SEcure Decentralised Intelligent Data
MARKetplace

D5.3 Integrated releases of the SEDIMARK
platform. Second version

Document Identification

Contractual delivery date: RETaVIFrZ ‘
Actual delivery date: 15/01/2025 ‘
Responsible beneficiary: WINGS ‘

(o3 [{1 o1V ([Te R L-NW il (33 WINGS, UC, EVIDEN, LINKS, SURREY, EGM, SIE, NUID
UCD, INRIA

Dissemination level: PU

Keywords:

Three parallel streams, intelligence, orchestration, marketplace, decentralisation, Al assets,
software components, functional/non-functional requirements, continuous integration,
continuous delivery, SEDIMARK platform, backend and frontend integration

This document is issued within the frame and for the purpose of the SEDIMARK project. This project has
received funding from the European Union’s Horizon Europe Framework Programme under Grant Agreement
No. 101070074. The opinions expressed and arguments employed herein do not necessarily reflect the
official views of the European Commission.

[The dissemination of this document reflects only the author’s view, and the European Commission is not responsible for any
use that may be made of the information it contains.

This document and its content are the property of the SEDIMARK Consortium. The content of all or parts of this document can
be used and distributed provided that the SEDIMARK project and the document are properly referenced.

Each SEDIMARK Partner may use this document in conformity with the SEDIMARK Consortium Grant Agreement provisions.

Document Information

Related WP

Document
reference:

Document Identification

SEDIMARK_D5.3 Bei(e| Nl o 1= el
pages:

List of Contributors

WP5 Related
Deliverables(s):

SEDIMARK_D5.1,
SEDIMARK_D5.2

79

Panagiotis Vlacheas WINGS
Grigorios Koutantos

Pablo Sotres
Luis Sanchez

Jorge Lanza

Juan Ramon Santana

Stefan Jarcau

Gabriel Danciu
Septimiu Nechifor

SIE

Maxime Costalonga
Cesar Caramazana Zarzosa
Joaquin Garcia

ATOS/EVIDEN

Thomas Bousselin

Elias Tragos NUID UCD
Erika Duriakova

Diarmuid O’Reilly-Morgan

Honghui Du

Tarek Elsaleh SURREY
Shahin Abdoul Soukour INRIA
Nikolaos Georgantas

Franck Le Gall EGM

Document name:

D5.3 Integrated releases of the SEDIMARK platform. Second version

Page:

20f79

Reference:

SEDIMARK_D5.3 | Dissemination: PU ‘Version:‘ 1.0

Status:

Final

Michele Festa
Alberto Carelli

List of Contributors

LINKS

Document History

ToCs | 13/11/2024 WINGS First draft of ToCs
0.1 15/11/2024 'UC Added content to Sections 2 and 3
0.11 26/11/2024 |\WINGS Initial version with reconstructed ToCs
based on UC’s suggestions
0.2 2/12/2024 |SIE Added content to Section 3 MVI
0.3 3/12/2024 |SIE Updated content to Section 3 MVI
0.31 3/12/2024 |WINGS Introduction and Executive Summary
0.32 4/12/2024 | SIE Update Section 3
0.4 5/12/2024 |WINGS Update Section 4
0.41 6/12/2024 |UCD Update Section 3
0.5 10/12/2024 |SIE, ATOS/EVIDEN Structural and content changes in
Section 3
0.51 11/12/2024 A ATOS/EVIDEN Added content to Section 3.
0.6 11/12/2024 SURREY, SIE, Update content to Section 3.3, Section
ATOS/EVIDEN 4
0.6 13/12/2024 INRIA Update Section 3.2.1.3
0.61 12/12/2024 |WINGS Fill Section 6 and acronyms table
0.62 13/12/2024 'UC Fill Section 2
0.63 16/12/2024 UC, LINKS Updated content to Sections 3 and 4
0.64 17/12/2024 |WINGS Update content to Section 3
0.7 17/12/2024 EGM Update content to Section 3 (NGSI-LD
Broker integration, Connection to
MinlO)
0.71 18/12/2024 |WINGS Update Section 5

Document name:

D5.3 Integrated releases of the SEDIMARK platform. Second version

Page: 3of 79

Reference:

SEDIMARK_D5.3 |Dissemination:

‘Version:‘ 1.0 |Status: |Final

0.72 19/12/2024 | SIE, WINGS, UC Integration specification screenshots
from GitHub

0.75 20/12/2024 |WINGS Formatting, template fitting, cleaning,
etc.

0.8 14/01/2024 YATOS/EVIDEN Quality Review From

1.0 15/01/2025 YATOS/EVIDEN FINAL VERSION TO BE SUBMITTED

Quality Control

“ Who (Partner short name) Approval date

‘ John Tsogias & Nikos Babis (MYT) 07/01/2025
‘ Thomas Bousselin (EGM) 06/01/2025
‘ Maria Guadalupe Rodriguez (EVIDEN) 14/01/2025
‘ Miguel Angel Esbri (EVIDEN) 15/01/2025
Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: | 4 of 79
Reference: SEDIMARK_DS.3 | Dissemination: PU \Version:\ 1.0 |Status: [Final

z/mé! 4

SEDIMAR

Table of Contents
(Do ToI0 g7 AL a1 (0] g a T (o] o H RN 2
I [(oo U711 o] o [T 12
1.1 Purpose Of the DOCUMENT ... 12
1.2 Relation to other work packages and tasks ... 12
1.3 Structure of the dOCUMENT ..o 12
2 Second integrated release of SEDIMARK platformccccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieees 14
3 From seven independent scenarios PoCs to three parallel streams................cooeeeeeeee. 16
3.1 Minimum Viable Marketplace (MVM)uiiiiiiiiice e 17
3.1.1 Sub-streams breakdown and components specificationccccoooeeeeienn. 18
3.1.2 Integration SPECIfICAIONcovviiiiiiiiiii 24
3.2 Minimum Viable Intelligence (MVI) ... e 26
3.2.1 Define sub-streams and provide high-level descriptioncccccccvieeeneennl. 26
3.2.2 Integration SPECIfICAIONcovviiiiiiiiii 53
3.3 Backend and Frontend Integration OVEIVIEW.couviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee 55
3.3.1 Define sub-streams and provide a high-level descriptioncccccceeeeeee. 55
3.3.2 Integration SPECIfiCatioNoiviiiiiii e 61
4 Cross-check the updated functional and non-functional requirements................cceeeeeeennn. 64
5 Integration plan for the final releaSEccoooi i e 76
B CONCIUSIONS ...ttt sssnssnnnnnen 77
7 BIDIOGIAPNY ... 78

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 50f79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

List of Tables

Table 1 Functional requirements status of fulfilment............cccccooii i, 64
Table 2 Non-functional requirements status of fulfilmentcccciiiiii 74

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 6 of 79
Reference: SEDIMARK_DS5.3 |Dissemination: PU ‘Version: ‘ 1.0 |Status: |Final

zﬂaé! 4

SEDIMAR
List of Figures
Figure 1 General view of the functional components and the current system view 15
Figure 2 Transferring the seven Proof-of-Concept scenarios to three parallel streams......... 17
Figure 3 Participant onboarding COMPONENTESuuuuuruiriiiiiiiiiiiiiiineiieenneeneeeeeeenneeeeeeenenenneees 18
Figure 4 SEDIMARK smart contract architeCture............cooooeeiiieiiiiiiii e 19
Figure 5 Offering management COMPONENTS.uuuuuururereiiiiirieniiereeeenenneeneeneeeeaeeneeeeneeeeneeee 20
Figure 6 Detail of components involved in the offering population and discovery stages...... 21
Figure 7 Asset eXChange COMPONENTS.uuuuuuuetrieirtiiieiiieeeeeeeaeeaeeeeseesee e eseenneeeennnenennnne 23
Figure 8 The MVM issue dashboard on the git repoSitory (1)eeeevevmmmmmmmmmmmmminiiiiiinninnnnns 24
Figure 9 The MVM issue dashboard on the git repository (2)cccceeeveeeeiiiiiiiiiii e, 25
FIQUIE 10 MV AICNITECTUIE ...ttt 27
Figure 11 MinlO CredentialScoiieiiiiiiiiiee et e et e e e e e e eereaaas 28
Figure 12 Data Curation DIOCKuuuueiiiiiiiiiiiiiiiiiiiie bbb eeenneeeenene 29
Figure 13 Context Broker saving flOWcooiiiiiiiiii e 31
Figure 14 Federated learning DIOCKuuuuiiiiiiiiiiiiiiiiiiiiiiiie e 32
Figure 15 Integration flow between Al orchestrator and model optimisation modules 34
Figure 16 Interface for uploading the dataset to train and evaluate the model. 35
Figure 17 Options for selecting the hyperparameters of the XGBoost Regressor model....... 35
Figure 18 User interface for selecting the train-test split percentages for the uploaded
L0 F= L= 1S] 36
Figure 19 Table displaying a comparison of the predicted values and the true values for
ENEIGY CONSUMIPLION. ...ttt e e e e e e e et ee e e e e e e e e e e te e e e e eaeeeeess b e e eeaeessssseannnnes 37
Figure 20 Visualisation of feature importances from the dataset...............ccccvvvvviviiiiiiiininnnnns 37
Figure 21 Line plot comparing the predicted vs. true values of mean daily energy
consumption for each instance iN the teSt SEt.ouiiiiiii e 38
Figure 22 Scatter plot of predictions VS. true VAIUESuuuuuuiiiimiiiiiiiiiiiiiiiiiiiiieieineennnnnens 38
FIGUre 23 IMLFIOW Ule e e e e et e e e e e e e e arraa s 40
Figure 24 MLFIOW StOrNG BIOCK.........uuiiiiiiiiiiiiiiiiiiiiiiii e 41
Figure 25 MLFlow loading and prediction BIOCK.............ccoooiiiiiiiiiiiii e, 42
Figure 26 MageAl Data Loader DIOCKuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeenees 43
Figure 27 Energy consumption dataset features...........ccooi i iiiiiiiiiiii e 43
Figure 28 Process of splitting the dataset using MageAl Data Splitter block......................... 44
Figure 29 Scaling using the Data Scale block of MageAl..............uuvuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiininnns 44
Figure 30 XGBoost model tuning/training using MLFIOWccoiiiiiiiiii e, 45
Figure 31 MLFlow code for XGBOOSt MOAE!uuuiiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiibieeeeeeeeeeeeeeeeeeee 46

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 7 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

zﬂaé! 4

JR»
Figure 32 Stored model, dataset, metrics and artifacts in MLFIOW (1)..............covvviiiiiiiininnnns 47
Figure 33 Stored model, dataset, metrics and artifacts in MLFIoOwW (2)..........ccccoovieeeiiiiiinnnnnnn. 47
Figure 34Asset DescCription GENEIatiONcciieeiiiiiiiiiiiies e eee e e e e e et e e e e e eearas 48
Figure 35 ASSEt DESCIPION USEuuiiiiiiiiiiiiiiiiiiiiiiieieiieeeeaeeeee bbb sseseesssnnsnneeeneennnnnne 48
Figure 36 Common Asset Properties to be captured by Orchestratorccoevvviiinnnnnn. 49
Figure 37 Data ASSEt PrOPEITIES.uuuuuiiiiiiitiiieietiiiieiieeeeieeeeseasesseesssbeesse s ssssansssnnsnennsnnsnnnnene 49
Figure 38 Al Model ASSEt PrOPEITIESccuvieiiiiieee et e e e e e aaaa s 50
Figure 39 ServiCe ASSEt PrOPEITIESuuuuuuueieiiiiiiiiiiiiiteiiiieeaeiesssseesssessessessseseesssnnsnsnnnsnennnnnee 50
Figure 40 MVI stream task monitoring in GitHub repository (1)......ccccoeevvvveeiiiiiiine e, 54
Figure 41 MVI stream task monitoring in GitHUD repository (2)..............uveeveivemimmimiieiiiiiiinnnnns 55
Figure 42 Example of marketplace dashboard Ul to manage consumed offerings................ 61
Figure 43 The MVM-MVI issue dashboard on the git repository (1)eevvevvmemmeerimmennnnnnns 62
Figure 44 The MVM-MVI issue dashboard on the git repository (2)ccevveeeeieeeeiieenninnnnn. 63

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 8 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

List of Acronyms

IO

Al Artificial Intelligence

API Application Programming Interface

AWS Amazon Web Service

Cl/CD Continuous Integration and Continuous Delivery/Continuous
Deployment

Ccsv Comma Separated Values

CWL Common Workflow Language

DID Decentralised Identifier

DLT Distributed Ledger Technology

DSP Data Space Protocol

Dx,y Deliverable number y belonging to WP x

EDC Eclipse Dataspace Components

EVM Ethereum Virtual Machine

GUI Graphical User Interface

H-REQ High-priority Requirements

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

ID Identity Document

IOTA Internet of Things Application

JSON JavaScript Object Notation

ML Machine Learning

MVI Minimum Viable Intelligence

MVM Minimum Viable Marketplace

NFT Non-fungible Token

NGSI-LD Next Generation Service Interfaces for Linked Data

ODRL Open Digital Rights Language

Document name:

D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 9 of 79

Reference:

SEDIMARK_DS5.3

Dissemination: PU ‘Version:‘ 1.0 |Status: |Final

e

P2P Peer to Peer

PoC Proof of Concept

REST Representational State Transfer

SC Smart Contract

SPARQL SPARQL Protocol and RDF Query Language
SQL Structured Query Language

VC Verifiable Credential

VDR Verifiable Data Registry

URI Uniform Resource Identifier

URL Uniform Resource Locator

XLS Microsoft Excel Spreadsheet

YAML Yet Another Markup Language

Document name: D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: | 10 of 79

Reference: SEDIMARK_DS5.3 |Dissemination: PU ‘Version:‘ 1.0 |Status: |Final

R

SEpIMARK

Executive Summary

The current document is the third deliverable of WP5 and reports the results of Task 5.2
activities regarding continuous platform integration. Building upon the foundational work
presented in SEDIMARK_D5.2 [1], this deliverable focuses on the enhancement and
refinement of the platform’s capabilities through the incorporation of Minimum Viable
Marketplace (MVM) and Minimum Viable Intelligence (MVI) functionalities. It emphasises the
integration of decentralised data and service-sharing frameworks, advanced Al-driven tools,
secure components based on Distributed Ledger Technology (DLT), APIs, and platform-wide
testing. These components are designed to address medium and high-priority requirements
for interoperability, trustworthiness, data quality, etc, and they were developed and described
in WP3 “Distributed data quality management and interoperability” and WP4 “Secure data
sharing in a decentralised Marketplace”.

The three streams will be analysed by the leaders and their contributors on the following topics:

Sub-stream breakdown and component specification: Scope of the stream, task by task
description, updates in the components, meaningful visualisation and solid text
accompanying the figures.

Integration specifications: Integration steps (inter/intra component communication, setup
monitoring and logging, CI/CD implementation) accompanied by GitHub screenshots.

The second release achieves the following milestones:

Successful integration of core enablers such as Al Orchestrator, Data Space Enabler and
DLT enabler.

Enhanced implementations focusing on participant onboarding, data quality, offering
lifecycle management, asset exchange, and distributed Al training.

Streamlined APIs and interfaces, ensuring seamless communication across platform
components and external participants.

Deployment-ready solutions validated against real-world use cases to ensure scalability
and reliability.

Following the structure of SEDIMARK_D5.2, it is important to ensure that the requirements
specified in WP2 architecture and Tasks T2.1-T2.4, summarised with the SEDIMARK D2.3
[2], are fulfilled at all implementation phases. To serve this need, there are updated tables
correlating all the medium-priority recommended requirements (M-REC) that were promised
to be fulfilled for the second version of the platform, added to the existing high-priority
requirements (H-REQ). The target is to monitor the status of fulfilment and in which stream
they are addressed. The table covers both the functional and non-functional requirements.

The final part of the document provides an overview of the final integrated release of the
SEDIMARK platform. The idea is to provide all the toolbox functionalities, where all
components are in place and the system is optimised for performance purposes. Also, no hard
coding is needed, and all the kinds of requirements will be fulfilled. The integration in this way
will consider the timeplan for releasing the SEDIMARK integrated platform, as described in
SEDIMARK_D5.1 [3]. Through continuous iterations, SEDIMARK is positioned as a robust,
secure, and efficient decentralised marketplace for data and services.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 11 0f 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

R

SEpIMARK

1 Introduction

The main purpose of the deliverable is to report the outcomes of the second integrated release
of the SEDIMARK platform. This version builds on the architectural foundations established in
SEDIMARK_D5.1 and SEDIMARK_D5.2 and defined in SEDIMARK_D2.3, incorporating
refined functionalities and addressing gaps identified during the first release. Leveraging the
seven independent PoCs scenarios developed in the first version, now the consortium
introduces three complementary streams; the Minimum Viable Marketplace (MVM), the
Minimum Viable Intelligence (MVI) and the combined Minimum Viable Marketplace - Minimum
Viable Intelligence (MVM-MVI) stream which connects the backend and the frontend view. All
streams together, cover the toolbox functionalities required for the second version of the
platform. The overall goal is to present a version of the platform that encompasses all
fundamental functionalities and addresses both medium and high-priority requirements. It
serves as a comprehensive reference for understanding the progress in platform integration
and highlights challenges and lessons learned.

