
This document is issued within the frame and for the purpose of the SEDIMARK project. This project has

received funding from the European Union’s Horizon Europe Framework Programme under Grant Agreement

No.101070074. and is also partly funded by UK Research and Innovation (UKRI) under the UK government’s

Horizon Europe funding guarantee. The opinions expressed and arguments employed herein do not

necessarily reflect the official views of the European Commission or UKRI.

The dissemination of this document reflects only the authors’ view, and the European Commission or UKRJ are not responsible

for any use that may be made of the information it contains.

This document and its content are the property of the SEDIMARK Consortium. The content of all or parts of this document can

be used and distributed provided that the SEDIMARK project and the document are properly referenced.

Each SEDIMARK Partner may use this document in conformity with the SEDIMARK Consortium Grant Agreement provisions.

SEcure Decentralised Intelligent Data

MARKetplace

D3.4 Enabling tools for data interoperability,

distributed data storage and training

distributed AI models. Final version

Keywords:

Data, model, interoperability

Document Identification
Contractual delivery date: 31/07/2025

Actual delivery date: 08/08/2025

Responsible beneficiary: EGM

Contributing beneficiaries: EGM, INRIA, LINKS, UC, SURREY. WINGS, NUID UCD,

ATOS

Dissemination level: PU

Version: 1.0

Status: Final

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 2 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Document Information

Document Identification

Related WP WP3 Related Deliverables(s): SEDIMARK_D3.2

Document

reference:

SEDIMARK_D3.4 Total number of pages: 89

List of Contributors

Name Partner

Gilles Orazi, Thomas Bousselin, Franck

Le Gall, Luc Gasser

Léa Robert, Julien Fleury

EGM

Shahin Abdoul Soukour, Nikolaos

Georgantas

INRIA

Alberto Carelli, Andrea Vesco LINKS

Juan Ramón Santana, Pablo Sotres,

Víctor González, Jorge Lanza, Luis

Sánchez

UC

Tarek Elsaleh, Peipei Wu

Mahrukh Awan, Sneha Hanumanthaiah,

Adrian Hilton

SURREY

Grigorios Koutantos, Panagiotis

Vlacheas, Dimitris Zagganas

WINGS

Diarmuid O’Reilly Morgan, Erika

Duriakova, Honghui Du, Elias Tragos,

Aonghus Lawlor, Neil Hurley

NUID UCD

César Caramazana

Joaquín García

ATOS

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 3 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Document History

Version Date Change editors Change

0.1 26/02/2025 EGM Creation and initial contributions

0.2 03/05/2025 INRIA Contribution to section 3

0.3 12/05/2025 ATOS Updates in Fleviden sections

0.4 07/06/2025 INRIA Contribution to section 3

0.5 06/05/2025 SURREY Sections 2.3, 2.4, 3.8., 4.2.1, 4.2.2

0.6 06/06/2025 SURREY Sections 2.3, 2.4, 2.6, 3.8., 4.2.1, 4.2.2,

6.2.3

0.7 25/06/2025 LINKS, NUID

UCD, WINGS

Sections 4, 5

0.8 02/07/2025 UC Section 6.2.3

0.85 11/07/2025 EGM Finalisation for reviews

0.86 31/07/2025 EGM Integration of technical reviews from NUID

UCD and MYT

0.9 06/08/2025 ATOS Quality Format Review

1.0 08/08/2025 ATOS FINAL VERSION TO BE SUBMITTED

Quality Control

Role Who (Partner short name) Approval date

Reviewer 1 Nikolaos Babis (MYT) 15/07/2025

Reviewer 2 Elias Tragos (NUID UCD) 17/07/2025

Quality manager María Guadalupe Rodríguez (ATOS) 08/08/2025

Project Coordinator Miguel Ángel Esbrí (ATOS) 08/08/2025

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 4 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Table of content

Document Information .. 2

Table of content.. 4

List of figures .. 6

List of tables ... 8

List of Acronyms ... 9

Executive Summary ... 12

1 Introduction ... 13

1.1 Purpose of the document .. 13

1.2 Relation to another project work .. 13

1.3 Structure of the document ... 14

2 Interoperability assets ... 15

2.1 Introduction ... 15

2.2 Assets information models .. 15

2.2.1 NGSI-LD as base format ...15

2.2.2 NGSI-LD Smart Data Models ...17

2.2.3 NGSI-LD API ...17

2.3 Marketplace information models .. 22

2.3.1 Self-Description ...24

2.3.2 Offering ..24

2.3.3 Asset ...26

2.4 Vocabularies alignment ... 30

2.4.1 Theme Vocabulary...30

2.4.2 Vocabulary publication and sharing ...31

2.5 Workflow Asset Transformer ... 31

2.6 Offering Generator .. 33

3 The Interoperability enabler .. 36

3.1 Data Formatter .. 36

3.2 Data Curation .. 37

3.2.1 Local annotations: enhancing individual data points metadata38

3.2.2 Global annotations: enhancing datasets/data streams metadata39

3.3 Data Quality Annotations ... 39

3.4 Data Mapper ... 41

3.5 Data Extractor ... 41

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 5 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

