience. Additionally, this section will detail the integration between the MVI and

the Connector through the SEDIMARK UI, along with the data flow between the connectors.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 56 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

3.3.1.1 Creation of offering description based on asset description

The creation of an offering description via the marketplace UI can be achieved using its Publish

section. This section consists of a form, where the user can either select one of the existing

asset, she/he created in the NGSI-LD context broker, or create one from scratch. If the latter

option is chosen, the marketplace will also take care of pushing the newly created asset

description to the NGSI-LD context broker. Then, the user adds policies to rule the access to

the data asset, such as a validity period for the contract. Finally, once done filling out this form,

the user is invited to review it and confirm her/his will to publish it to the SEDIMARK catalogue.

3.3.1.2 Data flow between data sinks and Connector

As outlined in section 3.1.1.3, interactions between different participant connectors in the

dataspace domain are conducted using a peer-to-peer approach. This involves an offering

negotiation process via the control plane, followed by an asset exchange process using a data

plane which is selected based on the specific asset technology. Our current implementation of

the connector data plane supports generic REST APIs as well as MinIO interfaces, which can

be targeted by using the MinIO-specific REST API or AWS S3 API. All needed information for

the connector to be able to interact with specific asset storage technology is injected into the

Offering Manager when registering the offering.

3.3.1.3 Integration between Orchestrator and Context Broker to retrieve asset descriptions

There are two main workflows for handling asset descriptions in the interaction between the

Orchestrator UI and the Context Broker: one for creating an asset description and another for

retrieving it later if a user opts not to create an offering directly from the description.

Asset descriptions are stored as NGSI-LD entities in the Context Broker, which can be queried

to retrieve entities of type "asset description." The Orchestrator UI provides an interface where

users can input details about an asset's description, such as whether it pertains to data, AI/ML

models, or pipelines. Using this input, the appropriate pipeline is initiated to generate the actual

asset. Once the pipeline is completed, the comprehensive asset description is saved to the

Context Broker.

If the user chooses to proceed with creating an offering, they will be redirected to the

SEDIMARK UI. Otherwise, the Orchestrator UI will display an interface where it queries the

Context Broker to retrieve and present all stored asset descriptions in an organised and user-

friendly manner. Based on this information, users can then decide to create an offering.

The created assets will be identified locally by their NGSI-LD URI which is a unique identifier

of an entity resource with the NGSI-LD Context Broker. The definition of the URI is left to the

service creating the asset to define the URI (note: the context broker will enforce the

uniqueness of the created URI by refusing creation of a new entity with a URI already in use).

There is no naming convention defined at that stage. The need to recommend or enforce a

naming convention will be evaluated during the integration.

Once an asset has been created in the Context Broker, it will be accessible through the NGSI-

LD interface.

Here is an example of querying the Context Broker URI: [22]

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 57 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

3.3.1.4 Integration between Orchestrator UI and Mage API to create an offering for pipeline

assets

In the SEDIMARK toolbox, the representation and actual files of the various pipelines

developed within the SEDIMARK platform will be stored directly in Mage AI. This eliminates

the need for external storage for pipelines. Mage AI will serve as both a storage solution and

a functional component, enabling the creation and execution of pipelines within the toolbox.

To export pipelines from Mage AI, the Mage API will be used to interface with the Connector

when a pipeline is downloaded by a user through the Orchestrator UI. In the SEDIMARK

platform, there are two main types of pipeline exports: one exports the pipeline in Mage AI

format, allowing another user with their own toolbox to directly import the pipeline into their

Mage AI; the other exports the pipeline in a standardised format using CWL (Common

Workflow Language), enabling users who do not want the full toolbox and are just consumers

to utilize the pipelines.

The output of both pipeline export methods will ultimately be a ZIP file containing the pipeline

along with all the necessary adjacent objects. However, the process for generating the

contents of the ZIP file differs between the two methods. Below is an explanation of the process

for each method:

• Mage AI export – The process of exporting directly into Mage AI format is straightforward

and it starts by collecting all the files connected to a pipeline that are already available in

Mage AI and pack them together in the ZIP file, with a generic README file that explains

how to import the pipeline back in Mage.

• CWL export – This method is more complex than the other and begins by converting each

block from Mage AI format into standard Python code. Following this, for each block in the

pipeline, a corresponding CWL workflow is created. The CWL workflow consists of YAML

files representing each block, detailing their inputs, outputs, and a main entry point that

defines the environment variables and the sequence for running the blocks. Alongside the

CWL pipeline, the ZIP file will include a script to automatically validate and execute the

workflow, as well as a README file providing instructions on running the pipeline and

visualizing the output.

The process for requesting a pipeline asset begins with the discovery phase, where various

connectors holding pipeline assets are identified and presented in the Orchestrator UI.

Following this, the consumer initiates the negotiation process and requests the desired

pipeline. The Connector in the toolbox where the pipeline resides will query the Context Broker

for the pipeline's location, which will call the Mage API. Based on the information provided by

the consumer, the pipeline will be exported in the specified format and passed to the

consumer's Connector for delivery.