This deliverable is the outcome of Task 5.2 (Platform continuous integration) and is the
continuation of the work done during the second year of the project especially in Task T5.1
(Integration and Evaluation plan and methodologies). SEDIMARK D5.3 is a follow-up
deliverable of SEDIMARK_D5.2, elaborating on the scenarios developed there but now the
work is being done in three parallel streams. The work presented in the document is strongly
related to the components and tools developed in WP3 and WP4, which involve the technical
aspects of the platform's development and create the overall decentralised marketplace, based
on the architecture design of Task T2.3, the interfaces specified in Task T2.4 and final version
of the architecture defined in SEDIMARK _D2.3. The output of SEDIMARK _D5.3 will also be
used as input to the upcoming activities of the remaining tasks (Task T5.3, Task T5.4) of WP5
for the three integrated releases of the SEDIMARK platform which will be presented in three
phases (M18-Mar. 2024, M27-Dec. 2024, M36-Sep. 2025) and analysed in the current
deliverable SEDIMARK_D5.3 (Integrated releases of the SEDIMARK platform. Second
version), and forthcoming deliverables SEDIMARK_D5.4 (Integrated releases of the
SEDIMARK platform. Final version). The final deliverable of WP5 will document further
progress and refinements to the platform. This gradual platform deployment allows
beneficiaries to gain valuable insights into performance and make any necessary adjustments
or improvements.

This document is structured in 6 major chapters:
is the current chapter, providing context, purpose, and connections to other tasks.
details the new integration approach, status and components.

is the main chapter of the deliverable and focuses on the conversion of the
independent PoCs scenarios to the three different streams that will be implemented and their
integration status.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 12 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

z/mé! 4

SEpIMARK

checks the correlation of the streams with the medium and high-priority
requirements of the revised architecture.

outlines the roadmap for the final integration release of the SEDIMARK platform.

concludes the document, summarising the achievements and the next steps in
alignment with the objectives and the goals of the work package.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 13 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

zﬂaé! 4

SEpIMARK

2 Second integrated release of SEDIMARK
platform

The second release of the SEDIMARK platform is a significant milestone in our project. During
the previous period, the platform's capabilities were showcased through the seven
independent scenarios, each serving as a proof-of-concept for the implementation and results
of the different concepts explored within the project, that were identified and developed for the
first release. The focus of the work for the second release has been on the integration of such
capabilities so that this is the first step towards showcasing an actual implementation of the
system acting as a single artifact. This integrated system aims to demonstrate the versatility
and robustness of our architecture enabling support for more complex scenarios that involve
several steps of the lifecycle of an asset within the SEDIMARK Marketplace.

As the SEDIMARK platform evolves and improves throughout successive iterations, its
components will be incrementally enhanced and refined to improve performance and
functionality. The main goal of the work carried out for this second release has been to ensure
that previously independent functionalities can now run sequentially from the same set of
interfaces. This approach creates a more streamlined and cohesive workflow. In this regard,
the components that were behind those scenarios have been enhanced to improve their
performance and extend their functionalities, but, mainly, they have been tuned to be
integrated with the rest of components (which were supporting another of the initial PoCs
scenarios).

Last but not least, another key aspect that has been incorporated into the second release of
the SEDIMARK platform has been the mechanisms to easily deploy it. In this sense,
considering the system architecture that has been defined in SEDIMARK_D2.3 the deployment
of the SEDIMARK platform has two main aspects. On the one hand, the Baseline
Infrastructure, which is, essentially, the nodes supporting the Distributed Ledger Technology
network. In this regard, a network of nodes supporting Layer 1 and Layer 2 of the IOTA Tangle
has been deployed at the premises of several partners. This will be the network supporting the
execution of the pilot cases within the SEDIMARK project, but easy-to-follow documentation
has been created in case a different Baseline Infrastructure needs to be created. On the other
hand, the SEDIMARK Toolbox is the artifact that integrates most of the developments that
have been carried out in WP3 and WP4. Any participant willing to interact within the
SEDIMARK Marketplace is required to deploy their own instance of the SEDIMARK Toolbox.
Thus, the ease of the SEDIMARK Toolbox deployment has been, precisely, one of the key
objectives and focuses for the second release of the SEDIMARK platform.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 14 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

IS N
— (w Data Space
= = Offering Offering Offering Offering Data Space 3 Enabler
5 rontend r—) . e ' 2
= registration sharing description discovery Components 2
& ®
= Marketplace Payment / Alasa . User Offering Offering T LT
£ § services layer | Billing service g Logging profiling statistics validation K] Enabler
o
-)
p— Asset Asset Contract Open data 5 Offering o Marketpl
% [provisioning] [request] [making] [enabler] [R] [composition J @ isrmn?e:m
A
AR g
o] 4 o
E a Open Data
)) Smart ’ _ ' 2 Enabler
L J Interaction layer | Interaction Registry Monitoring Transactions Tokenisation g
contracts o
'SR lg
gl e
nabler
28| (— —
oo Model Al Model Distributed model Local model Al —_—
— inference formatter training training orchestrator -
— o Al
a Intelligence layer 8 Enabler
o Model Model Data — Al model quality Al model @
oo T optimisation | | Analytics 9 annotation validation g
TE L 8 Interoperability
£ Enabler
(~—
b= Data Data Feature Data Data Data quality .
2 mapper profiling engineering formatter augmentation evaluation Data Processing
£
£
§ § Data laver Data Semantic Energy Data Data quality Data
== ¥ curation enrichment efficiency storage annotation registration Data Curation
(S
%5 Data validation / Data processing Data processing Data ML-oriented data
'g = certification orchestration dashboard visualisation quality annotation ET“;l
- nabler
. AN v
.
-3
b §
=
ISSUERS 3
=
o
o
vy
OPEN DATA w
eememsesesesesesesesesesesemsesssesesesesesesesessosnens . PROVIDER m
TooLBox A :
!
H
MARKETPLACE T'F
SUPPORTING ToOLS : ‘EIE b
GRAPHICAL USER DLT BOOTH R SETEELPPEEEP R 2
INTERFACE TooOLS -
OFFERING GENERATOR { M !
SED-EDC CONNECTOR MARKETPLACE :
DLT BooTH '
RECOMMENDER —— Seir-DesCRIPTION SUPPORTING TOOLS E
H
Z m H
F b [T GRAPHICAL USER :
g PDP B INTERFACE TOOLS ! E
a = >
FORMATTING ENGINES V=
o -] .
u CSED EDE | RECOMMENDER 13
g DATA PROCESSING PIPELINE] EEErE J =
a DATA CURATION MODULES. s —+ Com;gf;oxen - DSP === OFFERINGS CACHE E
OTHeR DP Mopues 7! :"-control F'Ial'ua-.N i 2
+ a H V =z
Al PIPELINE R 'S
S MIND : DSP PO
LocaL MODELS TRAINING E data plane E
DISTRIBUTED MODELS TRAMING 4+ DIsT. TRANING SeRvicE +— ;“
} =

PROVIDER CONTEXT BROKER SERVICES.

Figure 1 General view of the functional components and the current system view

Document name:

D5.3 Integrated releases of the SEDIMARK platform. Second version

Page: 150f 79

Reference:

SEDIMARK_D5.3 ‘Disseminction:

PU Status: |Final

‘Version: ‘ 1.0

zﬂaé! 4

SEpIMARK

3 From seven independent scenarios PoCs to
three parallel streams

In the previous phases of the SEDIMARK platform development, seven independent scenarios
PoCs were introduced instead of consolidating into an integrated platform right away, focusing
on validating individual functionalities of the platform and components of the architecture.
These PoCs demonstrated the feasibility of critical platform features addressing high-priority
requirements. To implement each scenario, a subset of the components under development
in the project were integrated, thereby presenting an initial version of the platform. For your
reminder, the PoCs scenarios were listed as the following shown below in the bullets and
Figure 2 but specific details can be found in the deliverables SEDIMARK D5.1 and
SEDIMARK_D5.2.

Data quality improvement
Offering lifecycle
Participants onboarding
Asset (Data) exchange
Al-related scenarios
GUIs

Open data enabler

However, as the platform matured, it became evident that an integration approach was
required to achieve a more solid methodology and exploit the full potential of the architecture.
To serve this purpose, the consortium proposed the transition from independent PoCs to three
parallel streams; Minimum Viable Marketplace (MVM), Minimum Viable Intelligence (MVI), and
their combined functionality Minimum Viable Marketplace - Minimum Viable Intelligence (MVM-
MVI) which correlates the backend and the frontend integration. This integration ensures that
platform components can operate cohesively, in an interoperable, scalable and trustworthy
manner, addressing complex use cases while meeting medium and high-priority requirements
promised for the second version of the platform.

: Focuses on providing the foundational marketplace functionalities, including
participant onboarding, offering registration, and secure data exchange.

: Implements Al-driven capabilities for data preparation and formatting, data analytics,
local and distributed model training and optimisation, asset exchange and others,
emphasizing decentralisation and privacy.

: Combines marketplace and intelligence
functionalities, creating a unified framework where participants can not only share and
discover data but also leverage Al tools for insights and optimisation in a user-friendly
manner.

This structured approach transforms the SEDIMARK platform from a collection of standalone
solutions into an integrated ecosystem capable of supporting diverse pilot applications. The
next subsections outline the process and the sub-streams of each stream and how they
operate and interact. A direct link to the GitHub repository is placed when required for the
reader’s ease.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 16 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

INFRASTRU

5@C7

Open data enabler

Dﬁﬂg fecyderiame e

Lo

PoC6

GUIs
STATISTICS

RECOMMENDTR

STATISTICS

= ‘P@)@“‘ZTH

DATA PROCFSSING PIPELINE
Data Quality c
[Datquatys L

Improvemeﬂt WaToR

P@Céﬂ—

ssgt exchange

PROVIDER DOMAIN

i
Al PipELINE

a5 7%

S i i

.....

LOEAL AGEISThANNG.

s Ve T v

Figure 2 Transferring the seven Proof-of-Concept scenarios to three parallel streams

3.1 Minimum Viable Marketplace (MVM)

The Minimum Viable Marketplace (MVM) encompasses the basic set of components required
to facilitate the offering lifecycle and secure P2P asset exchange within the SEDIMARK
ecosystem. This framework ensures that all necessary elements are in place to support the
basic operations and interactions between participants, enabling a functional and efficient
marketplace environment. The marketplace stage includes critical processes such as offering
registration and negotiation, allowing participants to establish agreements to regulate
transaction terms. The subsequent asset exchange mechanisms are supported by secure
protocols that ensure the confidentiality and integrity of all communications. Additionally, the
MVM incorporates participant onboarding processes, where providers and consumers
generate credentials and cryptographic keys to ensure the security and authenticity of their
interactions.

Document name:

D5.3 Integrated releases of the SEDIMARK platform. Second version

Page:

17 of 79

Reference:

SEDIMARK_DS5.3 ‘Disseminaﬁon: ‘ PU ‘Version:‘ 1.0

Status:

Final

R

As a result, by focusing on the bare minimum requirements, the MVM ensures a secure and
effective marketplace, enabling smooth and trustworthy interactions between participants and
providing a solid foundation for future growth and development. Moreover, the emphasis on
security and trustworthiness helps build a robust and resilient marketplace that can adapt to
evolving needs and challenges.

The integration work carried out to achieve MVM can be divided into three distinct sub-streams:
participant onboarding, offering management, and asset exchange.

Participant onboarding includes the various steps that each new user must follow to become
a SEDIMARK participant and to generate and obtain the necessary -cryptographic
objects/credentials required to establish trusted and secure interactions in the marketplace
context. Figure 3 illustrates the various components involved in this process. From the user's
perspective, the SEDIMARK Marketplace Frontend (depicted in the lower part of the figure)
provides a simplified interface that facilitates interaction with the underlying complex system.

REGISTRY

IDENTITY SC ROUTER SC

mearse SMmart Contracts Platform

FACTORY SC Exchange

Service Access Token Other Exchanges IOTA Wasp N etWOrk (D LT Lz)

ISSUERS

DLT Booth

Identity/DID Offering Crypto I0TA
management ' tokenization = operations = Stronghold

Booth API

wwwwww

SEDIMARK
Marketplace

Frontend

Once the user has supplied their profile information and completed the required steps, the
SEDIMARK frontend will directly interact with the DLT Booth component, leveraging the

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 18 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

e
R
SEpIMARK

functionalities offered by the Booth API. The DLT Booth is designed to streamline the
management of cryptographic operations, while also providing a secure storage for
credentials. In this regard, the available operations include the generation of the necessary
identity key pairs, the DID document generation and management, together with the handling
of its storage in the Verifiable Data Registry (VDR), and the interaction with the Issuer to obtain
a valid SEDIMARK Verifiable Credential (VC). This credential together with the participant's
private keys are subsequently stored within its IOTA stronghold vault. Furthermore, issuers
also engage with the Smart Contracts Platform, specifically the Identity Smart Contract (SC),
to enable credential revocation capabilities. The role of this SC is depicted in Figure 4, where
the whole SEDIMARK smart contract architecture [4] is represented.

Both the SEDIMARK Marketplace Frontend [5] and the DLT Booth [6] components are part of
the SEDIMARK toolbox, which is deployed on the participant domain per their particular
relevant security policies and restrictions. The Registry [7] and Issuer [8], however, are
components deployed by the Baseline Infrastructure Facilitators and therefore reside in the
cloud. For this reason, communication between the first is considered to happen in a local

context.
add user D _ is credential revoked?
> <

Identity SC
tokenize B creates new istances D a
—> | W\ - .
Factory SC , ERC20 ERC721

(deployer) i Access Token Service (NFT)

AT 1S8C NFT 1 8C
purchase token
—

FixedRateExchange

A
add token

v

7

AT 28C NFT 2 SC

Lo

ATn SC NFT n SC

The offering management sub-stream focuses on controlling the life-cycle of all offerings within
the system, ensuring their trustworthy registration and tokenisation and enabling their
accessibility by any potential consumer in the Marketplace. Figure 5 illustrates the various
components associated with this functionality, organised by the specific stage they are
involved in i) creation, modification and withdrawal; ii) registration; iii) population; and iv)
discovery.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 19 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

zﬂaé! 4

SEpIMARK
Discovery
H seonaK verketgace Orloiegy
Global L
. Data
Offerings Cache | | Self-Catalogue(s) Catalogue Consumer
T t i
o ‘ c | ‘
atalogue
Self-Listing . Crawls needed providers i g
Coordinator

A

N k4
Pe L

=] * DLT Booth }—l Registry

_-—E— Connector (Provider) E (L2 - Factory SC)
UaRl [

Registration

Offering
Manager

Data
Provider
Creation

Modification Population
Withdrawal

Once the offering document has been created as a result of the interactions in the upper layers,
the Offering Manager [9] component acts as a local gateway to initiate offering registration.
Initially, it leverages the interoperability enabler to perform a syntactic and semantic validation
of the provided offering. After successful validation, the document is hashed and stored in the
Self-Listing for later retrieval. The result of such hash, together with the public URL of the
stored offering, serves as input to the Booth API operation responsible for tokenizing the
offering using the Factory SC from the Registry. The result of this process is the generation of
an ERC721 token (NFT) representing the offering as a whole together with a set of ERC20
tokens representing the ownership of a contract for that particular offering, as depicted in
Figure 4.

As part of the offering tokenisation mechanism, a series of events are generated by the Smart
Contract Platform. A Catalogue Coordinator can consume these events to synchronize the
content of the Registry with any Offering Catalogue. In particular, SEDIMARK provides a
reference implementation of such a component [10], which is detailed in Figure 6. In addition
to real-time event-based synchronisation, any Catalogue Coordinator can query the Factory
SC to obtain a list of all existing NFTs that represent the existing offerings in the Marketplace.
With this information, the coordinator can later crawl each provider’s self-listing to retrieve the
complete offering description and validate the hash to ensure it has not been modified since it
was registered. How each specific Catalogue Coordinator then populates their catalogue is
technology-dependent. The SEDIMARK Catalogue [11] relies on a central global triple store
to support SPARQL-based semantic queries, so the Catalogue Coordinator sends every newly
discovered offering to that endpoint. This same endpoint is targeted by the SEDIMARK
Marketplace Frontend for supporting the discovery stage. It is interesting to note that another

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 20 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

Catalogue Coordinator is envisioned to generate a local Offerings Cache exploited by the
Recommender during the discovery stage.