3.6 Metadata Restorer... 42

3.7 Data Merger .. 42

3.8 Data validation / certification .. 42

3.8.1 Offering Description Validation ..43

4 The AI enabler .. 45

4.1 Interoperable Federated Learning for SEDIMARK ... 45

4.1.1 Introduction ..45

4.2 Local model training .. 45

4.2.1 Times-series Multivariate Forecasting based on CrossFormer technique49

4.2.2 Offering Generation training ...53

4.3 Distributed model training .. 56

4.3.1 deFLight ..58

4.3.2 The Fleviden tool ...63

5 The DLT Infrastructure .. 67

5.1 Background and recap .. 67

5.2 Final architecture ... 68

5.3 Architecture Components .. 69

5.4 Physical Architecture ... 72

5.5 Scalability considerations .. 75

6 The Storage enabler ... 76

6.1 Significance of data storage .. 76

6.2 Storage Enabling software .. 76

6.2.1 AI model storage enabler (Minio) ...77

6.2.2 Data storage enabler (NGSI-LD brokers) ...77

6.2.3 Offering storage enabler (Catalogue) ...78

7 Conclusions .. 80

8 Bibliographie ... 81

9 Annexes .. 84

9.1 SHACL Shapes for Offering Validation .. 84

9.2 Evaluation Metrics for CrossFormer .. 88

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 6 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

List of figures

Figure 1: SEDIMARK Functional Architecture: orange highlights functional components that

are being part of this deliverable ...14

Figure 2: RDF standards to capture high-level relations between entities in NGSI-LD (source

ETSI [1]) ...16

Figure 3: Main Symbols Definition (source ETSI [1]) ..16

Figure 4: Illustration of NGDI-LD usage (extracted from water use case)17

Figure 5: example of NGSI-LD payload ..19

Figure 6: Payload to add instance of attributes to an Entity. ...20

Figure 7: Response given for an Entity request. ...21

Figure 8: Retrieving history (timeseries) of an Entity attribute. ..22

Figure 9: High-level view of the Marketplace Information Model ...23

Figure 10: Properties for main classes in the Marketplace Information Model23

Figure 11: Self-Description JSON-LD example ...24

Figure 12: Self-Listing JSON-LD example ..25

Figure 13: Offering JSON-LD example ...26

Figure 14: Types of Assets in the Marketplace Information Model ..27

Figure 15: DataAsset JSON-LD example ...28

Figure 16: AI Model Asset Properties ...29

Figure 17: Vocabulary for the SEDIMARK Ontology ...31

Figure 18: Comparison between Mage.ai and CWL performances32

Figure 19: Handling Unstructured Metadata as Context for LLM ..33

Figure 20: Interaction of Offering Generator with Offering Manager......................................34

Figure 21: Offering Generator Pipeline ...35

Figure 22: example NGSI-LD input for nested dictionary ..36

Figure 23: example DataFrame output of a NGSI-LD nested dictionary36

Figure 24: example NGSI-LD input of a temporal value. ...37

Figure 25: example DataFrame output of a NGSI-LD temporal value37

Figure 26: example NGSI-LD input of a geoproperty value. ..37

Figure 27: example DataFrame output of a NGSI-LD geoproperty37

Figure 28: flow of local and global annotations ...38

Figure 29: Structure and operational flow of two AI pipelines provided in the marketplace ..46

Figure 30: general principals of the locally trained predictive module47

Figure 31: comparing deepAR based predictions with observations48

Figure 32: customer segmentation and churn prediction. ...48

Figure 33: CrossFormer Component Overview...50

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 7 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Figure 34: CrossFormer Component Workflow Overview ...51

Figure 35: Crossformer Pruning Flow ...53

Figure 36: Five stages of Prompt Engineering process...54

Figure 37: the difference between the architecture of a) federated and b) gossip learning. ..57

Figure 38: works for distributed learning developed within SEDIMARK.57

Figure 39: the internal structure of a deFLight node. ..60

Figure 40: deFLight-based Federated Learning process. ...61

Figure 41: deFLight-based Gossip Learning process. ..62

Figure 42: deFLight-sample user interface ...63

Figure 43: Layered architecture for DLT infrastructure..69

Figure 44: Architectural components of the infrastructure ...70

Figure 45: instantiation of DLT Layers onto physical hardware machines73

Figure 46: Sequence diagram for model downloading from the consumer side.77

Figure 47: example of scaling capacity of Stellio context broker (number of inserted items per

second over time) ...78

Figure 48: SEDIMARK Toolbox components and storage ..79

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 8 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

List of tables

Table 1: NGSI-LD operations ...18

Table 2: Properties for the AI Model Asset ...29

Table 3: artefacts and their validation process ..43

Table 4: SHACL Shape Rules for Offering Validation ...43

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 9 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation / Acronym Description