3.3.1.5 Integration between Orchestrator UI, Mage API and Mage AI to create and save

data/AI/ML offering (asset) description

The process of saving an asset begins with the user interacting with the Orchestrator UI to
create a new data, AI, or ML offering. The user inputs the necessary details, including
metadata, associated datasets, and AI/ML model parameters. These inputs are validated by
the UI to ensure they meet predefined standards and schemas.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 58 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Once validated, the asset description is securely sent to the Mage API, which parses and
forwards it to Mage AI. Mage AI processes the input by standardizing formats, enriching
metadata through ontologies, and validating datasets or AI/ML models to ensure quality and
compliance.

The finalised asset description is stored in the SEDIMARK context broker, with a unique
identifier generated by Mage API.

3.3.1.6 Integration between Connector, SEDIMARK UI and AI Orchestrator to retrieve

AI/ML assets

In the SEDIMARK ecosystem, AI/ML assets are stored using MinIO for model binaries and the

NGSI-LD Broker for metadata and descriptions, enabling efficient and secure access. Trained

AI/ML models are saved in MinIO, a high-performance distributed object storage system,

where each model is assigned a unique identifier for scalability and easy retrieval. Secure

credentials and tokens ensure restricted access to these stored models. Alongside the model

binaries, metadata and descriptions are stored in the NGSI-LD Broker. This metadata includes

details such as model type, training parameters, performance metrics, versioning, and

associated datasets, providing a semantic layer for querying and retrieval.

MLFlow orchestrates the storage process, automating the management of AI/ML lifecycle
activities. It saves the trained models to MinIO and simultaneously uploads the metadata and
descriptions to the NGSI-LD Broker. Once stored, the metadata is indexed in a central or
decentralised catalogue, making the models discoverable through the SEDIMARK
Marketplace UI.

The user willing to share his/her AI/ML assets can therefore create an offering in the

marketplace UI, in its dedicated Publish section. As described in section 3.3.1.1, the user first

selects the asset to share from the list of available ones in the NGSI-LD context broker. Then,

the user adds policies associated with the offering, i.e. a set of rules to restrict access to the

asset, such as a validity period. Upon completion of this form, the user can publish the offering,

resulting in the marketplace posting the offering to the catalogue.

Once a particular offering has been discovered, the assets described can be exchanged as

explained in section 3.3.1.2.

3.3.1.7 Integration between Orchestrator UI and Shamrock

Running shamrock launches a node process, which connects with other distributed node

processes in order to collaboratively train a machine learning model over REST/http.

Shamrock follows a standard distributed learning paradigm, where nodes alternate between

rounds of training, communication, and aggregation. Shamrock allows for both Federated

(where one nodes acts purely as a server/aggregator) and fully decentralised training

topologies. On reaching a user specified end condition (e.g. a target accuracy, a number of

rounds completed), Shamrock will return both a trained model and any evaluation metrics or

meta data contained within the training process. The storage of this model will be handled from

the Orchestrator UI which will make a call to the AI Orchestrator in order to save the model

and the associated metadata.

From the provider’s viewpoint, the user will primarily need to specify a model, a dataset and a

choice of distributed learning setup (e.g. Federated Learning). Shamrock accepts as input a)

NumPy arrays, b) pandas DataFrame with feature/targets specified as additional parameters,

c) csv files that may be loaded into dataframes and d) Pytorch datasets. In the case that raw

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 59 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

data needs additional transformations in order to be ready for modelling, the user will need to

provide a set of steps within the Orchestrator UI to transform data into input for that model.

Shamrock accepts both Keras and Pytorch models. Further configuration parameters such as

choice of learning rate, optimiser etc should also be specified. The user will then start either a

Federated or Gossip learning process by launching a Shamrock node within the Orchestrator

UI. As the process might likely take some time (a training process might be running for hours

to days before a Consumer participates), the process will need to persist beyond the

Orchestrator UI. As such, the Orchestrator UI should provide a tab in which to monitor ongoing

results from the process. This process will then need to be published to the marketplace as an

offering. The key element of the offering will be some form of URL to the address at which the

provider is hosting the process, alongside the Shamrock configuration that the provider has

used to launch the process. Users wishing to participate in the training process will then need

to be able to launch the Orchestrator UI and Shamrock from the offering, launching a node

that connects to the provider with the given configuration. The user should have access to a

tab where they can monitor the performance of the node that they are running. As Shamrock

is capable of sharing full model definitions, it is not strictly necessary that the model itself is

included in the offering. However, if steps need to be taken in order to transform input data for

the model, these should be included. Otherwise, a Consumer might have to engage in a

process of trial and error to find transformations of their data that work for the model. These

steps can be captured as a Mage pipeline and shared as an asset, or perhaps as part of the

offering description.

3.3.1.8 Integration between Orchestrator UI and Fleviden

The process of starting the federated training process will begin from the Orchestrator UI. Once

the server entity is defined, it will wait for a minimum of end-users / clients to be subscribed.

When this condition is reached, the server will share an initial model from the supported

frameworks with the clients, which will be in charge of training this model over a set number of

epochs. Once they complete their training, they will send the updated weights to the server,

which will aggregate them. This will be repeated during a set number of iterations or rounds.