IDENTITY SC RoOUTER SC

meame Smart Contracts Platform
kb il FACTORY SC Exchange

Sonice lesestaien lonermanances |OTA Wasp Network (DLT L2)

i =] Self-listing DLT Booth

- -

SEDIMARK ————
r ; -~
/ Coordinator -. DLT Booth ED? Cg)c’nng)(:tor

provider-.
Triple Store

Central

SPARQL endpeint

SEDIMARK
GUIs

SEDIMARK

EDC Connector
(provider-1)

.

Figure 6 Detail of components involved in the offering population and discovery stages
3.1.1.3 Asset exchange

The asset exchange sub-stream encompasses all the mechanisms that facilitate and
guarantee the secure exchange of assets between pairs of SEDIMARK patrticipants. In this
sense, and by leveraging cryptographic techniques and DLT technologies, this stage ensures
that exchanges are recorded immutably, providing a verifiable trail of transactions in a
distributed ledger that enhances the trustworthiness of the system.

Figure 7 shows the set of components and interactions that collectively enable the provision
of asset exchange-related functionalities. This diagram provides a comprehensive overview of
the subsystem, highlighting the different elements involved, which are deployed both as part
of the SEDIMARK baseline infrastructure as well as on every individual participant domain.

The main elements of this sub-stream are as follows: the SEDIMARK dataspace connector,
the DLT Booth, the SEDIMARK smart contract architecture, and the various backends, also
known as data sinks, which are used by providers to store the actual assets.

The SEDIMARK Dataspace Connector enables dataspace-related functionalities within the
MVM, serving as a gateway through which participants can interact among them within the
dataspace ecosystem. This way, by leveraging standardised interfaces, the SEDIMARK
Dataspace Connector ensures interoperable communication and data exchange between
different entities.

This component is based on the well-known Eclipse Dataspace Components (EDC) framework
and its connector, taking advantage of its robust and reliable control plane. The control plane
is compatible with the Data Space Protocol (DSP), ensuring that all interactions within the
dataspace adhere to established standards and protocols. Additionally, the EDC framework
also provides an extensible data plane that supports a variety of plugins, thereby enabling
interoperability with a wide range of asset storage technologies. This ensures that data can be
stored, accessed, and exchanged between different participants using different approaches.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 21 of 79

Reference: SEDIMARK_DS5.3 |Dissemination: PU ‘Version:‘ 1.0 |Status: |Final

R

SEpIMARK

The flexibility inherent in this framework is essential for accommodating the heterogeneous
needs of participants within the dataspace. In this way, participants are able to use their
preferred storage solutions without compromising interoperability.

The SEDIMARK EDC Connector [12] builds on this framework to enhance trustworthiness and
decentralisation through the integration of DLT technologies and a smart contract architecture
within the control plane. By integrating DLT, the connector ensures that all transactions are
recorded on a decentralised ledger, enhancing transparency and reducing the risk of
tampering or fraud. This decentralised approach not only improves security but also fosters
greater trust among participants, as the immutable nature of the ledger provides a verifiable
record of all offering-related transactions.

Once an agreement over a specific existing offering has been reached between two
participants (a consumer and a provider) during the DSP-based negotiation phase, they
interact with the smart contract architecture, in particular with the Fixed-Rate exchange smart
contract. This smart contract facilitates the transfer of ownership of an ERC20 token to the
consumer account. This token represents a signed agreement linked to the specific offering
that was negotiated, which is represented by another NFT token, generated as the result of
the offering tokenisation procedure during the offering registration stage. This process is
illustrated in Figure 4. The smart contract ensures that the agreed-upon terms are executed
securely and transparently by automating the transfer and recording it on the DLT, providing a
verifiable and immutable record of the exchange.

In this particular context, the DLT Booth, as detailed in Figure 7, is the component responsible
for facilitating interactions between the dataspace and DLT domains. Moreover, it acts as a
bridge, offloading certain cryptographic operations and ensuring these processes are handled
efficiently and securely. In this regard, it manages interactions with the Ethereum Virtual
Machine (EVM), which is essential for executing smart contracts within the DLT environment.
Furthermore, the DLT Booth also functions as a secure wallet, safeguarding the cryptographic
credentials necessary for these operations. By securely storing and managing these
credentials, it ensures that all transactions and interactions are protected against unauthorised
access and potential security breaches. Overall, the introduction of the DLT Booth in the
system simplifies the integration of DLT technology within the dataspace framework.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 22 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

data plane

REGISTRY
in:!;:ss(; Ri:}izs € Smart Contracts Platform
soniee essstoren oherenges | OTA Wasp Network (DLT L2)
o DLT Booth
formm : DLT Booth SEDIMARK e et
' NGSHD . EDC Connector i
1 Context Broker ™ o (provider-2) Backends |
| . SEDIMARK :
RILULICNER IRy EDC Connector . ‘
. ! (provider-1)
i Distributed Al /
1 services 1
| ! SEDIMARK DLT Booth
| ! Marketplace | NI SEaaldaNy ¥ oo ool
' | Frontend .’ i
ST __-.C - : Backends |
1
1 i

SED-MKT \TT o= -—--=- ’

Once an agreement over an offering is reached, the offering procurement process, which
ultimately leads to the actual asset exchange, can start. As introduced before, the asset
exchange process relies on the data plane, a critical component that handles the actual
transfer of data assets between participants. This transfer can follow different models, such as
pull, push, or mixed. In the pull model, the consumer initiates the data transfer by requesting
the asset from the provider. In contrast, the push model involves the provider initiating the
transfer and sending the data asset to a destination indicated by the consumer. Finally, the
mixed model combines elements of both pull and push approaches, allowing for more flexible
and dynamic data exchange scenarios.

The data plane's capacity to support these different transfer models, along with its extensibility
through the creation of new plugins to support additional technologies, ensures that the asset
exchange process can be tailored to align with the specific requirements and preferences of
the participants. This flexibility accommodates different types of assets and storage solutions.
Examples of compatible technologies are, among others, REST APIs or AWS S3 API.

While the specific behaviour of each individual data plane plugin varies depending on the
backend technology employed for asset transfer, they all share a common approach to
authorisation. The previously acquired ERC20 token, obtained to represent an agreement on
a specific offering, serves as the basis for authorisation purposes. Ownership of this token
must be verified during the communication between participants to initiate the offering
procurement process. Additional validations will be performed based on SEDIMARK Verifiable
Credentials and the specific ODRL policies included in the offering agreement. Once
authorisation is validated, technology-dependent interactions with the involved backend
components will configure and control the asset exchange process. One example of such

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 23 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

interaction would be to use a storage API to generate compatible temporal access credentials
that are then notified to the consumer.

3.1.2 Integration specification

Figures 8-9 present the current status of the tasks that need to be completed in order to
integrate the MVM components. This board will be continuously updated to keep track of the
integration progress.

= O Sedimark / Projects / MVM & Q Type(7] to search

8- +- 0neo@

& MVM

Add status update lv [@ -
[MVM Streams ~ B MVM Streams (table [Backlog [Current iteration [E] Roadmap B Myitems + New view
Stream ~ = Filter by keyword or by field Discard
(@] Participant = 7
onboarding O Todo 11/25 Estimate: 0 O InProgress 25/25 Estimate:0 O Done 7 Estimate: 0
() Offering % This item hasn't been started This is actively being worked on This has been completed
managemen(- -
© offering-manager #1 e © marketplace-frontend #4 (© mvm-participant-onboarding #2 &
O Asset 9 Validate Offering with Interop Enabler Finalize DID document creation form Take decisions on pending open questions
exchange
9 Offering management Participant onboarding PO Participant onboarding PO
o Deployability 2
(@ dit-booth #11 . (@ mvm-participant-onboarding #4
Show empty values

Integrate VP verification functionalities within
the SEDIMARK EDC components

Asset exchange

Support participant onboarding Define the practical enrolment flow and which

Participant onboarding | | P1 input will be asked from participants

Participant onboarding PO

") Draft

@© offering-manager #7 e

Design Offering Management (CRUD) and Self-
Listing APIs

Adapt EDC components to support SEDIMARK
Delimit applicable ODRL policies requirements

Asset exchange Asset exchange

Offering management PO

7% Draft

Integration of EDC components with
SEDIMARK frontend GUI

Asset exchange

Offering Manager - GUI form formatter

Adapt Mediterraneous components to offload
crypto related functionalities

Asset exchange

73 Draft

Integrate DSP offering contracting process

@ homet-extra #1 (]
Deploy Distributed Registry with multiple nodes

Participant onboarding PO

$e marketplace-frontend #27

maint: add basic README, docker compose and

z with the access token exchange kubernetes manifests
Offering management

Asset exchange Deployability

(© marketplace-frontend #1 @
Integrate catalogue into the marketplace
frontend for offering discoverability

73 Draft @© marketpla
Authorize secure access exchange on
supported technologies

frontend #3 ¥
Simplify mock ups for offering dashboard, assets,
Offering management policies and contract management

Asset exchange Asset exchange

@ offering-manager #6 [

Async DLT Offering registration

@ offering-manager #2 ®

Generate Offering/Asset Hashes

(© marketplace-frontend #9 (~]

Implement the offering contracting page v0 (with
no backend)

Offering management
Offering management
Asset exchange
(© marketplace-frontend #5 Q
Decide what to put in offering publication
wizard step 1: asset definition

(© offering-manag
Register Offering in DLT

Offering management Offering management

(@ marketplace-frontend #6 [] 03 Draft [:]

Decide what to put in offering publication . Interoperability Enabler - Syntax validation

+ Add item + Add item + Add item

Figure 8 The MVM issue dashboard on the git repository (1)

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version

Page: 24 of 79
SEDIMARK_D5.3 ‘Dissemination: PU

1.0 |Status: |Final

Reference:

‘Version:

o Sedirmark [/ Project: [/ MVM G

4 MVM

[MVM Streams

B MvM Streams itable view) (= [Backlog

= Filter by keywaord or by field

Title

[Current iteration

[Z] Roadmap

Stream = """

B myitems

4 Mew view

Status

w (O Participant onboarding 10
1 (%) Take decisions on panding open guestions £2 Participant onboarding Dane
Z (=) Define the practical enrciment flow and which input will be azked from participants =4 Participant onboarding Dane
3 (=) Integrate Meditarraneus protocol companents for the participant onboarding £2 Participant onboarding In Progress
4 (=) Finalize DID documant creation form £4 Participant anboarding In Progress
5 (%) Deploy Distributed Registry with multiple nodes #1 Participant onboarding Dane
6 () Support participant onboarding #11 Participant onboarding In Progress
T (=) Support Service information endpoints in DID documents 7 Participant onboarding In Progress
8 (%) Generate new Ethereum address as part of the identity generation =4 Participant onboarding In Progress
g () Implement user acceptance of terms & conditions upon buying/consuming an offering #21 Participant anboarding In Progress
10 {_* Expose participant sef-description to enable human-readable profile generation fram the DID Participant onboarding Todo
+ Add itermn
~ () Offering management 22
11 (%) Validate Offering with Interop Enabler #1 Offering management Todo
12 3 Offering Manager - GUI form formatter Offering management Todo
13 (%) Generate Offering/Azset Hashes =2 Offering management In Progress
14 (3) Register Offering in DLT £3 Offering management In Progress
15 {_* Interoperability Enabler - Syntax validation (Format) Offering management in Progress
16 % Interoperability Enabler - Semaniic validation (Axioms) Offering management In Progress
17 {_* Interoperability Enabler - Shapes Validation (specific minimum reaguiremeants for an Offering) Offering management In Progress
1& i} Interoperability Enabler - Vocabulary validation (Types) Offering management in Pragress
1% » Interoperability Enabler - Datatypes validation (Values) Offering management In Progress
20 () Integrate catalogue into the markstplace frontend for offering discoverability #1 (Offering management Todo
21 (%) Design Offering Managemeant (CRUD) and Self-Listing APls 7 Offering management Dane
(=) Async DLT Offering registration #6 Offering management Todo
23 (5) Add database persistence for Offerings 25 Offering management In Progress
() Restrict public access to Offering modification endpoints (CREATE, UPDATE, DELETE) 24 Offering management In Progress
25 () Decide what to put in offering publication wizard step 1: azzet definition £35 Offering management Todo
26 (3) Decide what to put in offering publication wizard step 2- data access £6 (Offering management Todo
27 (2 Decide what to put in offering publication wizard step 3: price and policies £7 Offering management Todo
28 (2 Implement the offering dashboard overview page vl (with no backend) #10 Offering management In Progress
Figure 9 The MVM issue dashboard on the git repository (2)
The relevant link for the GitHub repository is: [18]
Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 25 0f 79
Reference: SEDIMARK_D5.3 ‘ Dissemination: PU ‘Version: ‘ 1.0 | Status: |Final

R

SEpIMARK

The Minimum Viable Intelligence (MVI) represent the core Al-driven functionalities of the
SEDIMARK platform, enabling intelligent data processing capabilities, analytics, decision
making and asset/data exchange within a decentralised framework. MVI bridges data
providers and data consumers by leveraging advanced Al techniques, including federated
learning, data curation, and distributed model training, to extract actionable insights while
ensuring data privacy and security. By integrating Al orchestrators, data preprocessing
pipelines, and distributed machine learning frameworks, MVI ensures the platform delivers
robust intelligence capabilities and encourages participants to enhance data usability and
unlock the full potential of the platform’s decentralised marketplace. These features are
particularly critical for supporting use cases such as data quality validation, predictive analytics,
and event detection in real-time, making SEDIMARK a scalable and efficient data and services
marketplace.

The Minimum Viable Intelligence (MVI) contains the basic set of components required to
facilitate the data processing pipeline management as well as the Al orchestration pipeline
management within the SEDIMARK ecosystem. In Figure 10, we have presented from up to
down, from the producer to the consumer (lower part of the image), how the involved
components interact with each other.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 26 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

R

4 : N

Mage Al

‘ @ Data Curation : [@ NGSI-LD Broker Save/Load q']

[[§ Data Formatter . [@ Model Training/Optimization q']
\ [6 Save / Load Models to MLFlow

4 A

@ Mage API
Pipeline ¥

Assets

Y ‘OOO NGSI LD Broker }

25, Orchestrator Ul

Co

Data/Al/Pipelines Asset Description
+ Actual Data

A

Al ML Assets

y] ;1 ’fﬁ’: Sedimark Ul L J
[@ Fleviden ‘ [,@“ Shamrock ‘ ‘ J

In what follows we will provide explanations for each component from the above diagram,
focusing on orchestration of the Al models, data processing pipelines, and overall marketplace
interactions.

Mage.Al is a framework that allows modelling of the transformation and integration of any data.
The modules that are integrated in the Mage.Al are:

Data Curation which represents blocks that perform cleaning, profiling and deduplication
of the input data.

Data Formatter which transforms data from NGSI-LD, JSON to pandas’ data frames, thus
standardizing data formats.

NGSI-LD Broker Save/Load. This block facilitates data reading and storage from and to
the NGSI-LD broker. It also allows the user to select the entity where data will be stored
to.

Model Training/Optimisation supports the development and tunning of the parameters of
the Al models for specific use cases.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 27 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

e
R
SEpIMARK

The model management is realised with the help of MLFlow. MinlO serves as data storage for
information resulting from training such as metrics, plots, confusion matrixes, etc.

The Orchestrator Ul application connects users with pipelines defined in Mage.Al to set various
parameters of the block or simply run them.

The same interface connects users with Al orchestrators which implies using tools like
Shamrock or Fleviden.

The MVM includes a Global Catalogue that allows for organising asset descriptions (assets
like data, Al models, and pipelines). These asset descriptions will enable the customer to
discover the assets. Assets will be then made available to the customer via Connectors.

A Connector facilitates data exchange and interaction with NGSI-LD broker ensuring secure
data flow between the Catalogue, Mage.Al and other MVM modules.

The NGSI-LD broker acts as a central hub for metadata, actual data and Al pipeline and asset
descriptors.

Users can interact with the system through the orchestrator Ul to manipulate existing pipelines.

The setup for MinlO is managed via a Docker Compose configuration file, which deploys MinlO
alongside all other components included in the SEDIMARK MVI Toolbox. The specific
configuration details for deploying MinlO will be outlined in Section 3.2.1.12.

MinlO will serve as a storage solution for models generated by Al pipelines executed in Mage,
as well as for other artifacts associated with these models. While MinlO can also be utilised
for storing data that cannot be directly saved to the NGSI-LD broker, this will not be its primary
purpose.

MinlO will primarily be accessed through interactions between the components of the toolbox,
triggered by specific flows initiated by the user. That said, direct access to MinlO is also
possible using the credentials specified in the Docker Compose configuration, as shown in
Figure 11. By using the ROOT credentials, the toolbox user can access the MinlO interface at
http://localhost:9000 after deployment to view all stored data.