AI Artificial Intelligence

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

CPU Central Processing Unit

CRUD Create, Read, Update, Delete

CSV Comma Separated Values

CWL Common Workflow Language

DCAT Data Catalog Vocabulary

DCT DC (Dublin Core) Term

DLT Distributed ledger technology

DQV Data Quality Vocabulary

DSW Dimension-Segment-Wise

Dx.y Deliverable number y belonging to WP x

ETL Extract Transform Load

ETSI European Telecom Standards Institute

EVM Ethereum Virtual Machine

FAIR Findable, Accessible, Interoperable, and Reusable

FL Federated Learning

FLOPS Floating Point Operations Per Second

FOAF Friend Of A Friend

FTP File Transfer Protocol

GL Gossip Learning

GPT Generative Pre-trained Transformer

HED Hierarchical Encoder-Decoder

HORNET IOTA Full-Node Software

HTTP(S) Hypertext Transfer Protocol (Secure)

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 10 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Abbreviation / Acronym Description

IDS International Data Spaces

IDSA International Data Spaces Association

IEEE Institute of Electrical and Electronics Engineers

INX IOTA Node Extension (INX) interface

ISC VM IOTA Smart Contracts Virtual Machine

ISG CIM Industry Specification Group for Context Information

Management

JSON-LD JavaScript Object Notation for Linked Data

LLM Large Language Model

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Machine Learning

MQTT Message Queuing Telemetry Transport

MPC Multi-Party Computation

MSE Mean Squared Error

NGSI-LD Next Generation Service Interfaces for Linked Data

ODRL ODRL

ONNX Open Neural Network Exchange

OWL Web Ontology Language

POI Proof of Inclusion

PSI-CA Private Set Intersection Cardinality Protocol

RDF Resource Description Framework

RDFS Resource Description Framework Schema

REST Representational State Transfer

RMSE Root Mean Squared Error

RSE Relative Squared Error

SDM Smart Data Models

SHACL Shapes Constraint Language

SKOS Simple Knowledge Organization System

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 11 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Abbreviation / Acronym Description

SPARQL SPARQL Protocol and RDF Query Language

SSE-C server-side encryption with customer-provided keys

TRL Technology Readiness Level

URI Uniform Resource Identifier

WLAN Wireless Local Area Network

WP Work Package

W3C World Wide Web Consortium

XML eXtensible Markup Language

YAML YAML Ain't Markup Language

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 12 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

This report presents the design and implementation of the core technical enablers for the

SEcure Decentralised Intelligent Data MARKetplace (SEDIMARK) platform. The project aims

to address the limitations of centralized data markets by fostering a secure, trusted, and

intelligent ecosystem based on Distributed Ledger Technology (DLT) and Artificial Intelligence

(AI). The work detailed in this document establishes the foundational components for

interoperability, AI-driven services, DLT-based trust, and distributed storage, advancing the

platform from a Technology Readiness Level (TRL) of 5 toward demonstration in real-world

scenarios.

A key contribution of this work is a comprehensive interoperability framework. At its core, the

framework uses the NGSI-LD specification to create a common semantic language for data

assets. This is supplemented by a Marketplace Information Model, which defines crucial

marketplace concepts such as Self-Description, Offering, and Asset. This model builds upon

existing standards like DCAT and ODRL by introducing the "Offering" concept, which allows

multiple diverse assets—such as datasets, AI models, and services—to be bundled and

transacted together. A suite of software components within the Interoperability Enabler handles

data formatting, curation, quality annotation, and validation to ensure data adheres to FAIR

principles.

The platform's intelligence is powered by a multifaceted AI Enabler. This component supports

advanced local model training with techniques like the transformer-based CrossFormer for

multivariate time-series forecasting and model optimization methods like pruning. For

collaborative scenarios, the project introduces two frameworks for distributed training:

deFLight, a dynamic and fully decentralized framework supporting gossip and federated

learning, and Fleviden, a tool for orchestrating complex federated workflows. A significant

innovation is the Offering Generator, which uses Large Language Models (LLMs) to

automatically create standards-compliant, semantically rich marketplace offerings from

unstructured metadata, lowering the barrier to entry for data providers.

Trust and security are ensured by a DLT infrastructure built on a private instance of the IOTA

Tangle (Layer 1) and IOTA Smart Contracts (Layer 2). This two-layer architecture provides a

non-repudiable ledger for managing participant identities, cataloguing offering metadata, and

facilitating secure asset trading. To support the platform's digital assets, a robust Storage

Enabler provides a distributed architecture using Minio for AI model storage and NGSI-LD

brokers for scalable, interoperable storage of linked data.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 13 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

This document details the design and implementation of the core technical enablers for the

SEDIMARK platform. These components are fundamental to the project's goal of enabling

seamless, secure, and intelligent data sharing among diverse participants. The work focuses

on four key pillars: comprehensive interoperability, advanced AI capabilities, a trust-based DLT

infrastructure, and scalable distributed storage.

A central achievement is establishing interoperability at multiple levels through:

• Standardized Information Models: The adoption of NGSI-LD as a base format for data

entities creates a common semantic language for all assets.

• Marketplace Ontology: A Marketplace Information Model defines the core concepts of

Self-Description, Offering, and Asset, providing a structured framework for participants to

register, discover, and exchange resources.

• Practical Interoperability Tools: A suite of components, known as the "Interoperability

Enabler," provides functionalities for data formatting, curation, quality annotation, and

validation, ensuring data conforms to SEDIMARK standards.