During this process, new clients can join the network, as the server will continue waiting for

requests. The framework also supports client unsubscription in the middle of the process. The

server will monitor the health of the different nodes periodically. In each round, not all clients

have to compulsory contribute to the training process. The active clients in each round will

depend on their availability, training time, etc.

Once the number of training rounds has been reached, the final aggregated model will be sent

back to all the clients who participate in the process, and it will be able to be processed using

3rd party apps (MinIO, MLFlow, etc.), as currently the tool gives support to them. The storage

of this model will be handled from the Orchestrator UI which will make a call to the AI

Orchestrator in order to save the model and the associated metadata.

3.3.1.9 Integration between Recommender and SEDIMARK UI

SEDIMARK currently provides a content-based recommender system. The recommender

system in SEDIMARK serves two recommendation purposes: (i) finding assets based on the

queries provided by the user; and (ii) recommending similar assets based on the given asset.

The SEDIMARK recommender system module currently implements several algorithms for

term-based information retrieval. These include the following:

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 60 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

• Latent Semantic Indexing - a method based on natural language processing. The goal of

this approach is to analyse the relationships between the assets based on their

descriptions and the terms those descriptions contain.

• Sentence Transformers Models - machine learning models generating dense vector

embeddings to capture the semantic meaning of sentences using numerical

representations. SEDIMARK’s recommender systems module implements three-

sentence transformer models.

To offer a SEDIMARK user a tailored option, the user has the choice to use any of these

recommendation algorithms.

The output of the recommendation module is a list of suggested assets that are the best

matches to either the user-defined query or the provided asset.

The communication between GUI and the Recommender system will be done through the

Redis queue. The GUI will put any user actions, such as user searches or queries on a Redis

queue. Additionally, the Redis queue will be periodically updated with changes to the local

asset catalogue. The output of the recommender system will be added to the Redis queue in

a JSON format that the GUI will subsequently process and display to the user.

3.3.1.10 Integration between SEDIMARK UI and Connector

The SEDIMARK UI interacts with the data space connector to provide users with convenient

interfaces to manage their offerings. Any offering where a given user is involved, either as a

provider or as a consumer, appears on her/his dashboard. This dashboard consists of several

sections, all accessible via a sidebar, where users can:

• See an overview of their offerings.

• Review their offerings provided.

• Manage their consumed offerings, and more specifically request a transfer of their data-

to-data sinks of their choice.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 61 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 42 Example of marketplace dashboard UI to manage consumed offerings

The SEDIMARK marketplace code and deployment manifests can be accessed in its

repository: [5]

3.3.2 Integration specification

Figures 43-44 present the current status of the tasks that need to be completed in order to

integrate the frontend of the SEDIMARK Marketplace with the SEDIMARK toolbox. This board

will be continuously updated to keep track of the integration progress.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 62 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 43 The MVM-MVI issue dashboard on the git repository (1)

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 63 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 44 The MVM-MVI issue dashboard on the git repository (2)

The relevant link for the GitHub repository is: [19]

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 64 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

4 Cross-check the updated functional and non-

functional requirements
The scope of this section is to provide and update the functional and non-functional

requirements of SEDIMARK architecture related to the first integrated release. The

requirements will be mapped per stream in order to acquire a common view of which stream

each requirement interacts with. For this purpose, two tables are provided (Table 1, Table 2)

correlating all the high-priority requirements (H-REQ) and medium-priority requirements (M-

REC) that were promised to be fulfilled in the second version, with the three streams.

Table 1 Functional requirements status of fulfilment

Identifier Short Name Priority-

Req. Level

Functional

components

Related

stream(s)

How the

stream(s)

fulfil(s) the

requirement

(fully,

partially, at

all)

Req-

SEC-01

Authentication

of users

H-REQ • Identity management MVM Fully

Req-

SEC-02

Authorisation

policies of

assets

H-REQ • Trust management MVM Partially

Req-

SEC-03

Origin of

assets

H-REQ • Trust management

• IOTA Client
MVM Fully

Req-

SEC-04

Trust

Metadata on

Distributed

Ledger

H-REQ • Trust management

• Data integrity

• Registry

• IOTA Client

MVM Fully

Req-

SEC-05

Decentralised

Provisioning

H-REQ • Contracting

• Smart Contracts

• Service Request

• Service Provisioning

• IOTA Client

• Transactions

MVM Partially

Req-

SEC-06

Secure

channel of the

assets

H-REQ • Data encryption

• Data integrity

• Offering Sharing

MVM Fully

Req-DP-

01

Data cleaning

tools

H-REQ • Data curation

• Data profiling

• Data processing

dashboard

MVI Fully

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 65 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Identifier Short Name Priority-

Req. Level

Functional

components

Related

stream(s)

How the

stream(s)

fulfil(s) the

requirement

(fully,

partially, at

all)