_USER=admin

(=]

ASSWORD=minio

MinlO is utilised within the platform to showcase the functionality of the marketplace, but it is
not the sole or primary storage solution. Providers will have the flexibility to specify the source
of their data, which can be stored using any storage method of their choice.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 28 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

)
g nag %,
SEpIMARK

Data Curation is a Python module developed as part of the SEDIMARK project to assist in
cleaning and enriching data. A summary of the actions that can be performed using this module
is outlined below:

Anomaly detection/annotation
Data deduplication
Interpolation of missing data
Data profiling

All these functions will be implemented as Mage Al template blocks that can be imported inside
a pipeline based on the needs of a particular pipeline.

An example of a block for data curation tools can be seen in Figure 12:

ere hould be one parameter for each output variable from each parent block.

valid_ranges = []
numeric_columns = []
categorical_columns = []

for column in data.columns:
if pd.api.types.is_numeric_dtype(data[column]):
data[column] = data[column].a y(lambda x: 9.2 if np.isnan(x) els
numeric_columns.append(column)

data = data.dropna()

data = DataSource(
data,
time_column=
valid_ranges= _.
categorical_columns=categorical_columns
numeric_columns=numeric_columns

)

plt.rcParams[' font.family'] = 'Deja

module = AnomalyDetectionModule(s+*config)
result = module.process(data)
df = result._df

df['_is a
= df['_a

Data Formatter is a collection of Python modules and scripts designed to standardize data
formats both during the execution of a pipeline in Mage Al and at its conclusion, ensuring
consistent data storage. To achieve this, NGSI-LD was selected as the primary format for
saving and retaining most, if not all, data for future use within the SEDIMARK Marketplace.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 29 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

R

SEpIMARK

However, the Data Formatter can also support CSV and XLS/XLSX formats, enabling flexibility
when dealing with data in various formats.

The integration between Mage Al and the Data Formatter will be achieved through template
blocks created in Mage. These blocks will be incorporated into data processing pipelines to
handle data conversion and formatting into NGSI-LD, either at the beginning or the end of the
pipeline.

Data Quality Annotation is performed after the data processing pipelines and is designed to
add quality annotations directly to the output (i.e., pandas DataFrame) of the pipeline. These
annotations can be applied either at the attribute level (to specific columns or features) or the
instance level (to entire rows).

To transform the enriched Dataframe into the NGSI-LD format, the Data Mapper is utilised.

The integration between Mage Al and these two components will be achieved through the use
of template blocks designed within Mage.

Regarding the Al pipeline, two new components are currently in progress to enable the
dynamic transformation and restoration of DataFrames. The first component (Data
Transformation) is performed after the Data Formatter and is designed to extract relevant data
from the NGSI-LD data in the Broker, creating a focused subset (DataFrame) specifically for
Al model training. The second one (Data Restoration) ensures the original structure is restored
by mapping the prediction back to the full data, maintaining consistency and coherence.
Finally, an NGSI-LD output is generated thanks to the Data Mapper and can be stored back to
the Broker.

All these components will be integrated in Mage Al.

The context broker in the case of the MVI architecture will be the NGSI-LD broker, this broker
will be used to standardize the data format inside the SEDIMARK Marketplace.

The broker, like all other components in the toolbox, will be deployed as a Docker container.
Interaction between Mage and the Context Broker will occur at the end of a pipeline via
template blocks. These blocks will first collect all the information related to a specific asset. In
SEDIMARK, assets can be categorised as data assets, AlI/ML model assets, or pipeline assets.
The collected information will then be converted into NGSI-LD format and saved in the Context
Broker. If the asset is a data asset, the associated data will also be stored in the broker. Figure
13 presents the flow of data, starting from Mage and going until the context broker.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 30 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

- : D

Mage Al

= *
’ ‘ @ NG SI-LD Broker Save/Load

&

‘ @ Data Curation

{ E§ Data Formatter = ’ { @ Model Training/Optimization HJ
\ ‘ o Save / Load Models to MLFlow (&) ‘ /
A

Pipeline
Assets

‘OOO NGSI LD Broker ‘

‘ 2 Orchestrator Ul
Data/Al/Pipelines Asset Description
+ Actual Data
Al ML Assets
e
¥ ¥ (#%% | sedimark Ul
|‘ngJI

[@ Fleviden] [,_@‘ Shamrock]

Figure 13 Context Broker saving flow

3.2.1.3 Al Orchestrator

The diagram in Figure 14 represents the flow of a Federated Learning process between an Al
Enabler Initiator and an Al Enabler Participant. This process is similar both in the Shamrock
tool as well as in the Fleviden tool which will be described in what follows.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 31 0of 79

Reference: SEDIMARK_DS5.3 |Dissemination: PU ‘Version:‘ 1.0 |Status: |Final

Federated Learning

Al Enabler Initiator

Al Enabler Participant

Participant

T Y
} Al ‘ Distributed Model Local Model Al Distributed Model Local Model
Initiator Orchestrator ‘ Training Training Orchestrator Training Training
| Train degentr.
I model |
‘ model ;
| Start decentr.
| training
. manual setup of hetwork graph
| start local
! training
Y 1 [model !
! initialisation
| send model description | R
| | manual setup of i
: . mode| and network graph |
) |_ start process
start decentr.
i training
; initialise training
: with model !
\ '« [intiatise
| ! model ‘
loo

| ¢ 5end weights
:] select hst\

of peers

(:] .rou>nd finished N

send weights

send weights !
:] select list N

of peers

' _ send updated weights

I send updated weights

>

do aggregation

| update weights
e S

:l received weights N

:] received weights &

do aggregation

update weights |
e

:] [round finished I\l

| send weights

Al

Distributed Model Local Model

1 ‘ Orchestrator‘ Training Training

Al Distributed Model Local Model
Orchestrator Training Training

Initiator

Figure 14 Federated learning block

The federated learning block comprises three main steps:

 Model initialisation

i i

\

Participant

o The initiator begins training a decentralised model by setting manually the network
graph for participating nodes.

o The model description is sent to the participant who also performs a manual setup of
its local model.

» Training initialisation

o Both will initialize the model and start the distributed process.

o Local training occurs on each node.

o lterative loop

o Each participant sends its local weights after a round of training.

Document name:

D5.3 Integrated releases of the SEDIMARK platform. Second version | Page:

32 0f 79

Reference:

SEDIMARK_D5.3 |Dissemination:

PU ‘Version:‘ 1.0 | Status:

Final

R

SEpIMARK

The Al Orchestrator collects the weights from all participants, aggregates them and
updates the global model.

The updated model weights are sent back to each participant who incorporates them in
their models to start the next training round.

The process iterates for multiple rounds until the training converges.

SEDIMARK provides Shamrock, a lightweight and composable tool for enabling distributed
training of machine learning models. Shamrock is based on a simple node architecture, where
nodes host datasets and machine learning models, and can be composed via the definition of
a topology to train local models while communicating and aggregating weights. In its current
implementation, Shamrock provides support for both Keras and PyTorch models, with Keras
allowing for training to take place in two additional backends - Jax and Tensorflow- provided
the model is defined using Keras syntax. Shamrock will feature additional support for both split
learning and federated distillation. Shamrock nodes may communicate both model weights, as
well as fully defined models in either Pytorch of Keras, and additional metadata, such as
sharing lists of peers in order to expand decentralised networks. Shamrock operates primarily
over a REST http API, with nodes operating Starlette servers, and features one-way request-
response communication.

SEDIMARK also provides Fleviden as an alternative framework for decentralised federated
learning. Fleviden follows a pipes-and-filters paradigm that allows users to define a highly
flexible computational graph by instantiating and connecting Fleviden pods. This flexibility is
what enables different training topologies, such as client-server, hierarchical or swarm
learning, as well as more complex custom scenarios. Currently, Fleviden supports Keras,
Pytorch and Scikit-Learn for training the models, and HTTP or Kafka-based communication
between agents. Additionally, Fleviden offers privacy-preserving mechanisms, model
performance monitoring through MLFlow, and several compression and quantisation
techniques to reduce the energy consumption of the process.

The interaction between the Al orchestrator and the model optimisation modules begins with
an Al pipeline created in Mage, utilizing various block templates that contain code from the
model optimisation modules. Through configurable parameters, the optimisation process can
be fine-tuned for a specific dataset and model.

At the end of the Al pipeline, a dedicated block will save the asset description of the resulting
model into the context broker and store the model itself in the Al orchestrator. In the MVI
architecture, the Al orchestrator is represented by the MLFlow and MinlO components. The
integration workflow from the Al pipeline to the Al orchestrator is illustrated in Figure 15.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 33 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

a : N

Mage Al

:;._I['

‘ @ Data Curation

{ I$ Data Formatter] @ Model Training/Optimization &
\ (o Save /Load Models to MLFlow

»

[=0)

Pipeline ¥
Assets
‘OOO NG3I LD Broker }
{ %, Orchestrator Ul] T
v Data/Al/Pipelines Asset Description
+ Actual Data
Al / ML Assets
¥ ¥ ;;;:j"'jj Sedimark Ul
[@ Fleviden [@’ Shamrock —

Figure 15 Integration flow between Al orchestrator and model optimisation modules
3.2.1.4 Local Model Training

Local model training automatisation and interface design

The design of interfaces for local model training enables participants to interact with the training
pipeline via both GUIs and APIs....

The GUI provides a user-friendly interface for initiating and monitoring local model training
tasks. Key features include:

o Dataset selection: The user retrieves a dataset from the marketplace using file upload
mechanisms (drag and drop) to choose datasets. An indicative interface is shown in
Figure 16.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 34 of 79

Reference: SEDIMARK_DS5.3 |Dissemination: PU ‘Version:‘ 1.0 |Status: |Final

XGBoost Model Trainer and Tuner

This application allows you to upload a dataset, tune XGBoost parameters, train the model, and evaluate

its performance.

1. Upload Your Dataset

Upload a CSV file

Drag and drop file here Browse files

Limit 200MEB per file - CSV

Processed_data_half2.csv 3742K8 >

Preview of Dataset:

1,008 10.2542 0.5042 10.7583 9.75 1.0083 10.2666 35517 24.0241 83 0
1,009 13.275 12.4247 30.9643 1.0333 29.931 18.1824 39.0742 21.8243 127 0.0954
1,010 8.8 0.975 9.775 7.825 1.95 8.8538 39.0742 21.8243 175 0
1,011 1.2833] 1.2833 1.2833] 1.2833 39.0742 218243 120

1,012 8.3917 1.5917 9.9833 6.8 3.1833 85413 39.0742 21.8243 80]
1,013 14.4357 7.9858 22.3884 6.4167 159718 164973 39.0742 218243 80 -0.0083
1,014 2.1425 0.5928 29918 1.2581 1.7337 2.223 39.0742 21.8243 142 05377
1,015 20.7925 10.0194 37.2%03 11.1583 26,132 23.0807 39.0742 21.8243 119 0.268
1,016 7.438 9.2511 30.4839 195 285339 118704 39.0742 21.8243 194 1.8766
1,017 28.6125 4.8792 33.4917 23.7333 9.7583 29.0255 39.0742 21.8243 128 1]

Select the target column

label ~

Figure 16 Interface for uploading the dataset to train and evaluate the model.

» Model configuration: The user chooses from a series of interactive forms for selecting
model types, defining hyperparameters, and choosing training schedules (Figure 17).

2, Select Parameters to Tune

2. Select Parameters to Tune

(. cinazes « | . » | i | oty soopig——» o

Selected Parameters:

Figure 17 Options for selecting the hyperparameters of the XGBoost Regressor model

o Parameter selection and model tuning: Users have the option to set the parameters for
the XGB model. Then, they can click a “Tune and Train” button to perform hyperparameter
tuning and train the model with the best parameters (Figure 18).

Document name:

D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 350f 79

Reference:

SEDIMARK_D5.3 |Dissemination:

PU

‘Version:‘ 1.0 |Status: |Final

3. Train-Test-Validation Split

Split your dataset into training, testing, and validation sets.

Train Size (%)
TE
o
60 90
Test Size (%)
®
10 30

The validation set is used for hyperparameter tuning and will be split from the training data.
Tune & Train Model

Tuning parameters...

Best Parameters:

“{
"n_estimators" : 467@
"learning_rate" : 8.26827372939434935
"max_depth" : 7
"early_stopping_rounds" : 18

}

Figure 18 User interface for selecting the train-test split percentages for the uploaded dataset.

* Model evaluation and results visualisation: After training, the Ul displays model
performance metrics and evaluation results. Users can view graphical comparisons, such
as predictions vs. true values, to analyse the model's accuracy and mean daily
consumption predictions. The following dashboards illustrate how the chain of the results
is displayed on the interface (Figure 19-22).

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 36 of 79

Reference: SEDIMARK_DS5.3 |Dissemination: PU ‘Version:‘ 1.0 |Status: |Final

4. Model Evaluation =
Mean Absolute Error (MAE): 3.7258

Mean Squared Error (MSE): 46.5775

Root Mean Squared Error (RMSE): 6.8248

Mean Absolute Percentage Error (MAPE): 0.9783

R-Squared (R?): 0.3018

Predictions vs True Values

True Values Predictions
o] 0.5081967213114754 2.5172
1 16.083333333333336 13. 7807
2 0.6611570247933882 T.T514
2 12.709677419354838 T.0886
4 57.96666666666668 18.2734
5 21.300000000000004 19.1573
(-] 11.505494505494507 14.476
7 8.393442622950817 12.3975
k=] 6.336065573770493 4.2485
9 T.l66666666666664 T.2068

Figure 19 Table displaying a comparison of the predicted values and the true values for energy
consumption.

0.20
0.15
0.10
0.05 I
| . —mil HEN mlm n=mllila.
I G =2 x ! l& - - 2 = : :r =2 B ao = = = oA g =B
o ;= - T S = D= : = I F 8 £ ®m o® 2 o4 E N O£
w e £ g o g 2 S EE=Eg 2 £ g B & E @ E o £ @& ©
[=a] W E = ¥ E b ¥ w E W oy E b & W E
v &2 E o E & o = o a8 o = =} = o % o
[T - = E = = Lt
5 b R g = = 5 § S A
P g 2 o = < 4 a = o 9 = =
[T o = < = = < z =
= o = = o o=
(1T} = 3 [+
2 = = & = g = =
& & = = = w =

Figure 20 Visualisation of feature importances from the dataset

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 37 of 79
Reference: SEDIMARK_D5.3 ‘Disseminction: PU ‘Version: ‘ 1.0 | Status: |Final

Analysis

Mean daily consumption for each instance

= Predictions
w— True Values

n
o
"

8

N
o
"

Mean daily consumption [kWh]
= 3

\ ‘ \ ‘ , ’ l 1 K / | { ' \
|
LA Ay ‘ \ ‘ N \
0 20 40 60 80 100 120
Instances

\

Figure 21 Line plot comparing the predicted vs. true values of mean daily energy consumption
for each instance in the test set.

The graph shows that the model captures the general trend of energy consumption, particularly
for low-to-moderate values. While the model slightly underpredicts peaks, it performs well in
aligning with the overall behaviour of the data.

Scatter Plot: Predictions vs Actual with y = x Line

60 .
@ Predictions vs Actual =
-
- X "’,’
50 - /,"
f”
= -
= Pie
= . -
e 40 .
= -
n -
v L
3 -
G 230 PP
> -
3 P
2 e . 7
9 -
= L]
a ® ’-’-' L ®
-
= ® ® b Y] []
e S Lo “ @
LR ® 83 - .
10 + L]
°® - L]
og) °
- ®
0- ,‘

o 10 20 30 40 50 60
Actual Values [kWh]
Figure 22 Scatter plot of predictions vs. true values

The above scatter plot highlights that the model performs reliably for lower energy values
where predictions align closely with the actual values. Although deviations increase for higher

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 38 of 79
Reference: SEDIMARK_D5.3 ‘Disseminction: PU ‘Version: ‘ 1.0 | Status: |Final

R

SEpIMARK

values, the overall pattern follows the expected trend, indicating the model's potential with
further refinement.

The purpose of the whole analysis is to help the user assess how closely the model's
predictions align with the actual values, identify areas where the model might overpredict or
underpredict energy consumption, and provide a visual overview of the model’s accuracy and
performance across the entire test set. More details can be found in the GitHub project
repository here: [20]

Shamrock is a distributed machine learning tool available through the SEDIMARK toolbox.
Shamrock is deployed as a Python package, which is subsequently imported by MageAl.
Users can then use the functionality of Shamrock through the MageAl pipeline. In particular,
users will be able to select a particular Keras or Pytorch model to train in the distributed
settings. Moreover, users can choose from several distributed learning topologies and the
specific model part for communication (i.e. model weights or model description). An example
of running a decentralised model training in the federated learning topology is shown in Section
3.2.1.3.