The AI Enabler offers sophisticated tools for both local and collaborative machine learning,

including:

• Advanced Local Training: Support for training complex models like the transformer-

based CrossFormer for time-series forecasting and advanced optimization techniques

such as model pruning.

• Distributed Learning Frameworks: The document presents two distinct frameworks for

distributed training: deFLight, a dynamic, decentralized framework, and Fleviden, an

extensible tool for orchestrating federated learning workflows.

• Automated Offering Generation: An innovative component that uses Large Language

Models (LLMs) to automatically generate semantically rich, standards-compliant

marketplace offerings from unstructured metadata.

Underpinning these capabilities are robust infrastructure components:

• DLT Infrastructure: A private DLT instance using IOTA Tangle (Layer 1) and IOTA Smart

Contracts (Layer 2) establishes a trustworthy and immutable ledger.

• Storage Enabler: SEDIMARK utilizes a distributed storage architecture, including Minio

for AI models and NGSI-LD brokers for scalable, interoperable data storage.

1.2 Relation to another project work

This deliverable presents the work related to the components meant to support interoperability,

distributed storage and system intelligence. These are three main pillars within SEDIMARK to

support the project objectives for enabling seamless data sharing between consumers and

providers. Interoperability is a key part of SEDIMARK to enable the efficient and easy reuse of

datasets, models and services across the whole network of SEDIMARK participants, aiming

i.e. to support them in integrating data from different sources to train more advanced and robust

models or to enable the distributed training of machine learning models on compatible

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 14 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

datasets. This report is an update of the SEDIMARK Deliverable D3.3 and reports over the

progresses made in WP3.

1.3 Structure of the document

Figure 1 presents the SEDIMARK functional architecture. The components highlighted in

orange are detailed in this deliverable, bridging the data, intelligence, and service layers of the

platform. The document is structured as follows1:

• Section 2: Interoperability Assets: Describes the information models for data (NGSI-

LD) and marketplace concepts (Offerings, Assets), which are fundamental to achieving

interoperability.

• Section 3: The Interoperability Enabler: Details the software components responsible

for data formatting, curation, quality annotation, and validation.

• Section 4: The AI Enabler: Presents the frameworks for local and distributed model

training (CrossFormer, deFLight, Fleviden), model optimization, and the LLM-based

Offering Generator.

• Section 5: The DLT Infrastructure: Explains the architecture and software stack of the

IOTA-based distributed ledger used for trust and transactions.

• Section 6: The Storage Enabler: Outlines the distributed storage solutions for data and

AI models within the SEDIMARK ecosystem.

Figure 1: SEDIMARK Functional Architecture: orange highlights functional components that

are being part of this deliverable

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 15 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

2 Interoperability assets

2.1 Introduction

Interoperability is a crucial facet of modern information management, enabling seamless

communication and exchange of data, models and services across diverse systems, platforms,

and applications. In a world characterized by an abundance of data sources and formats,

achieving interoperability ensures that disparate systems can understand, interpret, and

effectively use shared data. This capability facilitates collaboration, integration, and synergy

among organizations and technologies, breaking down silos and promoting a more

interconnected digital ecosystem.

This introduction explores the significance of data interoperability in overcoming the challenges

posed by data heterogeneity, promoting standardization, and ultimately unlocking the full

potential of interconnected data landscapes. Embracing data interoperability not only

enhances operational efficiency but also lays the groundwork for advanced analytics, artificial

intelligence, and the seamless flow of information in our interconnected, data-driven world.

Before initiating any data processing pipeline within the SEDIMARK platform, data thus need

to be formatted so to be usable by the pipeline. In its initial version, it has been agreed that the

data processing pipeline would consumes and produces data organised along the NGSI-LD

information model [1].

2.2 Assets information models

2.2.1 NGSI-LD as base format

NGSI-LD is represented in JSON-LD and thus have a RDF grounding. It is mainly based on

RDF standards to capture high-level relations between entities (representing or not a real-

world asset) and properties of entities, as shown below. The core concept in the NGSI-LD data

model is the “Entity” which can have properties and relationships to other entities. An Entity is

equivalent to an OWL class. The assumption is that the world consists of entities, which can

be physical entities like a car or a building, but also more abstract entities like a company or

the coverage area of WLAN access points. Entity instances are identified by a unique URI and

a type, e.g., a sensor with identifier urn:ngsi-ld:Sensor:01 and of type Sensor. Different from

rdf:Properties, NGSI-LD properties (and relationship) are also considered as OWL classes

also. Properties and relationships can be annotated by properties and relationships

themselves, e.g. a timestamp, the provenance of the information or the quality of the

information can be provided. The hasObject and hasValuein the NGSI-LD metamodel are

defined to enable RDF reification, based on the blank node pattern, to leverage the property

graph model.

The NGSI-LD cross-domain ontology extends the NGSI-LD metamodel to cover several

general contexts presented below [2]:

• Mobility defines the stationary, movable or mobile characteristics of an Entity;

• Location differentiates and provides concepts to model the coordination based, set based

or graph-based location;

• Temporal specification includes property and values for temporal property definitions;

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 16 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

• Behavioural system includes properties and values to describe system state,

measurement and reliability;

• System composition and grouping provides a way to model system of systems in which

small systems are composed together to form a complex system following specific

patterns.