Req-DP-

02

Flexibility to

handling both

static and

streaming

data

M-REC • Data curation

• Data orchestrator

• Data profiling

• Data processing

dashboard

MVI Partially

Req-DP-

03

Configurable

data

processing

pipeline

M-REC • Data curation

• Data processing

dashboard

• Data orchestrator

• Data profiling

• Data adapter

MVI Fully

Req-DP-

04

Data quality

indicators

M-REC • Data processing

dashboard

• Data quality

evaluation

• Data integrity

• Annotation

• Data profiling

• Data augmentation

MVI Partially

Req-DP-

05

Adaptability of

data cleaning

mechanisms

M-REC • Data quality

evaluation

• Energy efficiency

• Data augmentation

• Data profiling

• Data orchestrator

MVI Fully

Req-DP-

07

Data cleaning

modules

extendable

definitions

M-REC • Data curation

• Data processing

dashboard

• Data adapter

• Data quality

evaluation

• AI orchestrator

MVI Fully

Req-DP-

09

Dataset

augmentation

M-REC • Data orchestrator

• Data processing

dashboard

MVI Fully

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 66 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Identifier Short Name Priority-

Req. Level

Functional

components

Related

stream(s)

How the

stream(s)

fulfil(s) the

requirement

(fully,

partially, at

all)

Req-DP-

10

Anonymisatio

n of private

information

H-REQ • Data profiling

• Data anonymisation

• Data encryption

• Data processing

dashboard

• Data orchestrator

MVI Partially

Req-DP-

11

External

Metadata for

curation

M-REC • Data curation

• Data processing

dashboard

• Annotation

MVI Fully

Req-DP-

12

Load and save

data from

storage

H-REQ • Data loader

• Data saver
MVI Fully

Req-ML-

01

Model input

data cleaning

and formatting

H-REQ • Data curation

• Data profiling

• Annotation

• Data adapter

• Feature engineering

• Semantic enrichment

• Data augmentation

• Local model training

• Distributed model

training

MVI Fully

Req-ML-

02

Decentralised

ML

M-REC • Distributed model

training

• Formatting

• Model inference

• AI as a service

MVI fully

Req-ML-

03

Trusted

participation

in

decentralised

training

H-REQ • Distributed model

training

• Trust management

• Identity management

• Data encryption

• AI as a service

MVI-MVM Partially

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 67 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Identifier Short Name Priority-

Req. Level

Functional

components

Related

stream(s)

How the

stream(s)

fulfil(s) the

requirement

(fully,

partially, at

all)

Req-ML-

04

Models

agnostic to

platforms

M-REC • Model optimisation

• Local model training

• Distributed model

training

• Frugal AI

• Formatting

• AI orchestrator

MVI Partially

Req-ML-

05

Models

persistence

mechanisms

H-REQ • Distributed model

training

• Local model training,

• Data storage

• Formatting

• Data analytics

• AI as a service

MVI Partially

Req-ML-

06

Event

generation

from pattern

extraction

H-REQ • Data analytics

• Semantic enrichment

• Model optimisation

• Model inference

MVI Partially

Req-ML-

08

Variable

Distributed

learning

scenarios

(federated

and gossip)

M-REC • Distributed model

training

• AI orchestrator

• AI as a service

• Trust management

• Peer discovery

MVI Partially

Req-ML-

09

Multiple

initialisation

options for

distributed

training

M-REC • Distributed model

training

• AI orchestrator

• AI as a service

• Offering description

• Offering discovery

• Offering sharing

MVI Partially

Req-ML-

12

Model

evaluation

and validation

M-REC • Model optimisation

• Model inference

• Data analytics

• AI model validation

MVI Partially

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 68 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Identifier Short Name Priority-

Req. Level

Functional

components

Related

stream(s)

How the

stream(s)

fulfil(s) the

requirement

(fully,

partially, at

all)

Req-RS-

01

User profiling H-REQ • User profiling

• Logging

• Recommendations

MVM-MVI Partially

Req-RS-

02

Rich item

information

H-REQ • Recommendations

• Offering discovery

• Offering statistics

• Monitoring

• Ratings

MVM Partially

Req-RS-

03

Decentralised

Recommende

r system

H-REQ • Distributed model

training

• Recommendations

• Data encryption

• Data anonymisation

• Trust management

MVM-MVI fully

Req-RS-

04

Cold start

problem

H-REQ • Recommendations

• Distributed model

training

• AI model optimisation

MVM-MVI Partially

Req-RS-

05

Similarity of

assets

M-REC • Recommendations

• Offering discovery
MVM-MVI Partially

Req-RS-

06

Recommend

different types

of assets

M-REC • Recommendations

• Offering discovery

• Offering statistics

MVM-MVI Partially

Req-RS-

07

Employ

multiple

recommendati

on models

based on user

actions

M-REC • Recommendations

• Offering discovery

• Offering statistics

• User profiling

• Logging

MVM-MVI Partially

Req-RS-

08

Personalised

recommendati

on based on

user feedback

M-REC • Recommendations

• User profiling

• Logging

• Data analytics

MVM-MVI Partially

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 69 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Identifier Short Name Priority-

Req. Level

Functional

components

Related

stream(s)