Fleviden is another federated learning tool that SEDIMARK toolbox also developed as a
Python framework. After installing the Fleviden library, users will be able to define and
customize their federated learning scenario, for example, defining the topology (Client-Server,
Hierarchical, Swarm Learning, etc), the training framework (Keras, Pytorch, Sklearn), the
communication protocol (HTTP, Kafka), the kind of data the model will process (tabular, image,
etc.), and additional features (compression techniques, privacy preservation, client-selection,
etc). Clients will be able to subscribe and unsubscribe dynamically to a federated learning
network, being able to join already initiated training processes.

MLFlow is an open-source platform designed to streamline the management of machine
learning (ML) workflows. It provides tools for tracking experiments, packaging models, and
managing the deployment lifecycle, and is used to maintain reproducibility, collaboration, and
scalability in Al/ML projects.

MLFlow offers robust features for managing the machine learning lifecycle. It provides
experiment tracking by logging and visualizing metrics, parameters, and artifacts like models
and datasets, enabling efficient comparison and record-keeping. A centralised model registry
ensures versioning, metadata management, and stage transitions, with the ability to roll back
to previous versions.

MLFlow standardizes model packaging, allowing seamless deployment across environments
such as REST APIs, batch pipelines, embedded systems, or cloud platforms like AWS
SageMaker, Azure ML, and Kubernetes. It integrates smoothly with popular ML libraries such
as TensorFlow, PyTorch, XGBoost, and Scikit-Learn, as well as major data platforms like
Databricks and Apache Spark. With support for multiple programming languages, including
Python, R, and Java, MLFlow accommodates diverse technical teams effectively.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 39 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

R
SEpIMARK

MLFlow is deployed inside the SEDIMARK toolbox as a Docker container, to provide a
standardised way for the components deployed and ensure seamless communication between
the different components. Figure 23 presents the user interface of MLFlow, which can be used
by a user inside the SEDIMARK platform to see how the different models are stored and to
visualize the metadata around them, but communication with MLFlow will be done mostly
through code and API calls.

Ml /OW 2160 EBxperiments Models C GitHub Docs

Experiments (O] status_model © Add Description

a Runs Evaluation [Experimental perimental

‘ = | i || Q metricsrmse p nodel = "tree © Time created State: Active v | | Datasets v | | 5 sort: Created i 4 Newmn

(I columns v & Group by

The integration between MLFlow and Mage Al will be done as for most of the other components
inside the MVI toolbox, through template blocks that will contain code for the following
operations:

Storing trained models
Getting trained models from storage to use for predictions
Updating a model

These three operations will ensure seamless integration between Mage and MLFlow. The
template blocks will be parameterised to provide flexibility, accommodating various models
generated through different Al pipelines.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 40 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

mdpE = p.meEdnyng. Y_LESL — Y_pred) J y_LeEsL)) ® 1uw

metrics={
:mse_scaled,

:rmse_scaled,

y_test.reset_index{drop=True, inplace=Tr

df_compare=pd.DataFrame()
df_compare[
df_compare[

int(

signature = infer_ signature(X_test, y_pred)

plot_predictions(test_data,y_test,y_pred)
plot_real_pred(y_test,y_pre

client = MlflowClient()

model_name =
try:
registered_model client.get_registered_model(model_name)
Exception -H
registered_model = client.create_registered_model(model_name, tag:

with mlflow.start_run{experiment_id=mlflow.get_experiment_by_namel .experiment_
mlflow.sklearn.log_model(
sk_model=best_model,

artifact_path=

registered_model_name=
signature=signature,

mLflow.log_artifact(. artifact_path=
mlflow.log_artifact("w f .png”, artifact_path=

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 41 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

R

edata_exporter

wport_data(data, *args, **kwargs):
Exports data to some source.
Args:
data: The output from the upstream parent block
args: The output from any additional upstream blocks (if applicable)
Output (optional):

Optionally return any object and it*11 be logged and

displayed when inspecting the block run.

model _name = data[@]
print(f"model name :{model name}")
st,ytest,model_name=linear_regression_predict{data,model_name)

run_id="3542d79b88d14161bbace64050007a01"

logged_model = f'runs:/{run_id}/{model_name}"

print{logged model)

rtest,predictions

Figure 24 illustrates a block for storing a trained model in MLFlow, while Figure 25
demonstrates a block for loading a trained model and performing predictions on a given
dataset.

The integration of MageAl with energy consumption data enables advanced data analytics and
machine learning workflows, particularly for time-series forecasting and energy demand
prediction. This integration brings automated machine learning (AutoML) capabilities into the
platform, simplifying the process of building, training, and deploying predictive models for
energy consumption patterns while maintaining privacy and data locality.

The data processing and model training pipeline that we have designed and implemented
consists of four sequential blocks:

Data Loader block: Fetches and integrates the datasets from a GitHub repository
associated with the project. The processed dataset is saved for downstream tasks
(Figures 26-27).

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 42 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

load data from api(*args, *xkwargs):

response = requests.get(url, headers=headers)

response.raise for_ status()

df = pd.read_csv(io.StringIO(response.text), sep=',")

rn df

1008

1009

1010
1011
1012

1013

Data Splitter block: The dataset is split into training, test, and validation sets (Figure 28).

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 43 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

)
g Ir?.g %,
SEpIMARK

splitto_train_test(df, xargs, #xkwargs):

df.iloc[:, 1:-1].values
df.iloc[:, -1].values.reshape(-1, 1)

train_len = 0.7
X_train, X_temp, y_train, y_temp = train_test_split(X, y, train_size=train_len, random_state
X_wval, X_test, y val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42

result =
" n": X_train.tolist(),
: X_val.tolist(),
X_test.tolist(),
: y_train.tolist(),
y_val.tolist
: y_test.tolist()
s

return result

Data Scale block: Applies standard scaler to normalise the dataset (Figure 29). The basic
model we use is the model.

—
ler(data, *args, **kwargs):

X_train = np.array(dat
X_val = np.array(datal
X_test = np.array(datal
y_train = np.array(dat
y_val = np.array(datal
y_test = np.array(datal

scaler_X = StandardScaler()
scaler_y StandardScaler()

X_train_scaled = scaler X.fit_transform(X_train)
X_val_scaled = scaler_ X.transform(X_val)
X_test_scaled = scaler_X.transform(X_test)

y_train_scaled = scaler_y.fit_transform(y_train)
y_val_scaled = scaler_y.transform(y_val)
y_test_scaled = scaler_y.transform(y_test)

X_train_scaled.tolist(),
X_val_scaled.tol)
X_test_scaled.toli
y_train_scaled.to
y_val_scaled.tolist
: y_test_scaled.tolist()

MLFlow integration within the SEDIMARK platform is critical for managing the lifecycle of ML
prediction models. This integration allows the platform to streamline the process of model
tracking, versioning, and deployment while ensuring the reproducibility and scalability of
predictive analytics workflows.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 44 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

55
BT - S

SEpIMARK

More specifically, the integration leverages the continuation of the previous pipelines with a
last Mage.Al block, namely the model block. We implemented the following processes:

: The XGBoost model was tuned to identify
the best-performing parameters and used them to train the model.

: The trained model was uploaded to the GitHub repository here: [20].
The model is also saved in a MinlO bucket for storage and further usage.

def objective(trial):
params =
n : trial.suggest_int(' , lee, 5000),
: trial.suggest_float(n , le-5, 0.3),

: trial.suggest int('ez g s', 10, 50)

model = xgb.XGBRegressor(
n_estimators=params['n
learning_rate=params
max_depth=params['n
early stopping rounds=params[’'early
n_jobs=-1

model.fit(
X_train,
y_train,
eval set=[(X_val, y_val)l,
verbose=False
)

predictions = model.predict(X_val)

return mean_absolute percentage error(y val, predictions)

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 45 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

mlflow.start_run(experiment_id=current_sxperiment.experiment_id)}:

final_xgb model = xgh.XGBRegressor(
n_estimators=hest_params|
learning_rate=best_params
max_depth=best_params['m= depth
early_stopping_ rounds=best_params|
n_jobs=-1

final_xgb model.fit(
¥_traim, y_train,
eval_set=[{X_wal, y_wal)],
werbose=

y_train_pred = final_xgbh model.predicti(x_train)
y_wal_pred = final_xgb_model.predict(x_wall

train_mse = mean_sgquared_error(y_train, y_train_pred}
train_rmse root_mean_squared_error(y_traim, y_train_pred)
train_rz = r2_scorely_train, y_train_pred]}

train_mae mean_absolute_error train, y_train_pred)
train_mape [yv_traim - y_wal_pred)] / y_traim).mean

mlflow.log_metri 4 train_mse)
mlflow.log metric , traim_rmse)
mLlflow.log metric , train_rz}
mlflow.log_metric(. Train_mae)

mean_squared_error{y_wal, y_wal_pred)
rooi_mean_squared_error(y_wval, y_wval_pred)
wal, y_wal_pred)
lute_erroriy_wal, y_wal_pred)
y_wal - y_wal_pred _wal).maan

mlflow.log _metric(

mLlflow.log metric

mlflow.log_metric

mlflow.log_metric]
mlflow.log metric(5 . test_mape)

mlflow.xghoost.log model{final_xgh_model, artifact_path="model

: best_params,

test_rmse,
test_mae,
: test_mape,
- test_rz2

After running the code, the results are stored in the MLFlow as shown in Figures 32-33.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 46 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

R

SEpIMARK

XGBoost_energy_consumption © Add Description

Runs Evaluation | Experimental Traces |Experimental

‘ = [Q@ metrics.rmse < 1 and params.model = “tree ® Time created ~ State: Active ¥ Datasets v H = —+ New run

=3 Sort: Created v [Columns v Expand rows Group by v

Run Name Created = Duration Source
1 day ago B .l 42 25.08 () c\Users\...
1 day ago . L[42 249s (n) ipykeme...
1 day ago . 9.65 (n] ipykeme...
1 day ago) e | 42 (n) ipykemne...
1 day ago . (n) ipykemne...
1 day ago - (n) ipykeme...
1 day ago . (n] €\Users\...
1 day ago) e | 42 (n) ipykemne...
1 day ago . 2 (n) ipykemne...

1 day ago . L +2 24.2s (n) ipykeme...

indecisive-loon-913

Madel metries

As part of the Asset generation process through the Orchestrator, Asset Descriptions are
created as a by-product of the Asset itself. The Asset Description is used by Offering Manager
Clients (Ul or API) for creating the Offering Descriptions that will be published in the
Marketplace Catalogue. The Connector will also use it to locate where the Asset is stored for
retrieval and exchange with the Consumer. The above steps are depicted in Figures 34-36.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 47 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

Wallet
—

DID
EX L LET Document

 NGSHLD
Asset Broker

NB?::(.:? ! Description (A.SSG.t
(DataAssets) Orchestrator [Descriptions)
Data Formatter Data Curation Data Mapper

DPP/AIP

A

Figure 34 Asset Description Generation

(1)

Marketplace Ul (2) l Connector
(EEVEN Control Plane e
Offering
\ELET-{-14
(3b)— IS« |

Offering Manager

© NGSI-LD Broker
(1) API Client

(Asset Descriptions)

(21>

~ NGSI-LD Broker
(DataAssets)

Minio
(Al Model Assets)

Figure 35 Asset Description Use

The Asset Description holds properties for different aspects of an Asset. Among all types of
Assets - i.e. Data, Al Model and Service — common properties are defined.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 48 of 79
Reference: SEDIMARK_D5.3 ‘Disseminaﬁon: PU ‘Version: ‘ 1.0 | Status: |Final

Asset

identifier
title
creator
description
publisher
issued
modified
keyword
license
version
spatial

used
startedAtTime
endedAtTime
endpointURL

wasGeneratedBy

endpointMethod

xsd:string
xsd:string
xsd:anyURI
xsd:string
xsd:anyURI
xsd:dateTime
xsd:dateTime
xsd:string
xsd:string
xsd:string
xsd:anyURI
xsd:anyURI
xsd:anyURI
xsd:dateTime
xsd:dateTime
xsd:anyURI
xsd:string

R

SEpIMARK

Common properties include aspects of identification, description and tagging to provide context
to the Asset. It also holds temporal aspects relating to its creation and modification. Aspect of
usage is also provided, as well as provenance relating to dependencies used for the creation
of the Asset and what processing has been applied. To support the resolution of the Asset’s

location within the Provider’s storage enablement, endpoint information is also provided.

For the DataAsset, specific properties are needed to be captured which relate to temporal
aspects, size, periodicity, and whether it is part of another DataAsset.

r

size

.

DataAsset

temporalResolution

accrualPeriodicity
inSeries

xsd:duration
xsd:nonNegativelnteger

dcterms:Frequency
xsd:anyURI

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version

SEDIMARK_D5.3 |Dissemination:

Reference:

dcat:temporal

v

dcat:PeriodOfTime

startDate
endDate

xsd:date
xsd:date

PU

Version:

1.0 |Status:

Page:

49 of 79

Final

R

SEpIMARK

Properties that need to be captured for the Al Model Asset are shown in Figure 38. These
mainly focus on the intended application of the Asset, specifics about its design such
algorithms, input/output parameters, formats it deals with, and whether it handles stream-
based DataAssets.

AlModelAsset
category xsd:string —hasTrainingDataset—P[DataAsset]
purpose xsd:string
algorithm xsd:string
serialization xsd:string
version xsd:string
execution xsd:string
size xsd:float
outputFormat xsd:string
handleStream xsd:boolean
inputFormat xsd:string
InputParameters xsd:string hasDatasetProcessingAP[e]
outputFormat xsd:string
outputParameters xsd:string

As for ServiceAsset properties, interaction details need to be captured, as well as which
DataAssets it will provide in return.

ServiceAsset

endpointURL xsd:anyURI servesDataset—>[DataAsset]
endpointDescription xsd:string
serviceConfig xsd:string

The deployment for the NGSI-LD broker is done through a docker-compose file that deploys
all the needed containers for the broker to work.

The broker can be configured through environment variables that are documented in a
README file alongside the deployment ones, and are available at the following GitHub
repository link: [13]

As introduced in the previous paragraph, the NGSI-LD context broker available as part of the
toolbox serves 2 purposes:

Storing the datasets assets, query-able as batch or stream (through subscription)

Storing the asset descriptions, to allow the discovery of available datasets through a
RESTFUL API based on SEDIMARK Ontology.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 50 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

R

SEpIMARK

Rather than deploying 2 different brokers, it is recommended to make use of tenants such as
provided by the Stellio context broker [17]. As defined within the NGSI-LD Specification, the
concept of a tenant is that a user or group of users utilises a single instance of an NGSI-LD
Context Broker in isolation from other users or groups of users of the same instance, which
are considered to be different tenants. Thus, a multi-tenant NGSI-LD system is a system where
a single software instance is used by different users or groups of users, the tenants, where
any information related to one tenant (e.g. Entities, Subscriptions, Context Source
Registrations) are only visible to users of the same tenant, but not to users of a different tenant.
Within Stellio, multi-tenancy provides complete isolation of the tenant through the use of
different databases across tenants.

The multi-tenant deployment is not integrated by default in the configuration files. It will be
evaluated during the initial integration and adjusted if relevant.

Mage Al will be deployed through a docker-compose configuration, that can be found in the
GitHub repository for the SEDIMARK toolbox: [14] The deployment can be configured with the
help of the following environment variables

PROJECT_NAME — Which is the name of the Mage Al deployment, best is to leave it as
in the configuration

REQUIRE_USER_AUTHENTICATION - Specify if the deployment should have
authentication or not, the best is to leave it as in the configuration

Mage API is an API developed inside the SEDIMARK project and is the component that will
be used to interact with the Mage Al deployment, in order to automate as much as possible,
the interaction with Mage. The Readme for deploying Mage API is available in the following
GitHub repository alongside the other toolbox components: [15]

As mentioned in Section 3.2.1.7 the deployment of MLFlow will be done through a docker-
compose file and the documentation for the configuration and deployment can be found at the
following GitHub repository link:

3.2.1.7 the deployment of MLFlow will be done through a docker-compose file and the
documentation for the configuration and deployment can be found at the following GitHub
repository link: [16]

As mentioned in Section 3.2.1.1 the deployment of MinlO will be done through a docker-
compose file and the documentation for the configuration and deployment can be found at the
following GitHub repository link: [21]

An integration with the Context Broker in charge of assets registration will be proposed in order
to make assets stored in Minio discoverable. For that purpose, we need a way to match a Minio
event with an existing attribute of an existing entity into the Context Broker (to create / update
/ delete the attribute depending on the event type).