The NGSI-LD cross domain ontology is presented in Figure 2.

Figure 2: RDF standards to capture high-level relations between entities in NGSI-LD (source

ETSI [1])

Below we present a use case example for modelling data and context using the NGSI-LD. The

example consists of a station that returns the measure of the level and flow of a river. This

station has an id which is urn:ngsi-ld:Hydrometric-Station:X061000201. This station is located

in a river identified by urn:ngsi-ld:River:La_Durance. This is defined by the relationship

(isLocatedOn).

To model this example, Figure 3 presents the main symbols signification used in the

medialisation task.

Figure 3: Main Symbols Definition (source ETSI [1])

The Entity ”River” (since it is a subclass of NGSI-LD Entity) is instantiated with the identifier

urn:ngsi-ld:River:La_Durance. Several relationships are defined in this example: the first

(isAffluentOf) describes the hierarchy between the rivers, to be used later on for graph-based

data processing. The relationship hasWeatherInformation provides weather related

information for the river.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 17 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Figure 4: Illustration of NGDI-LD usage (extracted from water use case)

2.2.2 NGSI-LD Smart Data Models

The Smart Data Models (SDM) initiative, aims to offer a standardized approach to data

representation across different domains. It aims to enhance interoperability between diverse

systems and applications, thus enabling seamless communication. Developed by the FIWARE

community, the Smart Data Models are open source and are developed through constant

efforts from the community.

Within SEDIMARK, implementing Smart Data Models for Data Assets aims to establish a

homogeneous approach for participants to utilize the reusable common tools proposed by

SEDIMARK, including AI modelling and data processing. Therefore, it complements the like

NGSI-LD semantic-enabled APIs with NGSI-LD data models. The implementation of Smart

Data Models ensures that providers reveal a consistent taxonomy. This enables SEDIMARK

participants to both sell enhanced data and expand the pool of potential customers and data

providers within the Marketplace for service providers.

Smart Data Models offer a customisable framework suitable for diverse domains, allowing for

the creation of multiple domain-specific data models that cater to applications or datasets.

SEDIMARK advocates for the practical use of Smart Data Models in Data Assets, despite the

possibility of needing to adjust proposed models with new attributes and properties. Several

data models have been identified from the domains supported by the initiative, including Smart

Mobility, Smart Cities Smart Environment and Smart Energy. Additionally, Smart Data Models,

such as the Data Quality model, can be used to enrich the content of existing datasets with the

output of the data processing pipeline.

2.2.3 NGSI-LD API

2.2.3.1 Introduction

The NGSI-LD API supports several operations, with messages expressed in JSON-LD. The

API is the standard for management of context information (which can be summarised as being

any piece of information associated with a context such as time-location information). The

overall NGSI-LD API operations include:

https://smartdatamodels.org/

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 18 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Table 1: NGSI-LD operations

General Operations

Entity create

Entity update

Entity partial update

Entity delete

Entity retrieval

Queries

Subscriptions

Registry Operations

CSRegistryEntry create

CSRegistryEntry update

CSRegistryEntry partial update

CSRegistryEntry delete

CSRegistryEntry retrieval

CSRegistryEntry query

CSRegistryEntry subscription

Batch Operations

Batch Entity Creation

Batch Entity Create/Update (Upsert)

Batch Entity Update

Batch Entity Delete

Temporal Operations

Create/Update Temporal Entity

Representation

Add Attributes to Temporal Entity Rep.

Delete Attribute from Temporal Entity

Rep.

Modify Attribute Instance in Temporal

Entity Rep.

Delete Attribute Instance from Temporal

Entity Rep.

Delete Temporal Entity Representation

Retrieve Temporal Entity Evolution

Query Temporal Entity Evolution

This API relies on the NGSI-LD data model introduced earlier. In short, this model makes use
of the JSON-LD serialisation format which adds linked data capabilities to the JSON format.
The core of the model builds upon the concept of Entity, where an entity can have Properties
and Relationships with other entities, building a property graph model.

The JSON-LD format allows to create a network of standards-based machine interpretable
data across different sources. The JSON-LD format includes an @context clause used to map
short terms used in the serialization to URIs uniquely identifying concepts and mapping to
specific types (e.g. DateTime).

In the following, we present the modelling process of the previous example using the NGSI-
LD API based on JSON-LD messages for creating and querying instances of Sensor and
Station.

2.2.3.2 Creating an instance of Entity

An Entity can be created using the following endpoint (among others):

POST {gatewayServer}/ngsi-ld/v1/entities

The payload must contain at least an id and a type for the entity. Any other attribute can also

be added to the entity when creating it.

An example of payload used for the creation of a hydrometric station entity for the water use

case is given below:

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 19 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Figure 5: example of NGSI-LD payload

2.2.3.3 Creating an instance of an attribute in an Entity

An instance of an attribute can be added to an Entity using the following endpoint (among

others):

PATCH {gatewayServer}/ngsi-ld/v1/entities/urn:ngsi-ld:HydrometricStation:X031001001

The payload can contain an instance for any attribute (already existing or not), if an attribute

does not exist, it will be created with the new instance.