How the

stream(s)

fulfil(s) the

requirement

(fully,

partially, at

all)

Req-RS-

09

Dynamic

update of

recommendati

ons

M-REC • Recommendations

• Real time data

processing

• Distributed model

training

• Data processing

dashboard

MVM-MVI Partially

Req-RS-

10

Cross-domain

recommendati

on

M-REC • Recommendations

• Offering discovery

• Data analytics

• Semantic enrichment

MVM-MVI Partially

Req-EE-

01

Lightweight

and energy

efficient DP

modules

H-REQ • Data curation

• Data augmentation

• Data profiling

• Data orchestrator

• Data processing

dashboard

• Model optimisation

• AI orchestrator

MVI Fully

Req-EE-

02

Lightweight

and energy

efficient AI/ML

models

M-REC • Local model training

• Distributed model

training

• Frugal AI

• Model inference

• Model optimisation

MVI Partially

Req-EE-

03

Energy

efficient

decentralised

training of ML

model

H-REQ • Model optimisation

• Model inference

• AI orchestrator

MVI Partially

Req-EE-

06

Energy

efficient real

time data

processing

M-REC • Data processing

orchestration

• Data processing

dashboard

• Frugal AI

• Energy efficiency

MVI Partially

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 70 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Identifier Short Name Priority-

Req. Level

Functional

components

Related

stream(s)

How the

stream(s)

fulfil(s) the

requirement

(fully,

partially, at

all)

Req-INT-

01

Information

model for data

and their

metadata

H-REQ • Data quality

evaluation

• Formatting

• Semantic enrichment

• Annotation

• Data processing

dashboard

• Data orchestrator

• Offering validation

MVI Fully

Req-INT-

02

Metadata

fields

H-REQ • Data quality

evaluation

• Semantic enrichment

• Annotation

• Data anonymisation

• Offering validation

MVI Fully

Req-INT-

03

Data

compliance

with the

information

model

H-REQ • Data quality

evaluation

• Formatting

• Semantic enrichment

• Annotation

• Data anonymisation

• Offering validation

MVI

MVM

Partially

Partially

Req-INT-

04

Enforcing

data

compliance

with the

information

model

M-REC • Annotation

• Formatting

• Offering validation

• Data mapper

• Data processing

dashboard

• Data orchestrator

• Data quality

evaluation

MVI

MVM

Fully

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 71 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Identifier Short Name Priority-

Req. Level

Functional

components

Related

stream(s)

How the

stream(s)

fulfil(s) the

requirement

(fully,

partially, at

all)

Req-INT-

05

Information

model for AI

models

H-REQ • Distributed model

training

• Formatting

• Annotation

• Model optimisation

• Model inference

• Offering validation

MVI Partially

Req-

STR-01

Default

dataset

storage

domain

H-REQ • Data storage

• Distributed storage
MVI Partially

Req-

STR-02

Storage of

offering

descriptions

on distributed

catalogue

H-REQ • Data storage

• Offering description

• Catalogue

• Offering registration

• Offering discovery

MVM Fully

Req-

STR-03

Temporary

storage of

intermediate

artefacts with

pipeline

H-REQ • Data storage

• Feature engineering

• Data orchestrator

MVI Partially

Req-

STR-04

Storage of

post-

processed

data in

consumable

manner

H-REQ • Data storage

• Model inference

• Formatting

• Validation

MVI Partially

Req-

STR-06

Storage

Service for

constrained

data providers

M-REC • Distributed storage

• Service provisioning

• Offering sharing

MVI Partially

Req-

STR-07

Storage for

knowledge

domain

services

M-REC • Data storage

• Semantic enrichment

• Catalogue

MVI Partially

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 72 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Identifier Short Name Priority-

Req. Level

Functional

components

Related

stream(s)

How the

stream(s)

fulfil(s) the

requirement

(fully,

partially, at

all)

Req-

STR-08

Storage for

offerings other

than datasets

M-REC • Data storage

• Feature engineering

• Local model training

• Model inference

• Formatting

• Model optimisation

• Validation

MVI Partially

Req-

STR-09

Storage of

artefacts for

enabling

security and

trust

H-REQ • Data Storage

• DLT

• Trust

MVM Fully

Req-

STR-10

Storage of

artefacts for

Marketplace

management

H-REQ • Data Storage

• Marketplace
MVM Fully

Req-

P&D-01

Assets

described as

part of

offerings

H-REQ • Offering description

• Offering discovery

MVI-MVM Partially

Req-

P&D-02

Offerings’

registry

H-REQ • Offering registration

• Offering sharing

• Offering discovery

• Registry

• Distributed storage

• Catalogue

• Data storage

MVM Fully

Req-

P&D-03

Generic

offering

metadata

H-REQ • Offering description MVI-MVM Partially

Req-

P&D-04

Open Data

portal

discovery

H-REQ • Open data enabler MVI-MVM Partially

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 73 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Identifier Short Name Priority-

Req. Level

Functional

components

Related

stream(s)

How the

stream(s)

fulfil(s) the

requirement

(fully,

partially, at

all)