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 51 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

e
R
SEpIMARK

Out of the box, identifiers of a Minio object is the filename which is weak. However, it is possible
to add attributes and tags when creating an object. Tags do not seem to be transmitted into
notifications, so better use attributes, e.qg.:

mc cp --attr "NGSILD-Entity-ld=urn:ngsi-ld:Entity:01;attributeName=MyFlowAsset "
MyFlow.zip minio/sedimark

Then the event contains:
"object™: {

"key": "MyFlow.zip",

"size": 2506,

"eTag": "be6daae961eae0eh8db73d05ca704d77",

"contentType": "application/zip",

"userMetadata"; {
"X-Amz-Meta-Attributename™: "MyAsset ",
"X-Amz-Meta-Ngsild-Entity-1d": "urn:ngsi-ld:Entity:01",
"content-type": "application/zip"

b
"sequencer": "16C70A13B5B27130"

Ul Orchestrator is a web-based application designed to simplify the management and creation
of Al pipelines by serving as an intuitive wrapper around Mage Al.

Users can tag pipelines created in Mage Al as pre-processing, training, prediction, or
streaming, and these tags automatically organize pipelines into corresponding menus in the
interface. By accessing these menus, users can render pipelines, execute them by inputting
values for variables in each block, and view performance metrics and the execution history.
Additional features include pipeline deletion, name editing, and exporting in either CWL or
MageAl format.

A key feature of the platform is the ability to create pipelines by linking pre-existing blocks or
generating new ones with Al. Users can select blocks from templates or create custom blocks
by specifying a type and providing a prompt, with an LLM generating the block for immediate
use or saving it as a template. Custom templates can also be added to Mage Al to meet specific
needs.

The deployment of the Ul Orchestrator is straightforward, ensuring that users can easily
integrate it into their existing infrastructure. The application is distributed as a containerized
service, enabling quick setup and scalability. To deploy the Ul Orchestrator, users need to:

Prepare the environment: Ensure access to a running Mage Al instance, along with the
appropriate credentials and URL.

Install the application: Obtain the pre-configured Docker image from the SEDIMARK
container registry or build the image locally using the provided Dockerfile.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 52 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

R
SEpIMARK

Configure connection parameters: During the setup, users specify the Mage Al instance
details through a simple configuration interface or environment variables, which establish
a secure connection between the Ul Orchestrator and Mage Al

Run the service: Deploy the application using a single Docker command or within a
docker-compose setup, as provided in the SEDIMARK documentation.

Once deployed, the Ul Orchestrator automatically detects pipelines and integrates seamlessly
with Mage Al, offering an intuitive interface for managing workflows. Deployment logs and
monitoring tools are included to verify a successful setup and resolve potential issues.

Figures 40-41 illustrate the current progress of tasks required for integrating the Al-related
functionalities into the SEDIMARK toolbox. This board will be regularly updated to monitor and
manage the integration process effectively.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 53 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

= O Sedimark / Projects / MVI&

&MV

[MvI Streams | = B mwi Streams (table vie [Current iteration [E) Roadmap B Myitems + New view

= Filter by keyword or by field

(O Todo 2/20 | Estimate: 0 (O InProgress 7/20 | Estimate:0 () Done 12

Estimate: 0

This item hasn‘t been started This is actively being worked on This has been completed

{3 Draft .) Draft o ") Draft

Integration between Al orchestrator and Fleviden Set up Mageai for Al orchestrator - Set Up MinlO for Data Storage and Access
integration between mageai and ai
PO Al Orchestrator archestrator P1 Data Storage
_ PO
73 Draft () Sedimark-Toolbox #3
Toolbox Deployment for Fleviden S Draft e Toolbox deployment for NGSI-LD broker
L) ral
PO \ Distributed Wodel Training Integration between Al orchestrator and |
Shamrock
PO (Al Orchestrator () Sedimark-Toolbox #1

Toolbox deployment for Mage Al

27 Drat &8 Pl
Integration between MageAl and Data
Curation tools

PO Data Processing

() Sedimark-Toolbox #2

Toolbox deployment for Ul Orchestrator

P1
7 Drait &
Toolbox Deployment for Shamrock £ Draft .
PO Distributed Model Training Implement MLflow for Experiment Tracking
and Model Management
7 Draft &L P1 ' Model Management
Integration between MageAl and Data
Formatter ™ Dratt .
By e Integrate MLflow with Mage.ai for Model
Management
:: Draft “ P1 | Model Management
Integration between MageAl and Context
broker for loading/saving £ Draft o
PO ' Data Processing < Local model training automatization and
+ Add item + Add item + Add item
Figure 40 MVI stream task monitoring in GitHub repository (1)
Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 54 of 79
Reference: SEDIMARK_D5.3 ‘ Dissemination: PU ‘Version: ’ 1.0 | Status: |Final

z/mé! 4

SEpIMARK

& MvI
[MV Streams B mvi streams (table view) |- [Current iteraticn [E Roadmap B My items + Mew view
Stream_ = = Filter by keyword or by field

Al Qrchestrator

Title e Stream = - Status s Pricrity
Al Qrehestratar v (O Al Orchestrator 3 | Esiimat=0
oe e
Dats Analytics Al Orchestrator n Progress Po
Data Stor: .
Data Storage z Al Orchestrator Todo (2]
Distributed Model . tion modules ‘Al Orchestratar By — P
Training
+ Add item
Local Modal
Training
v (O Data Storage 1 | Estimate:0
Model Management 2
4 L.} SetUp MiniO D Data Storage Dane Pl
Mo Straam_ 10
+ Add item
v (O Model Management & Estimate: 0
o
] Pl
- =
o nagem: F
+ dad item
v (O Local Model Training 1 Estimate: 0
9 (3 Local model training automatization and interface design Loeal Model Training Dane Fi
+ Add item
v (O Data Processing 3 | Estimste: 0
Data Processing In Pragress PO
Data Processing n Pragress 2]
- for loading/saving Data Processing n Progress [
+ dad item
v () Distributed Model Training 2 Estimste0
Distribut n Pro 2]
4 Dist Todo [

The respective GitHub link is: [17]

The integration between backend and frontend components plays a crucial role in ensuring a
seamless user experience and effective communication between the layers of SEDIMARK
marketplace. This section aims to outline the key integration points, the flow of data, and the
mechanisms used to establish robust connectivity between the backend systems and frontend
interfaces. By detailing the structure and interactions, this section will provide a comprehensive
understanding of how the components come together to deliver a cohesive solution.

This section outlines the various sub-streams that establish the connection between backend
components and the SEDIMARK Ul as well as the Orchestrator Ul, as illustrated in Figure 6.
The primary objective of this section is to demonstrate how the backend seamlessly integrates
with the frontend to ensure that users of the SEDIMARK marketplace enjoy a smooth and
intuitive experience. Additionally, this section will detail the integration between the MVI and
the Connector through the SEDIMARK Ul, along with the data flow between the connectors.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 55 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

R

SEpIMARK

The creation of an offering description via the marketplace Ul can be achieved using its Publish
section. This section consists of a form, where the user can either select one of the existing
asset, she/he created in the NGSI-LD context broker, or create one from scratch. If the latter
option is chosen, the marketplace will also take care of pushing the newly created asset
description to the NGSI-LD context broker. Then, the user adds policies to rule the access to
the data asset, such as a validity period for the contract. Finally, once done filling out this form,
the user is invited to review it and confirm her/his will to publish it to the SEDIMARK catalogue.

As outlined in section 3.1.1.3, interactions between different participant connectors in the
dataspace domain are conducted using a peer-to-peer approach. This involves an offering
negotiation process via the control plane, followed by an asset exchange process using a data
plane which is selected based on the specific asset technology. Our current implementation of
the connector data plane supports generic REST APIs as well as MinlO interfaces, which can
be targeted by using the MinlO-specific REST API or AWS S3 API. All needed information for
the connector to be able to interact with specific asset storage technology is injected into the
Offering Manager when registering the offering.

There are two main workflows for handling asset descriptions in the interaction between the
Orchestrator Ul and the Context Broker: one for creating an asset description and another for
retrieving it later if a user opts not to create an offering directly from the description.

Asset descriptions are stored as NGSI-LD entities in the Context Broker, which can be queried
to retrieve entities of type "asset description." The Orchestrator Ul provides an interface where
users can input details about an asset's description, such as whether it pertains to data, Al/ML
models, or pipelines. Using this input, the appropriate pipeline is initiated to generate the actual
asset. Once the pipeline is completed, the comprehensive asset description is saved to the
Context Broker.

If the user chooses to proceed with creating an offering, they will be redirected to the
SEDIMARK Ul. Otherwise, the Orchestrator Ul will display an interface where it queries the
Context Broker to retrieve and present all stored asset descriptions in an organised and user-
friendly manner. Based on this information, users can then decide to create an offering.

The created assets will be identified locally by their NGSI-LD URI which is a unique identifier
of an entity resource with the NGSI-LD Context Broker. The definition of the URI is left to the
service creating the asset to define the URI (note: the context broker will enforce the
uniqueness of the created URI by refusing creation of a new entity with a URI already in use).
There is no naming convention defined at that stage. The need to recommend or enforce a
naming convention will be evaluated during the integration.

Once an asset has been created in the Context Broker, it will be accessible through the NGSI-
LD interface.

Here is an example of querying the Context Broker URI: [22]

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 56 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

R

SEpIMARK

In the SEDIMARK toolbox, the representation and actual files of the various pipelines
developed within the SEDIMARK platform will be stored directly in Mage Al. This eliminates
the need for external storage for pipelines. Mage Al will serve as both a storage solution and
a functional component, enabling the creation and execution of pipelines within the toolbox.

To export pipelines from Mage Al, the Mage API will be used to interface with the Connector
when a pipeline is downloaded by a user through the Orchestrator Ul. In the SEDIMARK
platform, there are two main types of pipeline exports: one exports the pipeline in Mage Al
format, allowing another user with their own toolbox to directly import the pipeline into their
Mage Al; the other exports the pipeline in a standardised format using CWL (Common
Workflow Language), enabling users who do not want the full toolbox and are just consumers
to utilize the pipelines.

The output of both pipeline export methods will ultimately be a ZIP file containing the pipeline
along with all the necessary adjacent objects. However, the process for generating the
contents of the ZIP file differs between the two methods. Below is an explanation of the process
for each method:

Mage Al export — The process of exporting directly into Mage Al format is straightforward
and it starts by collecting all the files connected to a pipeline that are already available in
Mage Al and pack them together in the ZIP file, with a generic README file that explains
how to import the pipeline back in Mage.

CWL export — This method is more complex than the other and begins by converting each
block from Mage Al format into standard Python code. Following this, for each block in the
pipeline, a corresponding CWL workflow is created. The CWL workflow consists of YAML
files representing each block, detailing their inputs, outputs, and a main entry point that
defines the environment variables and the sequence for running the blocks. Alongside the
CWL pipeline, the ZIP file will include a script to automatically validate and execute the
workflow, as well as a README file providing instructions on running the pipeline and
visualizing the output.

The process for requesting a pipeline asset begins with the discovery phase, where various
connectors holding pipeline assets are identified and presented in the Orchestrator UI.
Following this, the consumer initiates the negotiation process and requests the desired
pipeline. The Connector in the toolbox where the pipeline resides will query the Context Broker
for the pipeline's location, which will call the Mage API. Based on the information provided by
the consumer, the pipeline will be exported in the specified format and passed to the
consumer's Connector for delivery.

The process of saving an asset begins with the user interacting with the Orchestrator Ul to
create a new data, Al, or ML offering. The user inputs the necessary details, including
metadata, associated datasets, and Al/ML model parameters. These inputs are validated by
the Ul to ensure they meet predefined standards and schemas.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 57 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

R

SEpIMARK

Once validated, the asset description is securely sent to the Mage API, which parses and
forwards it to Mage Al. Mage Al processes the input by standardizing formats, enriching
metadata through ontologies, and validating datasets or AI/ML models to ensure quality and
compliance.

The finalised asset description is stored in the SEDIMARK context broker, with a unique
identifier generated by Mage API.

In the SEDIMARK ecosystem, Al/ML assets are stored using MinlO for model binaries and the
NGSI-LD Broker for metadata and descriptions, enabling efficient and secure access. Trained
AI/ML models are saved in MinlO, a high-performance distributed object storage system,
where each model is assigned a unique identifier for scalability and easy retrieval. Secure
credentials and tokens ensure restricted access to these stored models. Alongside the model
binaries, metadata and descriptions are stored in the NGSI-LD Broker. This metadata includes
details such as model type, training parameters, performance metrics, versioning, and
associated datasets, providing a semantic layer for querying and retrieval.

MLFlow orchestrates the storage process, automating the management of Al/ML lifecycle
activities. It saves the trained models to MinlO and simultaneously uploads the metadata and
descriptions to the NGSI-LD Broker. Once stored, the metadata is indexed in a central or
decentralised catalogue, making the models discoverable through the SEDIMARK
Marketplace UL.

The user willing to share his/her AI/ML assets can therefore create an offering in the
marketplace Ul, in its dedicated Publish section. As described in section 3.3.1.1, the user first
selects the asset to share from the list of available ones in the NGSI-LD context broker. Then,
the user adds policies associated with the offering, i.e. a set of rules to restrict access to the
asset, such as a validity period. Upon completion of this form, the user can publish the offering,
resulting in the marketplace posting the offering to the catalogue.

Once a particular offering has been discovered, the assets described can be exchanged as
explained in section 3.3.1.2.

Running shamrock launches a node process, which connects with other distributed node
processes in order to collaboratively train a machine learning model over REST/http.
Shamrock follows a standard distributed learning paradigm, where nodes alternate between
rounds of training, communication, and aggregation. Shamrock allows for both Federated
(where one nodes acts purely as a server/aggregator) and fully decentralised training
topologies. On reaching a user specified end condition (e.g. a target accuracy, a number of
rounds completed), Shamrock will return both a trained model and any evaluation metrics or
meta data contained within the training process. The storage of this model will be handled from
the Orchestrator Ul which will make a call to the Al Orchestrator in order to save the model
and the associated metadata.

From the provider’s viewpoint, the user will primarily need to specify a model, a dataset and a
choice of distributed learning setup (e.g. Federated Learning). Shamrock accepts as input a)
NumPy arrays, b) pandas DataFrame with feature/targets specified as additional parameters,
c) csv files that may be loaded into dataframes and d) Pytorch datasets. In the case that raw

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 58 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

R

SEpIMARK

data needs additional transformations in order to be ready for modelling, the user will need to
provide a set of steps within the Orchestrator Ul to transform data into input for that model.
Shamrock accepts both Keras and Pytorch models. Further configuration parameters such as
choice of learning rate, optimiser etc should also be specified. The user will then start either a
Federated or Gossip learning process by launching a Shamrock node within the Orchestrator
Ul. As the process might likely take some time (a training process might be running for hours
to days before a Consumer participates), the process will need to persist beyond the
Orchestrator Ul. As such, the Orchestrator Ul should provide a tab in which to monitor ongoing
results from the process. This process will then need to be published to the marketplace as an
offering. The key element of the offering will be some form of URL to the address at which the
provider is hosting the process, alongside the Shamrock configuration that the provider has
used to launch the process. Users wishing to participate in the training process will then need
to be able to launch the Orchestrator Ul and Shamrock from the offering, launching a node
that connects to the provider with the given configuration. The user should have access to a
tab where they can monitor the performance of the node that they are running. As Shamrock
is capable of sharing full model definitions, it is not strictly necessary that the model itself is
included in the offering. However, if steps need to be taken in order to transform input data for
the model, these should be included. Otherwise, a Consumer might have to engage in a
process of trial and error to find transformations of their data that work for the model. These
steps can be captured as a Mage pipeline and shared as an asset, or perhaps as part of the
offering description.

The process of starting the federated training process will begin from the Orchestrator Ul. Once
the server entity is defined, it will wait for a minimum of end-users / clients to be subscribed.
When this condition is reached, the server will share an initial model from the supported
frameworks with the clients, which will be in charge of training this model over a set number of
epochs. Once they complete their training, they will send the updated weights to the server,
which will aggregate them. This will be repeated during a set number of iterations or rounds.
During this process, new clients can join the network, as the server will continue waiting for
requests. The framework also supports client unsubscription in the middle of the process. The
server will monitor the health of the different nodes periodically. In each round, not all clients
have to compulsory contribute to the training process. The active clients in each round will
depend on their availability, training time, etc.

Once the number of training rounds has been reached, the final aggregated model will be sent
back to all the clients who participate in the process, and it will be able to be processed using
3rd party apps (MinlO, MLFlow, etc.), as currently the tool gives support to them. The storage
of this model will be handled from the Orchestrator Ul which will make a call to the Al
Orchestrator in order to save the model and the associated metadata.

SEDIMARK currently provides a content-based recommender system. The recommender
system in SEDIMARK serves two recommendation purposes: (i) finding assets based on the
queries provided by the user; and (i) recommending similar assets based on the given asset.
The SEDIMARK recommender system module currently implements several algorithms for
term-based information retrieval. These include the following:

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 59 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

e
R
SEpIMARK

Latent Semantic Indexing - a method based on natural language processing. The goal of
this approach is to analyse the relationships between the assets based on their
descriptions and the terms those descriptions contain.