An example of payload used to add some flow and water level measurements to a hydrometric

station for the water use case is given below

{

"id": "urn:ngsi-ld:HydrometricStation:X031001001”,

"type": "HydrometricStation”,

"location": {

 "type": "GeoProperty",

 "value": {

 "type": "Point",

 "coordinates": [

 6.2727640,

 44.4709131

]

 }

 }

}

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 20 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Figure 6: Payload to add instance of attributes to an Entity.

2.2.3.4 Retrieving an Entity by Id query

An Entity can be retrieved using the following endpoint (among others):

GET {{gatewayServer}}/ngsi-ld/v1/entities/{{entity_id}}

An example of the response given for the entity used in the previous example is given below:

{

"flow": {

 “value" : 138000.0,

 "observedAt" : "2023-12-04T10:15:00Z",

 "type" : "Property",

 "unitCode" : "G51"

},

"waterLevel": {

 "value" : 1237.0,

 "observedAt" : "2023-12-04T10:15:00Z",

 "type" : "Property",

 "unitCode" : "MMT"

}

}

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 21 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Figure 7: Response given for an Entity request.

Figure 7 show the current state of the Entity (i.e., only the last instances for each attribute are

displayed).

The history of the Entity can be retrieved using this endpoint (among others):

{{gatewayServer}}/ngsi-

ld/v1/temporal/entities/{{entity_id}}?timerel=after&timeAt={{datetime}}&options=temporalValu

es

An example of the response given for the entity used in the previous example is given below:

{

 "id": "urn:ngsi-ld:HydrometricStation:X031001001",

 "type": "HydrometricStation",

 "flow": {

 "type": "Property",

 "value": 139000.0,

 "observedAt": "2023-12-04T07:45:00Z",

 "unitCode": "G51"

 },

 "waterLevel": {

 "type": "Property",

 "value": 1238.0,

 "observedAt": "2023-12-04T07:45:00Z",

 "unitCode": "MMT"

 },

 "location": {

 "type": "GeoProperty",

 "value": {

 "type": "Point",

 "coordinates": [

 6.49800996,

 44.55535641

]

 }

 }

}

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 22 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Figure 8: Retrieving history (timeseries) of an Entity attribute.

2.3 Marketplace information models

The Marketplace Information Model is an RDFS/OWL-ontology covering the fundamental

concepts of SEDIMARK needed for the registration of Participants and the discovery and

exchange of Offerings and Assets. This model establishes a common framework to ensure

interoperability within a SEDIMARK-based Marketplace and includes the terms defined in

Deliverable SEDIMARK_D2.3 [3] to enable participants to discover and exchange Assets in

the form of Offerings. This common ontology is meant to serve as a shared language, fostering

seamless communication and interoperability among the users of SEDIMARK. Therefore, the

use of this information model is enforced for any Participant or component that wants to join

the Marketplace based on SEDIMARK guidelines. The main goal of this model is to ease the

search and discovery of Participants and their offers, describing accurately their information.

The creation of this model is supported by existing proposals by similar initiatives and is built

upon well-known ontologies such as Open Digital Rights Language (ODRL) [4], Data Catalog

vocabulary (DCAT) [5], Friend Of A Friend (FOAF) [6] or the Dublin Core Terms (DCT) [7]. In

particular, the model has its foundations in the proposal shared by the International Data

Spaces Protocol [8], to align as much as possible with such an initiative, although including

{

 "id": "urn:ngsi-ld:HydrometricStation:X031001001",

 "type": "HydrometricStation",

 "flow": {

 "type": "Property",

 "values": [

 [

 80500.0,

 "2023-12-01T00:15:00Z"

],

 [

 82800.0,

 "2023-12-01T00:30:00Z"

],

 [

 85100.0,

 "2023-12-01T00:45:00Z"

], …

 }, …

}

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 23 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

new terms introduced by SEDIMARK (e.g., the concept of Offering; the additional type of

Assets that can be part of the Marketplace; or the data quality information that is part of

SEDIMARK).

Figure 9: High-level view of the Marketplace Information Model

The current version of the Marketplace Information Model is depicted in Figure 9. The

ontology has been designed using the Protégé tool [9] documented using the WIDOCO tool

and hosted online via GitHub and GitHub Pages. The main concepts in this information model

are the Self-Description, Participant, Self-Listing, Offering and Asset and Asset Provision.

Figure 10 illustrates the properties for each of these main concepts.

Figure 10: Properties for main classes in the Marketplace Information Model

https://github.com/Sedimark/ontology.git

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 24 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

2.3.1 Self-Description

As defined in Deliverable SEDIMARK_D2.3 [3], Self-Description is a machine-interpretable

document providing all the information about a Participant. In this case, it can be considered

the main class within the Marketplace Information Model. This concept is also a core part of

other information models, such as the ones from Gaia-X [10] and IDS [11]. Any Participant in

a Marketplace must provide a Self-Description.

There are several concepts that are part of the Self-Description, including the information about

the Participant (name, description and the timestamps where this information was updated or

created). Besides, the Self-Description can also link to a Self-Listing concept, which lists the

set of Offerings from a Participant acting as a Provider.