Req-

P&D-05

Offerings’

catalogue for

queries

H-REQ • Offering discovery

• Catalogue
MVM Fully

Req-UI-

01

Logging in UI H-REQ • Identity management

• Frontend
MVM Fully

Req-UI-

02

Offerings

discoverability

H-REQ • Offering discovery

• Frontend
MVM Fully

Req-UI-

03

Users’ identity

management

H-REQ • Identity management

• Frontend
MVM Fully

Req-UI-

04

Offerings

management

H-REQ • Offering registration

• Trust management

• Frontend

• Payment/Billing

MVM Fully

Req-UI-

05

Offering

description

page

H-REQ • Offering discovery

• Data visualisation

• Frontend

MVM Partially

Req-UI-

06

SEDIMARK

toolbox

access in UI

M-REC • Offering discovery

• Data visualisation

• Frontend

MVM Fully

Req-

SCT-01

Smart

Contracts

support

M-REC • Smart contracts

• Transactions
MVM Fully

Req-

SCT-02

Tokenisation

of Assets

M-REC • Smart contracts

• Tokenisation
MVM Fully

Req-

SCT-03

User Digital

Wallet

M-REC • Tokenisation

• Payment
MVM Partially

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 74 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Table 2 Non-functional requirements status of fulfilment

Identifier Short Name Priority-

Req. Level

Functional

components

Related

stream(s)

How the

stream(s)

fulfil(s) the

requirement

(fully, partially,

at all)

Req-NF-01 Decentralisation H-REQ • All DLT layer

modules

• Distributed

model training

• Distributed

storage

• Catalogue

MVM Partially

Req-NF-02 Security,

Privacy, Trust

H-REQ • All security/trust

layer modules
MVM Fully

Req-NF-03 Interoperability H-REQ • Annotation

• Data adapter

• Semantic

enrichment

• Validation

• Formatting

MVI Partially

Req-NF-04 Data availability

and quality

H-REQ All data processing

modules

MVI Fully

Req-NF-05 Intelligence H-REQ All AI layer modules MVI Fully

Req-NF-06 Energy

efficiency

H-REQ • Energy efficiency

(module in data

processing)

• Frugal AI

MVI Partially

Req-NF-07 Resilience and

Reliability

H-REQ N/A (mapped to all

components and

the platform as a

whole)

MVM

MVI

Fully at the

current

integration

phase

Req-NF-08 Scalability H-REQ N/A (mapped to all

components and

the platform as a

whole)

MVM

MVI

Fully at the

current

integration

phase

Req-NF-09 Openness,

Extensibility

H-REQ N/A (mapped to the

platform as a

whole)

MVM

MVI

Fully at the

current

integration

phase

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 75 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

Identifier Short Name Priority-

Req. Level

Functional

components

Related

stream(s)

How the

stream(s)

fulfil(s) the

requirement

(fully, partially,

at all)

Req-NF-10 Usability H-REQ All marketplace

service modules

MVM

MVI

Fully at the

current

integration

phase

Req-NF-11 Maintainability H-REQ N/A (mapped to all

components and

the platform as a

whole)

MVM

MVI

Fully at the

current

integration

phase

Req-NF-12 Adaptivity to

data types and

fast processing

M-REC All data processing

modules
MVM

MVI

Fully at the

current

integration

phase

Req-NF-13 Reusability H-REQ All asset sharing

and discovery

modules

MVM

MVI

Fully at the

current

integration

phase

Req-NF-14 Flexibility H-REQ N/A (mapped to all

components and

the platform as a

whole)

MVM

MVI

Fully at the

current

integration

phase

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 76 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

5 Integration plan for the final release
The SEDIMARK platform has been carefully designed with the principles of microservice

architecture to enable seamless deployment and efficient scaling. Each software component

within the platform is encapsulated in its own environment, facilitating modularity and

adaptability to meet diverse user needs. To support this approach, each component is

associated with a dedicated GitHub repository. These repositories contain a Docker file that

allows users to build and run a local container of the respective component. Additionally,

comprehensive documentation is provided to guide users through the steps required to

construct, configure, and deploy the container images effectively. To further streamline the

deployment process, pre-built Docker images are hosted in the GitHub container registry under

the SEDIMARK organisation. This eliminates the need for users to manually construct images,

significantly reducing setup time and complexity.

For components that rely on external software dependencies, such as MinIO or PostgreSQL,

a docker-compose file is included to allow users to quickly deploy a fully operational instance.

This ensures that all necessary services and dependencies are configured and ready for use

without requiring extensive manual effort. By automating these steps, the platform guarantees

a consistent and reproducible deployment process across all use cases and environments.

Given the large number of components that make up the SEDIMARK platform, an iterative

deployment strategy has been adopted. This approach begins with the containerisation of

individual components, ensuring that each one can function independently while maintaining

compatibility with the overall architecture. Once this step is complete, manifests are created

for deploying and configuring the components required for the platform’s two primary streams:

the Minimum Viable Intelligence (MVI) and the Minimum Viable Marketplace (MVM). These

streams are managed independently during the development and deployment phases to

streamline the integration process and ensure modular functionality. Each stream has a

dedicated repository containing its respective docker-compose file, along with all necessary

resources and documentation to configure, execute, and test its components.