Sentence Transformers Models - machine learning models generating dense vector
embeddings to capture the semantic meaning of sentences using numerical
representations. SEDIMARK’s recommender systems module implements three-
sentence transformer models.

To offer a SEDIMARK user a tailored option, the user has the choice to use any of these
recommendation algorithms.

The output of the recommendation module is a list of suggested assets that are the best
matches to either the user-defined query or the provided asset.

The communication between GUI and the Recommender system will be done through the
Redis queue. The GUI will put any user actions, such as user searches or queries on a Redis
queue. Additionally, the Redis queue will be periodically updated with changes to the local
asset catalogue. The output of the recommender system will be added to the Redis queue in
a JSON format that the GUI will subsequently process and display to the user.

The SEDIMARK Ul interacts with the data space connector to provide users with convenient
interfaces to manage their offerings. Any offering where a given user is involved, either as a
provider or as a consumer, appears on her/his dashboard. This dashboard consists of several
sections, all accessible via a sidebar, where users can:

See an overview of their offerings.
Review their offerings provided.

Manage their consumed offerings, and more specifically request a transfer of their data-
to-data sinks of their choice.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 60 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

T

fpeme]

€ Overview

& contracts

Ty Sort

Y Filters

Home Catalogue

Publish

Dashboard

+ l
Consumed Provided

Breast cancer data (2022 update)

.‘ L]
Breast cancer labelled data from 2020 | iy
10 2022 in France

W 2023-12-03 ® 50 euros

1 2 3 Next

Care & Co SARL

k2
Transfer

STATUS DATE

In progress ‘Yesterday at 6:31 pm

v Completed

Eviden HPC

"
Eviden HPC service to execute L 0
expensive computing tasks quic...

& 2023-11-00 ® 6euros

2023-11-29 at 6:31 pm

Bruxelloise des logiciels SRL

Register 5 Connect Wallet

TRANSFER ID

kdilsfislf-156416

Isjflassfls-519861

Figure 42 Example of marketplace dashboard Ul to manage consumed offerings

The SEDIMARK marketplace code and deployment manifests can be accessed in its

repository: [5]

3.3.2

Integration specification

Figures 43-44 present the current status of the tasks that need to be completed in order to
integrate the frontend of the SEDIMARK Marketplace with the SEDIMARK toolbox. This board
will be continuously updated to keep track of the integration progress.

Document name:

D5.3 Integrated releases of the SEDIMARK platform. Second version

Page: 61 of 79

Reference:

SEDIMARK_D5.3 |Dissemination: PU

‘Version: ‘ 1.0

Status: |Final

= O Sedimark / Projects / MVM-MVI &

& MVM-MVI

[M] MVM-MVI Streams = A Team capacity

= Filter by keyword or by field

O Tode 7/20 @ Estimate:0 b
This item hasn't been started

O marketplace-frontend 224 ‘

Integration between SEDIMARK Ul and Context
Broker (NGSI-LD)

PO

-‘::' Draft ﬂ
Integration between Connector and SEDIMARK

Ul and Al Orchestrator for models passing
exchange

PO

() MageAPI #1 S

Integration between SEDIMARK Ul + Mage APl to
run pipelines in case of asset/offering creation

PO

'::' Draft “
Integration between SEDIMARK Ul + Mage API
(Pipeline exportation)

P1

O Sedimark-Crchestration-Ul #1 e
Orchestrator Ul + Shamrock interaction

P1

O Sedimark-Orchestration-U| #2 }9
Mrrhartrabar Ll L Clavidnn inbneactinn

+ Add item

[Current iteration [E] Roadmap B My items + New view

O InProgress 2/20 | Estimate: 0 O Done 2/20 Estimate: 0

This is actively being worked on This has been completed

»::< Draft “ »:} Draft

Modeling/Ontology of data assets Connecter exchange for binary data
PO PO

{7 Draft & 7% Draft

Modeling/Ontology of Al assets and training Maodeling/Ontology of pipeline assets
services 57
PO

':::1 Draft ,ﬁ
Integration between SEDIMARK Ul and the
Connector

PO

+ Add item + Add item

Figure 43 The MVM-MVI issue dashboard on the git repository (1)

Document name:

D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 62 of 79

Reference:

SEDIMARK_D5.3 ‘Disseminaﬁon: PU ‘Version:’ 1.0 | Status: |Final

& MVM-MVI

[MVM-MVI Streams B Team capacity (-

Status ~
O Todo ;
This itern hasn't been started
3
2

Show empty values

[Current iteration [E] Roadmap B My items

= Filter by keyword or by field

+ New view

Title Status
~ (PO & @ Estimate0
-j::- Connector exchange for binary data o
2 {2} Modeling/Ontology of pipeline assets Done
3 (3 Integration between SECIMARK Ul and Context Broker (NGSI-LD) #24 Todo
4 {7} Integration between Connector and SEDIMARK Ul and Al Orchestrator for models passing exch... Todo

5 (3 Integration between SECIMARK Ul + Mage AP to run pipelines in case of asset/offering cre... #1 Todo

[C:} Modeling/Ontology of data assets

In Progress
7 {3 Modeling/Ontolegy of Al assets and training services In Progress
§ {73 Integration between SEDIMARK Ul and the Connector In Progress
+ Add item
~ (P 4 | Estimate0
9 {7} Integration between SEDIMARK Ul + Mage API (Fipeline exportation) Todo
10 (3 Orchestrator Ul + Shamrock interaction #1 Todo
11 (5 Orchestrator Ul + Fleviden interaction #2 Todo
12 {7 Integration between the Recommender and SEDIMARK U Todo
+ Add item
Figure 44 The MVM-MVI issue dashboard on the git repository (2)
The relevant link for the GitHub repository is: [19]
Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 63 of 79
Reference: SEDIMARK_D5.3 ‘Disseminaﬁon: PU ‘Version: ‘ 1.0 | Status: |Final

4 Cross-check the updated functional and non-
functional requirements

The scope of this section is to provide and update the functional and non-functional
requirements of SEDIMARK architecture related to the first integrated release. The
requirements will be mapped per stream in order to acquire a common view of which stream
each requirement interacts with. For this purpose, two tables are provided (Table 1, Table 2)
correlating all the high-priority requirements (H-REQ) and medium-priority requirements (M-
REC) that were promised to be fulfilled in the second version, with the three streams.

Table 1 Functional requirements status of fulfilment

Priority- Functional Related How the
Req. Level components stream(s) | stream(s)
fulfil(s) the
requirement
(fully,
partially, at
all)
Reg- Authentication H-REQ Identity management | pjym Fully
SEC-01 |of users
Reg- Authorisation |H-REQ Trust management \jy Partially
SEC-02 |policies of
assets
Reg- Origin of H-REQ Trust management | MM Fully
SEC-03 |assets IOTA Client
Reg- Trust H-REQ Trust management | My Fully
SEC-04 | Metadata on Data integrity
Distributed Registry
Ledger IOTA Client
Reg- Decentralised 'H-REQ Contracting MVM Partially
SEC-05 | Provisioning Smart Contracts
Service Request
Service Provisioning
IOTA Client
Transactions
Reg- Secure H-REQ Data encryption MVM Fully
SEC-06 | channel of the Data integrity
assets Offering Sharing
Reqg-DP- Data cleaning 'H-REQ Data curation MVI Fully
01 tools Data profiling
Data processing
dashboard
Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 64 of 79
Reference: SEDIMARK_DS5.3 Disseminction:‘ PU ‘Version:‘ 1.0 |Status: |Final

Priority-
Req. Level

Functional
components

Data curation

Related
stream(s)

How the
stream(s)

fulfil(s) the
requirement
(fully,
partially, at
all)

Reqg-DP- Flexibility to|M-REC MVI Partially
02 handling both Data orchestrator
static and Data profiling
streaming Data processing
data dashboard
Reqg-DP- | Configurable |M-REC Data curation MVI Fully
03 data Data processing
processing dashboard
pipeline Data orchestrator
Data profiling
Data adapter
Reg-DP- Data quality M-REC Data processing MVI Partially
04 indicators dashboard
Data quality
evaluation
Data integrity
Annotation
Data profiling
Data augmentation
Req-DP- | Adaptability of M-REC Data quality MVI Fully
05 data cleaning evaluation
mechanisms Energy efficiency
Data augmentation
Data profiling
Data orchestrator
Reqg-DP- |Data cleaning M-REC Data curation MVI Fully
07 modules Data processing
extendable dashboard
definitions Data adapter
Data quality
evaluation
Al orchestrator
Reg-DP- | Dataset M-REC Data orchestrator MV Fully
09 augmentation Data processing
dashboard
Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 65 of 79
Reference: SEDIMARK_DS5.3 |Dissemination: PU ‘Version: ‘ 1.0 |Status: |Final

Priority-
Req. Level

Functional
components

Related
stream(s)

How the
stream(s)

fulfil(s) the
requirement
(fully,
partially, at
all)

Reg-DP- |Anonymisatio 'H-REQ Data profiling. _ MVI Partially
10 n of private Data anonymisation
information Data encryption
Data processing
dashboard
Data orchestrator
Req-DP- | External M-REC Data curation MV Fully
11 Metadata for Data processing
curation dashboard
Annotation
Reg-DP- | Load and save H-REQ Data loader MVI Fully
12 data from Data saver
storage
Reg-ML- Model input | H-REQ Data curation MVI Fully
01 data cleaning Data profiling
and formatting Annotation
Data adapter
Feature engineering
Semantic enrichment
Data augmentation
Local model training
Distributed model
training
Reg-ML- Decentralised |M-REC Distributed model MVI fully
02 ML training
Formatting
Model inference
Al as a service
Reg-ML- | Trusted H-REQ Distributed model MVI-MVM | Partially
03 participation training
in Trust management
decentralised Identity management
training Data encryption
Al as a service
Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 66 of 79
Reference: SEDIMARK_DS5.3 |Dissemination: PU ‘Version: ‘ 1.0 |Status: |Final

Priority-
Req. Level

Functional
components

Related
stream(s)

How the
stream(s)

fulfil(s) the
requirement
(fully,
partially, at
all)

Reg-ML- Models M-REC Model optimisation My Partially
04 agnostic to Local model training
platforms Distributed model
training
Frugal Al
Formatting
Al orchestrator
Reg-ML- |Models H-REQ Distributed model MVI Partially
05 persistence training
mechanisms Local model training,
Data storage
Formatting
Data analytics
Al as a service
Reg-ML- | Event H-REQ Data analytics MVI Partially
06 generation Semantic enrichment
from pattern Model optimisation
extraction Model inference
Reg-ML- |Variable M-REC Distributed model MVI Partially
08 Distributed training
learning Al orchestrator
scenarios Al as a service
(federated Trust management
and gossip) Peer discovery
Reg-ML- Multiple M-REC Distributed model MVI Partially
09 initialisation training
options for Al orchestrator
distributed Al as a service
training Offering description
Offering discovery
Offering sharing
Reg-ML- Model M-REC Model optimisation MVI Partially
12 evaluation Model inference
and validation Data analytics
Al model validation
Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 67 of 79
Reference: SEDIMARK_DS5.3 |Dissemination: PU ‘Version: ‘ 1.0 |Status: |Final

Priority-
Req. Level

Functional
components

Related

stream(s)

How the
stream(s)

fulfil(s) the
requirement
(fully,
partially, at
all)

Reg-RS- | User profiling |H-REQ User profiling MVM-MVI | Partially
01 Logging
Recommendations
Reg-RS- | Rich item H-REQ Recommendations | \Mym Partially
02 information Offering discovery
Offering statistics
Monitoring
Ratings
Reg-RS- |Decentralised H-REQ Distributed model MVM-MVI | fully
03 Recommende training
I system Recommendations
Data encryption
Data anonymisation
Trust management
Reg-RS- | Cold start H-REQ Recommendations | MyM-MVI | Partially
04 problem Distributed model
training
Al model optimisation
Reqg-RS- |Similarity —of M-REC Recommendations MVM-MVI | Partially
05 assets Offering discovery
Reg-RS- |Recommend 'M-REC Recommendations MVM-MVI | Partially
06 different types Offering discovery
of assets Offering statistics
Reg-RS- | Employ M-REC Recommendations | MyM-MVI | Partially
07 multiple Offering discovery
recommendati Offering statistics
on models User profiling
based on user Logging
actions
Reg-RS- Personalised 'M-REC Recommendations MVM-MVI | Partially
08 recommendati User profiling
on based on Logging
user feedback Data analytics
Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 68 of 79
Reference: SEDIMARK_DS5.3 |Dissemination: PU ‘Version:‘ 1.0 |Status: |Final

Priority-
Req. Level

Functional
components

Recommendations

Related
stream(s)

How the
stream(s)

fulfil(s) the
requirement
(fully,
partially, at
all)

Reg-RS- ' Dynamic M-REC MVM-MVI | Partially
09 update of Real time data
recommendati processing
ons Distributed model
training
Data processing
dashboard
Req-RS- Cross-domain M-REC Reco.mme.ndations MVM-MVI | Partially
10 recommendati Offering discovery
on Data analytics
Semantic enrichment
Reg-EE- |Lightweight |H-REQ Data curation MVI Fully
01 and energy Data augmentation
efficient DP Data profiling
modules Data orchestrator
Data processing
dashboard
Model optimisation
Al orchestrator
Reg-EE- |Lightweight M-REC Local model training My Partially
02 and energy Distributed model
efficient AI/ML training
models Frugal Al
Model inference
Model optimisation
Req-EE- | Energy H-REQ Model optimisation MVI Partially
03 efficient Model inference
decentralised Al orchestrator
training of ML
model
Req-EE- | Energy M-REC Data processing MV Partially
06 efficient real orchestration
time data Data processing
processing dashboard
Frugal Al
Energy efficiency
Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 69 of 79
Reference: SEDIMARK_DS5.3 |Dissemination: PU ‘Version: ‘ 1.0 |Status: |Final

Priority- Functional Related How the

Req. Level components stream(s) | stream(s)
fulfil(s) the
requirement
(fully,
partially, at
all)
Reg-INT- | Information |H-REQ * Data quality MV Fully
01 model for data evaluation
and their e Formatting
metadata e Semantic enrichment

e Annotation

o Data processing
dashboard

o Data orchestrator

» Offering validation

Reg-INT- | Metadata H-REQ * Data quality MV Fully

02 fields evaluation

e Semantic enrichment

e Annotation

« Data anonymisation

« Offering validation

Reg-INT- | Data H-REQ * Data quality MVI Partially
03 compliance evaluation MVM Partially
with the e Formatting
information e Semantic enrichment
model e Annotation

« Data anonymisation
« Offering validation

Regq-INT- | Enforcing M-REC * Annotation MVI Fully
04 data o Form.attlng' ' MVM
compliance « Offering validation
with the » Data mapper
information » Data processing
model dashboard

o Data orchestrator
o Data quality
evaluation

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 70 of 79
Reference: SEDIMARK_DS5.3 |Dissemination: PU ‘Version: ‘ 1.0 |Status: |Final

Priority-
Req. Level

Functional
components

Distributed model

Related

stream(s)

How the
stream(s)

fulfil(s) the
requirement
(fully,
partially, at
all)

Req-INT- | Information H-REQ U MVI Partially
05 model for Al training
models Formatting
Annotation
Model optimisation
Model inference
Offering validation
Reg- Default H-REQ Data storage MVI Partially
STR-01 | dataset Distributed storage
storage
domain
Reg- Storage of H-REQ Data storage MVM Fully
STR-02 offering Offering description
descriptions Catalogue
on distributed Offering registration
catalogue Offering discovery
Reg- Temporary H-REQ Data storage MVI Partially
STR-03 storage of Feature engineering
intermediate Data orchestrator
artefacts with
pipeline
Reg- Storage of H-REQ Data storage MVI Partially
STR-04 post- Model inference
processed Formatting
data in Validation
consumable
manner
Reg- Storage M-REC Distributed storage MVI Partially
STR-06 | Service for Service provisioning
constrained Offering sharing
data providers
Reg- Storage for M-REC Data storage MVI Partially
STR-07 | knowledge Semantic enrichment
domain Catalogue
services
Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 71 0of 79
Reference: SEDIMARK_DS5.3 |Dissemination: PU ‘Version: ‘ 1.0 |Status: |Final