{

 "@id": "https://connector.eu/",

 "@type": "sedimark:self-description",

 "dct:issued": {

 "@type": "xsd:dateTime",

 "@value": "2023-11-06T16:54:48.577964"

 },

 "dct:modified": {

 "@type": "xsd:dateTime",

 "@value": "2023-11-06T16:54:48.577964"

 },

 "foaf:name": "SEDIMARK Participant A",

 "dct:description": "Participant located in Europe...",

 "dct:language": {

 "@id":

"http://publications.europa.eu/resource/authority/language/ENG"

 },

 "sedimark:hasSelf-listing": {

 "@id": "https://connector.eu/self-listing"

 },

 "@context": {

 "dct": "https://purl.org/dc/terms/",

 "dcat": "https://www.w3.org/ns/dcat/",

 "odrl": "http://www.w3.org/ns/odrl/2/",

 "dspace": "https://w3id.org/dspace/v0.8/",

 "sedimark": "https://sedimark.eu/marketplace-information-

model/0.1/"

 }

}

Figure 11: Self-Description JSON-LD example

2.3.2 Offering

The Offering is a concept introduced by SEDIMARK and describes and bundles a set of Assets

that are part of an offer, along with their terms and conditions. This concept is conceived

essentially as a subclass of a DCAT Catalog (as well as the Self-Listing concept) with

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 25 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

additional properties to link to other SEDIMARK concepts such as Assets and Offering

Contracts. As mentioned, only Participants acting as a Provider has a Self-Listing along with

a set of Offerings.

The Offering concept is also a key difference between the SEDIMARK Marketplace Information

Model and the IDS Protocol [11]. In the IDS protocol, every offer is composed of a single Asset,

while in SEDIMARK they can be grouped in an Offering, thus containing multiple assets per

transaction.

Finally, one important aspect of Offerings is contracting. Each Offering contains a mandatory

OfferingContract object and, possibly, an Agreement. Both concepts, Contract and Agreement,

are subclasses of ODRL Offer and Agreement concepts, respectively. While a single Contract

object is mandatory (even if there are no particular restrictions) in each Offering, Agreement

objects are only required per transaction. Agreements are similar to contracts but add specific

properties (i.e., assigner and assignee), which specify the Participants tied to the policies that

are part of the Offering Agreement.

{

 "@type": "sedimark:self-listing",

 "@id": "https://connector.eu/self-listing",

 "sedimark:belongsTo": {

 "@id": "https://connector.eu/"

 },

 "sedimark:hasOffering": [

 {

 "@id": "https://connector.eu/offering/offeringID"

 }

],

 "@context": {

 "dct": "https://purl.org/dc/terms/",

 "dcat": "https://www.w3.org/ns/dcat/",

 "odrl": "http://www.w3.org/ns/odrl/2/",

 "dspace": "https://w3id.org/dspace/v0.8/",

 "sedimark": "https://sedimark.eu/marketplace-information-

model/0.1/"

 }

}

Figure 12: Self-Listing JSON-LD example

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 26 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

{

 "@id": "https://connector.eu/offering/offeringID",

 "@type": "sedimark:OfferingContract",

 "sedimark:participantId": "https://connector.com/",

 "dct:title": "offeringName",

 "dct:description": "University from the North of Spain...",

 "dct:issued": {

 "@type": "xsd:dateTime",

 "@value": "2023-11-06T16:54:48.577964"

 },

 "dct:modified": {

 "@type": "xsd:dateTime",

 "@value": "2023-11-06T16:54:48.577964"

 },

 "dcat:keyword": [

 "keyword 1",

 "keyword 2"

],

 "odrl:hasPolicy": {

 "@id": "https://connector.eu/policy/policyID",

 "@type": "sedimark:Contract",

 "odrl:permission": [],

 "odrl:prohibition": [],

 "odrl:obligation": []

 },

 "sedimark:hasAsset": [

 {

 "@id": "https://connector.eu/asset/assetID"

 }

],

 "@context": {

 "dct": "https://purl.org/dc/terms/",

 "dcat": "https://www.w3.org/ns/dcat/",

 "odrl": "http://www.w3.org/ns/odrl/2/",

 "dspace": "https://w3id.org/dspace/v0.8/",

 "sedimark": "https://sedimark.eu/marketplace-information-

model/0.1/"

 }

}

Figure 13: Offering JSON-LD example

2.3.3 Asset

Assets are the resources being offered in each of the Offerings. Initially, three different Asset

concepts were considered in SEDIMARK depending on the type of the resource they are

representing. In this sense, the Assets defined are datasets (either static or streaming data),

AI Models, Services (e.g., data processing) and other Assets, such as containers or virtual

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 27 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

machines. This is also another difference with the IDS Protocol proposal, as assets are only

related to data, either streaming or static datasets.

In addition, another concept has been defined within the Marketplace Information Model to

represent the quality of the Asset which extends the QualityMeasurement concept from the

Data Quality Vocabulary (DQV) ontology, thus giving an idea of the Asset composing an

Offering, to foster the exchange and represent what SEDIMARK tools through the Data

Processing Pipeline can provide as an added value to providers which enhance their data

through SEDIMARK.