The final deployment phase integrates the manifests for both the MVM and MVI streams to

achieve a fully operational version of the SEDIMARK platform. This integration consolidates

the functionalities of both streams, creating a cohesive system capable of supporting the

platform’s diverse use cases and meeting its scalability requirements. This iterative and

modular approach ensures that the deployment process remains manageable and efficient

while maintaining flexibility for future enhancements and expansions. By adopting this strategy,

the SEDIMARK platform achieves a robust deployment framework that ensures reproducibility,

scalability, and ease of use. These principles are crucial to supporting the platform’s pilots and

broader adoption across diverse sectors, making the final release a technically sound and

user-friendly system capable of addressing complex challenges in a decentralized data and

services marketplace.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 77 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

6 Conclusions
This deliverable has outlined the progress made in the second integrated release of the

SEDIMARK platform, building on the foundational work of earlier phases and demonstrating

significant advancements across its key components. By transitioning from independent Proof-

of-Concept scenarios to structured streams; Minimum Viable Marketplace (MVM), Minimum

Viable Intelligence (MVI), and the combined MVM-MVI analysing the backend and frontend

integration, SEDIMARK has achieved greater cohesion, scalability, and functionality in its

decentralised data and services marketplace.

The MVM stream has ensured robust marketplace functionalities such as participant

onboarding, offering registration, and secure asset exchanges, all of which are underpinned

by Distributed Ledger Technology (DLT) for trust and transparency. Meanwhile, the MVI

stream has brought intelligence to the platform through capabilities like local and distributed

model training, federated learning, and model performance, emphasizing privacy-preserving

AI approaches. The integration of these streams into the combined MVM-MVI ecosystem

demonstrates SEDIMARK’s capability to support complex use cases and deliver actionable

insights to participants.

Furthermore, this deliverable highlights the alignment of platform development with functional

and non-functional requirements, showcasing the successful implementation of high-priority

features while ensuring adaptability to evolving project needs. The continuous integration and

testing efforts have been validated through practical pilot applications, ensuring readiness for

deployment in real-world scenarios.

Looking ahead, the insights and feedback from this release will inform the final integration

phase, focusing on enhanced modularity, seamless user interaction, and performance

optimisation. Through these iterative developments, SEDIMARK is positioned as a robust,

secure, and intelligent marketplace, contributing to the realisation of the European Union’s

vision for a decentralised and interoperable data economy.

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 78 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

7 Bibliography

[1] SEDIMARK, Deliverable 5.2: Integrated releases of the SEDIMARK platform. First

version, April 2024.

[2] SEDIMARK, Deliverable 2.3: SEDIMARK architecture and interfaces. Final version,

September 2024.

[3] SEDIMARK, Deliverable 5.1: Evaluation methodology, metrics and integration plan,

November 2023.

[4] GitHub repository for smart contracts, [Online]. Available:

https://github.com/Sedimark/sedimark-smart-contracts

[5] GitHub repository for marketplace frontend, [Online]. Available:

https://github.com/Sedimark/marketplace-frontend

[6] GitHub repository for DLT Booth, [Online]. Available: https://github.com/Sedimark/dlt-

booth

[7] GitHub repository for Registry, [Online]. Available: https://github.com/Sedimark/hornet-

extra

[8] GitHub repository for Issuer, [Online]. Available: https://github.com/Cybersecurity-

LINKS/mediterraneus-issuer

[9] GitHub repository for Offering Manager, [Online]. Available:

https://github.com/Sedimark/offering-manager

[10] GitHub repository for Offering Catalogue, [Online]. Available :

https://github.com/Sedimark/catalogue-coordinator

[11] GitHub repository for the Catalogue, [Online]. Available:

https://github.com/Sedimark/catalogue

[12] GitHub repository for the EDC connector, [Online]. Available:

https://github.com/Sedimark/sed-edc-connector

[13] GitHub repository for the NGSI-LD broker, [Online]. Available:

https://github.com/Sedimark/Sedimark-Toolbox/tree/main/ngsild_broker_deployment

[14] GitHub repository for Mage.AI, [Online]. Available:

https://github.com/Sedimark/Sedimark-

Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/docker-compose.yaml

https://github.com/Sedimark/sedimark-smart-contracts
https://github.com/Sedimark/marketplace-frontend
https://github.com/Sedimark/dlt-booth
https://github.com/Sedimark/dlt-booth
https://github.com/Sedimark/hornet-extra
https://github.com/Sedimark/hornet-extra
https://github.com/Cybersecurity-LINKS/mediterraneus-issuer
https://github.com/Cybersecurity-LINKS/mediterraneus-issuer
https://github.com/Sedimark/offering-manager
https://github.com/Sedimark/catalogue-coordinator
https://github.com/Sedimark/catalogue
https://github.com/Sedimark/sed-edc-connector
https://github.com/Sedimark/Sedimark-Toolbox/tree/main/ngsild_broker_deployment
https://github.com/Sedimark/Sedimark-Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/docker-compose.yaml
https://github.com/Sedimark/Sedimark-Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/docker-compose.yaml