Priority- Functional Related How the

Req. Level components stream(s) | stream(s)
fulfil(s) the
requirement
(fully,
partially, at
all)
Reg- Storage for | M-REC ¢ Data storage MVI Partially
STR-08 offerings other * Feature engineering
than datasets » Local model training
* Model inference
» Formatting
¢ Model optimisation
» Validation
Reg- Storage of H-REQ « Data Storage MVM Fully
STR-09 artefacts for * DLT
enabling o Trust
security and
trust
Reg- Storage of H-REQ * Data Storage MVM Fully
STR-10 artefacts for * Marketplace
Marketplace
management
Reg- Assets H-REQ « Offering description | \v|-MVM | Partially
P&D-01 |described as « Offering discovery
part of
offerings
Reg- Offerings’ H-REQ « Offering registration | pym Fully
P&D-02 | registry « Offering sharing
» Offering discovery
o Registry
« Distributed storage
o Catalogue
o Data storage
Reg- Generic H-REQ « Offering description | Mv|-MVM | Partially
P&D-03 | offering
metadata
Reg- Open Data |H-REQ ¢ Open data enabler MVI-MVM | Partially
P&D-04 | portal
discovery

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 72 of 79
Reference: SEDIMARK_DS5.3 |Dissemination: PU ‘Version: ‘ 1.0 |Status: |Final

Priority- Functional Related How the

Req. Level components stream(s) | stream(s)
fulfil(s) the
requirement
(fully,
partially, at
all)
Reg- Offerings’ H-REQ * Offering discovery MVM Fully
P&D-05 | catalogue for « Catalogue
gueries
Reg-Ul- | Loggingin Ul |H-REQ ¢ ldentity management | \ym Fully
01 ¢ Frontend
Reg-Ul- | Offerings H-REQ « Offering discovery MVM Fully
02 discoverability * Frontend
Req-Ul- | Users’ identity | H-REQ ¢ ldentity management | \jy/v Fully
03 management * Frontend
Reg-Ul- | Offerings H-REQ » Offering registration pMym Fully
04 management e Trust management
* Frontend
o Payment/Billing
Req-Ul- | Offering H-REQ « Offering discovery MVM Partially
05 description o Data visualisation
page ¢ Frontend
Reg-Ul- | SEDIMARK | M-REC « Offering discovery MVM Fully
06 toolbox » Data visualisation
access in Ul » Frontend
Reg- Smart M-REC | * Smart contracts MVM Fully
SCT-01 Contracts * Transactions
support
Reg- Tokenisation 'M-REC * Smart contracts MVM Fully
SCT-02 | of Assets ¢ Tokenisation
Reg- User Digital | |M-REC * Tokenisation MVM Partially
SCT-03 |Wallet ¢ Payment

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 73 of 79
Reference: SEDIMARK_DS5.3 |Dissemination: PU ‘Version: ‘ 1.0 |Status: |Final

Table 2 Non-functional requirements status of fulfilment

Priority- Functional Related How the
Req. Level components stream(s) stream(s)
fulfil(s) the
requirement
(fully, partially,
at all)
Reg-NF-01 Decentralisation | H-REQ AlIDLT layer MVM Partially
modules
« Distributed
model training
« Distributed
storage
o Catalogue
Reg-NF-02 | Security, H-REQ * All security/trust| pym Fully
Privacy, Trust layer modules
Req-NF-03 | Interoperability |H-REQ * Annotation MVI Partially
o Data adapter
» Semantic
enrichment
» Validation
o Formatting
Req-NF-04 | Data availability H-REQ All data processing| MVI Fully
and quality modules
Req-NF-05 | Intelligence H-REQ All Al layer modules | MVI Fully
Req-NF-06 Energy H-REQ ¢ Energy efficiency vy Partially
efficiency (module in data
processing)
* Frugal Al
Reg-NF-07 |Resilience and H-REQ N/A (mapped to all ' MVM Fully at the
Reliability components and MVI current
the platform as a integration
whole) phase
Reg-NF-08 | Scalability H-REQ N/A (mapped to all MVM Fully at the
components and | \jy current
the platform as a integration
whole) phase
Reg-NF-09 | Openness, H-REQ N/A (mapped to the | MVM Fully at the
Extensibility platform as a MVI current
whole) integration
phase
Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 74 of 79
Reference: SEDIMARK_DS5.3 |Dissemination: PU ‘Version:‘ 1.0 |Status: |Final

Priority- Functional Related How the

Req. Level components stream(s) stream(s)
fulfil(s) the
requirement
(fully, partially,

at all)
Req-NF-10 | Usability H-REQ All marketplace MVM Fully at the
service modules MVI current
integration
phase
Reg-NF-11 |Maintainability |H-REQ N/A (mapped to all ' MVM Fully at the
components and MVI current
the platform as a integration
whole) phase
Req-NF-12 Adaptivityto |M-REC All data processing vy Fully at the
data types and modules MVI current
fast processing integration
phase
Reg-NF-13 |Reusability H-REQ All asset sharing MVM Fully at the
and discovery MVI current
modules integration
phase
Reqg-NF-14 | Flexibility H-REQ N/A (mapped to all| MVM Fully at the
components and |y current
the platform as a integration
whole) phase

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 75 0of 79
Reference: SEDIMARK_DS5.3 |Dissemination: PU ‘Version: ‘ 1.0 |Status: |Final

R

SEpIMARK

5 Integration plan for the final release

The SEDIMARK platform has been carefully designed with the principles of microservice
architecture to enable seamless deployment and efficient scaling. Each software component
within the platform is encapsulated in its own environment, facilitating modularity and
adaptability to meet diverse user needs. To support this approach, each component is
associated with a dedicated GitHub repository. These repositories contain a Docker file that
allows users to build and run a local container of the respective component. Additionally,
comprehensive documentation is provided to guide users through the steps required to
construct, configure, and deploy the container images effectively. To further streamline the
deployment process, pre-built Docker images are hosted in the GitHub container registry under
the SEDIMARK organisation. This eliminates the need for users to manually construct images,
significantly reducing setup time and complexity.

For components that rely on external software dependencies, such as MinlO or PostgreSQL,
a docker-compose file is included to allow users to quickly deploy a fully operational instance.
This ensures that all necessary services and dependencies are configured and ready for use
without requiring extensive manual effort. By automating these steps, the platform guarantees
a consistent and reproducible deployment process across all use cases and environments.

Given the large number of components that make up the SEDIMARK platform, an iterative
deployment strategy has been adopted. This approach begins with the containerisation of
individual components, ensuring that each one can function independently while maintaining
compatibility with the overall architecture. Once this step is complete, manifests are created
for deploying and configuring the components required for the platform’s two primary streams:
the Minimum Viable Intelligence (MVI) and the Minimum Viable Marketplace (MVM). These
streams are managed independently during the development and deployment phases to
streamline the integration process and ensure modular functionality. Each stream has a
dedicated repository containing its respective docker-compose file, along with all necessary
resources and documentation to configure, execute, and test its components.

The final deployment phase integrates the manifests for both the MVM and MVI streams to
achieve a fully operational version of the SEDIMARK platform. This integration consolidates
the functionalities of both streams, creating a cohesive system capable of supporting the
platform’s diverse use cases and meeting its scalability requirements. This iterative and
modular approach ensures that the deployment process remains manageable and efficient
while maintaining flexibility for future enhancements and expansions. By adopting this strategy,
the SEDIMARK platform achieves a robust deployment framework that ensures reproducibility,
scalability, and ease of use. These principles are crucial to supporting the platform’s pilots and
broader adoption across diverse sectors, making the final release a technically sound and
user-friendly system capable of addressing complex challenges in a decentralized data and
services marketplace.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 76 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

R

SEpIMARK

6 Conclusions

This deliverable has outlined the progress made in the second integrated release of the
SEDIMARK platform, building on the foundational work of earlier phases and demonstrating
significant advancements across its key components. By transitioning from independent Proof-
of-Concept scenarios to structured streams; Minimum Viable Marketplace (MVM), Minimum
Viable Intelligence (MVI), and the combined MVM-MVI analysing the backend and frontend
integration, SEDIMARK has achieved greater cohesion, scalability, and functionality in its
decentralised data and services marketplace.

The MVM stream has ensured robust marketplace functionalities such as participant
onboarding, offering registration, and secure asset exchanges, all of which are underpinned
by Distributed Ledger Technology (DLT) for trust and transparency. Meanwhile, the MVI
stream has brought intelligence to the platform through capabilities like local and distributed
model training, federated learning, and model performance, emphasizing privacy-preserving
Al approaches. The integration of these streams into the combined MVM-MVI ecosystem
demonstrates SEDIMARK’s capability to support complex use cases and deliver actionable
insights to participants.

Furthermore, this deliverable highlights the alignment of platform development with functional
and non-functional requirements, showcasing the successful implementation of high-priority
features while ensuring adaptability to evolving project needs. The continuous integration and
testing efforts have been validated through practical pilot applications, ensuring readiness for
deployment in real-world scenarios.

Looking ahead, the insights and feedback from this release will inform the final integration
phase, focusing on enhanced modularity, seamless user interaction, and performance
optimisation. Through these iterative developments, SEDIMARK is positioned as a robust,
secure, and intelligent marketplace, contributing to the realisation of the European Union’s
vision for a decentralised and interoperable data economy.

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 77 of 79

Reference: SEDIMARK_D5.3 |Dissemination: PU Version: | 1.0 |Status: |Final

7 Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

SEDIMARK, Deliverable 5.2: Integrated releases of the SEDIMARK platform. First
version, April 2024.

SEDIMARK, Deliverable 2.3: SEDIMARK architecture and interfaces. Final version,
September 2024.

SEDIMARK, Deliverable 5.1: Evaluation methodology, metrics and integration plan,
November 2023.

GitHub repository for smart contracts, [Online]. Available:
https://github.com/Sedimark/sedimark-smart-contracts

GitHub repository for marketplace frontend, [Online]. Available:
https://github.com/Sedimark/marketplace-frontend

GitHub repository for DLT Booth, [Online]. Available: https://github.com/Sedimark/dlIt-
booth

GitHub repository for Registry, [Online]. Available: https://github.com/Sedimark/hornet-
extra

GitHub repository for Issuer, [Online]. Available: https://github.com/Cybersecurity-
LINKS/mediterraneus-issuer

GitHub repository for Offering Manager, [Online]. Available:
https://qithub.com/Sedimark/offering-manager

GitHub repository for Offering Catalogue, [Online]. Available :
https://qgithub.com/Sedimark/catalogue-coordinator

GitHub repository for the Catalogue, [Online]. Available:
https://qgithub.com/Sedimark/catalogue

GitHub repository for the EDC connector, [Online]. Available:
https://qgithub.com/Sedimark/sed-edc-connector

GitHub repository for the NGSI-LD broker, [Online]. Available:
https://qgithub.com/Sedimark/Sedimark-Toolbox/tree/main/ngsild broker deployment

GitHub repository for Mage.Al, [Online]. Available:

https://qgithub.com/Sedimark/Sedimark-
Toolbox/blob/main/dp ai pipeline orchestration deployment/docker-compose.yaml

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 78 of 79

Reference: SEDIMARK_DS5.3 |Dissemination: PU ‘Version:‘ 1.0 |Status: |Final

https://github.com/Sedimark/sedimark-smart-contracts
https://github.com/Sedimark/marketplace-frontend
https://github.com/Sedimark/dlt-booth
https://github.com/Sedimark/dlt-booth
https://github.com/Sedimark/hornet-extra
https://github.com/Sedimark/hornet-extra
https://github.com/Cybersecurity-LINKS/mediterraneus-issuer
https://github.com/Cybersecurity-LINKS/mediterraneus-issuer
https://github.com/Sedimark/offering-manager
https://github.com/Sedimark/catalogue-coordinator
https://github.com/Sedimark/catalogue
https://github.com/Sedimark/sed-edc-connector
https://github.com/Sedimark/Sedimark-Toolbox/tree/main/ngsild_broker_deployment
https://github.com/Sedimark/Sedimark-Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/docker-compose.yaml
https://github.com/Sedimark/Sedimark-Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/docker-compose.yaml

[15]

[16]

[17]

[18]

[19]

[19]

[20]

[21]

[22]

GitHub repository for Mage.Al (readme), [Online]. Available:
https://qgithub.com/Sedimark/Sedimark-
Toolbox/blob/main/dp ai pipeline orchestration deployment/README.md

GitHub repository for MLFlow, [Online]. Available:

https://qgithub.com/Sedimark/Sedimark-
Toolbox/blob/main/dp ai pipeline orchestration deployment/README.md

Multitenancy in STELLIO Context Broker
https://stellio.readthedocs.io/en/latest/user/multitenancy.html

GitHub repository for MVM stream
https://github.com/orgs/Sedimark/projects/3

GitHub repository for MVI stream
https://github.com/orgs/Sedimark/projects/5/views/2

GitHub repository for MVM-MVI stream
https://github.com/orgs/Sedimark/projects/6

GitHub repository for local model training
https://qgithub.com/Sedimark/local model training

GitHub repository for MinlO

https://qgithub.com/Sedimark/Sedimark-
Toolbox/blob/main/dp ai pipeline orchestration deployment/README.md

Context Broker URI
http://localhost:8080/ngsi-ld/v1/types/asset

Document name:|D5.3 Integrated releases of the SEDIMARK platform. Second version | Page: 79 of 79

Reference: SEDIMARK_DS5.3 |Dissemination: PU ‘Version:‘ 1.0 |Status: |Final

https://github.com/Sedimark/Sedimark-Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/README.md
https://github.com/Sedimark/Sedimark-Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/README.md
https://github.com/Sedimark/Sedimark-Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/README.md
https://github.com/Sedimark/Sedimark-Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/README.md
https://stellio.readthedocs.io/en/latest/user/multitenancy.html
https://github.com/orgs/Sedimark/projects/3
https://github.com/orgs/Sedimark/projects/5/views/2
https://github.com/orgs/Sedimark/projects/6
https://github.com/Sedimark/local_model_training
https://github.com/Sedimark/Sedimark-Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/README.md
https://github.com/Sedimark/Sedimark-Toolbox/blob/main/dp_ai_pipeline_orchestration_deployment/README.md
http://localhost:8080/ngsi-ld/v1/types/asset

	Document Information
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Executive Summary
	1 Introduction
	1.1 Purpose of the document
	1.2 Relation to other work packages and tasks
	1.3 Structure of the document

	2 Second integrated release of SEDIMARK platform
	3 From seven independent scenarios PoCs to three parallel streams
	3.1 Minimum Viable Marketplace (MVM)
	3.1.1 Sub-streams breakdown and components specification
	3.1.1.1 Participant onboarding
	3.1.1.2 Offering management
	3.1.1.3 Asset exchange

	3.1.2 Integration specification

	3.2 Minimum Viable Intelligence (MVI)
	3.2.1 Define sub-streams and provide high-level description
	3.2.1.1 Data storage
	Set up MinIO for Data Storage and Access

	3.2.1.2 Data Processing
	Integration between MageAI and Data Curation tools
	Integration between MageAI and Data Formatter
	Integration between MageAI and Context broker for loading/saving

	3.2.1.3 AI Orchestrator
	Integration between AI Orchestrator and Shamrock
	Integration between AI orchestrator and Fleviden
	Integration between AI orchestrator and model optimisation modules

	3.2.1.4 Local Model Training
	Local model training automatisation and interface design

	3.2.1.5 Distributed Model Training
	Toolbox Deployment for Shamrock
	Toolbox deployment for Fleviden

	3.2.1.6 Model Management
	Implement MLFlow for Experiment Tracking and Model Management
	Integrate MLFlow with MageAI for Model Management
	Integrate MageAI with energy consumption data
	Integrate MLFlow with the energy prediction model

	3.2.1.7 Asset Description
	Modelling/ontology of data assets (information model)
	Modelling/ontology of AI assets and training services

	3.2.1.8 Toolbox deployment for NGSI-LD broker
	3.2.1.9 Toolbox deployment for MageAI
	3.2.1.10 Toolbox deployment for Mage API
	3.2.1.11 Toolbox deployment for MLFlow
	3.2.1.12 Toolbox deployment for MinIO
	3.2.1.13 Toolbox deployment for UI Orchestrator

	3.2.2 Integration specification

	3.3 Backend and Frontend Integration Overview
	3.3.1 Define sub-streams and provide a high-level description
	3.3.1.1 Creation of offering description based on asset description
	3.3.1.2 Data flow between data sinks and Connector
	3.3.1.3 Integration between Orchestrator and Context Broker to retrieve asset descriptions
	3.3.1.4 Integration between Orchestrator UI and Mage API to create an offering for pipeline assets
	3.3.1.5 Integration between Orchestrator UI, Mage API and Mage AI to create and save data/AI/ML offering (asset) description
	3.3.1.6 Integration between Connector, SEDIMARK UI and AI Orchestrator to retrieve AI/ML assets
	3.3.1.7 Integration between Orchestrator UI and Shamrock
	3.3.1.8 Integration between Orchestrator UI and Fleviden
	3.3.1.9 Integration between Recommender and SEDIMARK UI
	3.3.1.10 Integration between SEDIMARK UI and Connector

	3.3.2 Integration specification

	4 Cross-check the updated functional and non-functional requirements
	5 Integration plan for the final release
	6 Conclusions
	7 Bibliography