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version Page: 79 of 79

Reference: SEDIMARK_D5.3 Dissemination: PU Version: 1.0 Status: Final

[15] GitHub repository for Mage.AI (readme), [Online]. Available:

https://github.com/Sedimark/Sedimark-

Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/README.md

[16] GitHub repository for MLFlow, [Online]. Available:

https://github.com/Sedimark/Sedimark-

Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/README.md

[17] Multitenancy in STELLIO Context Broker

https://stellio.readthedocs.io/en/latest/user/multitenancy.html

[18] GitHub repository for MVM stream

https://github.com/orgs/Sedimark/projects/3

[19] GitHub repository for MVI stream

https://github.com/orgs/Sedimark/projects/5/views/2

[19] GitHub repository for MVM-MVI stream

https://github.com/orgs/Sedimark/projects/6

[20] GitHub repository for local model training

https://github.com/Sedimark/local_model_training

[21] GitHub repository for MinIO

https://github.com/Sedimark/Sedimark-

Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/README.md

[22] Context Broker URI

http://localhost:8080/ngsi-ld/v1/types/asset

https://github.com/Sedimark/Sedimark-Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/README.md
https://github.com/Sedimark/Sedimark-Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/README.md
https://github.com/Sedimark/Sedimark-Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/README.md
https://github.com/Sedimark/Sedimark-Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/README.md
https://stellio.readthedocs.io/en/latest/user/multitenancy.html
https://github.com/orgs/Sedimark/projects/3
https://github.com/orgs/Sedimark/projects/5/views/2
https://github.com/orgs/Sedimark/projects/6
https://github.com/Sedimark/local_model_training
https://github.com/Sedimark/Sedimark-Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/README.md
https://github.com/Sedimark/Sedimark-Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/README.md
http://localhost:8080/ngsi-ld/v1/types/asset

	Document Information
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Executive Summary
	1 Introduction
	1.1 Purpose of the document
	1.2 Relation to other work packages and tasks
	1.3 Structure of the document

	2 Second integrated release of SEDIMARK platform
	3 From seven independent scenarios PoCs to three parallel streams
	3.1 Minimum Viable Marketplace (MVM)
	3.1.1 Sub-streams breakdown and components specification
	3.1.1.1 Participant onboarding
	3.1.1.2 Offering management
	3.1.1.3 Asset exchange

	3.1.2 Integration specification

	3.2 Minimum Viable Intelligence (MVI)
	3.2.1 Define sub-streams and provide high-level description
	3.2.1.1 Data storage
	Set up MinIO for Data Storage and Access

	3.2.1.2 Data Processing
	Integration between MageAI and Data Curation tools
	Integration between MageAI and Data Formatter
	Integration between MageAI and Context broker for loading/saving

	3.2.1.3 AI Orchestrator
	Integration between AI Orchestrator and Shamrock
	Integration between AI orchestrator and Fleviden
	Integration between AI orchestrator and model optimisation modules

	3.2.1.4 Local Model Training
	Local model training automatisation and interface design

	3.2.1.5 Distributed Model Training
	Toolbox Deployment for Shamrock
	Toolbox deployment for Fleviden

	3.2.1.6 Model Management
	Implement MLFlow for Experiment Tracking and Model Management
	Integrate MLFlow with MageAI for Model Management
	Integrate MageAI with energy consumption data
	Integrate MLFlow with the energy prediction model

	3.2.1.7 Asset Description
	Modelling/ontology of data assets (information model)
	Modelling/ontology of AI assets and training services

	3.2.1.8 Toolbox deployment for NGSI-LD broker
	3.2.1.9 Toolbox deployment for MageAI
	3.2.1.10 Toolbox deployment for Mage API
	3.2.1.11 Toolbox deployment for MLFlow
	3.2.1.12 Toolbox deployment for MinIO
	3.2.1.13 Toolbox deployment for UI Orchestrator

	3.2.2 Integration specification

	3.3 Backend and Frontend Integration Overview
	3.3.1 Define sub-streams and provide a high-level description
	3.3.1.1 Creation of offering description based on asset description
	3.3.1.2 Data flow between data sinks and Connector
	3.3.1.3 Integration between Orchestrator and Context Broker to retrieve asset descriptions
	3.3.1.4 Integration between Orchestrator UI and Mage API to create an offering for pipeline assets
	3.3.1.5 Integration between Orchestrator UI, Mage API and Mage AI to create and save data/AI/ML offering (asset) description
	3.3.1.6 Integration between Connector, SEDIMARK UI and AI Orchestrator to retrieve AI/ML assets
	3.3.1.7 Integration between Orchestrator UI and Shamrock
	3.3.1.8 Integration between Orchestrator UI and Fleviden
	3.3.1.9 Integration between Recommender and SEDIMARK UI
	3.3.1.10 Integration between SEDIMARK UI and Connector

	3.3.2 Integration specification

	4 Cross-check the updated functional and non-functional requirements
	5 Integration plan for the final release
	6 Conclusions
	7 Bibliography