Figure 14: Types of Assets in the Marketplace Information Model

Data Assets

Datasets are represented in the Marketplace Information Model as a subclass of the Dataset

class from the DCAT ontology. In turn, the DataAsset includes properties relating to

descriptions, keywords, and spatial, temporal and thematic contexts.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 28 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

{

 "@id": "https://connector.eu/asset/assetID",

 "@type": "sedimark:Dataset",

 "dct:description": "data asset description",

 "dct:language": {

 "@id": "http://publications.europa.eu/resource/authority/language/ENG"

 },

 "sedimark:hasDataQuality": {

 "@type": "sedimark:dataQuality",

 "@id": "https://connector.eu/dataquality/dataQualityID"

 },

 "dcat:distribution": [{

 "@id": "https://connector.eu/dataquality/distributionID",

 "@type": "dcat:Distribution",

 "dct:format": {

 "@id": "HttpProxy"

 },

 "dct:issued": {

 "@type": "xsd:dateTime",

 "@value": "2023-11-06T16:54:48.577964"

 },

 "dct:modified": {

 "@type": "xsd:dateTime",

 "@value": "2023-11-06T16:54:48.577964"

 },

 "dcat:mediaType": {

 "@id": "https://www.iana.org/assignments/media-types/application/ld+json"

 },

 "dcat:accessService": {

 "@id": "https://connector.eu/serviceID",

 "@type": "dcat:DataService",

 "dcat:endpointDescription": "NGSI-LD API",

 "dcat:endpointURL": {

 "@id": "https://connector.eu/assetID/protocol"

 }

 }

 }],

 "@context": {

 "dct": "https://purl.org/dc/terms/",

 "dcat": "https://www.w3.org/ns/dcat/",

 "odrl": "http://www.w3.org/ns/odrl/2/",

 "dspace": "https://w3id.org/dspace/v0.8/",

 "sedimark": "https://sedimark.eu/marketplace-information-model/0.1/"

 }

}

Figure 15: DataAsset JSON-LD example

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 29 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

AI Model Assets

AI Model Assets represent exchangeable AI Models for both centralised and distributed AI

learning techniques. Therefore, the AI Model Asset reflects a number of aspects of AI models

which will be exploited by search and discovery mechanisms to retrieve relevant offerings for

Consumers. The following properties have been identified for this class:

Table 2: Properties for the AI Model Asset

Property Description

category Type of machine learning algorithms, i.e. Supervised Learning,

Unsupervised Learning, Semi-supervised learning,

Reinforcement Learning

purpose General purpose of the Model e.g. Classification, Natural

Language Understanding, Recommendation, Forecasting,

Synthetic Data Generation etc.

algorithm The algorithm used for the model, e.g. Neural Network,

serialization The model serving serialisation format; e.g. TensorFlow, parquet,

PyTorch etc.

version The version of the Model. This is particularly important for

decentralised learning

execution How the model will be deployed (parallel execution of the

algorithms) (centralised, federated etc,)

size memory size of the model in Gigabytes

modified when the model was last modified

handleStream whether the model is adapted to work with stream data

inputFormat Accepted input format for the model

inputParameters Parameters passed to the model (Stringified array)

outputFormat Output format for the model

outputParameters Parameters passed by the model (Stringified array)

hasTrainingDataset The dataset used for training the AI model Asset

hasArchitecture The network architecture that the model adopts

Figure 16: AI Model Asset Properties

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 30 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

ServiceAssets

The ServiceAsset class covers service-based assets, such as the provision of data storage or

computation resources, or the application of an AI Model Asset on a Data Asset(s). Each of

these assets represents the information describing the particularities of each service (e.g.,

number and type of processor cores, storage type, etc.).

OtherAssets

Other type of assets, such as Virtual Machines or Containers are included here, which will

include additional properties to define their characteristics (e.g., computation requirements,

operating system, etc.).

WorkflowAssets

This Asset reflects the artefact that defines a workflow for either data processing or AI Model

Asset generation or use for inference. Section 2.5 provides details on how the Asset is

generated.

2.4 Vocabularies alignment

For the Assets to reflect themes or use cases, a vocabulary is required to provide a unified

reference for naming aspects relating to information captured, which are represented as

properties that correspond to the use case's domain of interest.

2.4.1 Theme Vocabulary

Assets provided within SEDIMARK marketplace are associated with real and virtual entities of

interest, such as vehicles or weather stations, that are related to a particular theme or use

case, such as “transportation” or “environment”. To capture this, a vocabulary has been

established that reflects the theme taxonomy adopted by the Smart Data Models initiative. The

vocabulary is essentially comprised of instantiations of the Concept class that belongs to the

SKOS Ontology [12], which links with the SEDIMARK ontology via the dcat:theme property, as

part of the Asset class. The vocabulary as a whole is also explicitly declared through

instantiating the ConceptScheme class, which links with the SEDIMARK ontology via the

dcat:themeTaxonomy object property, as part of the Offering class.

The main or top concepts of the vocabulary are the Domain of interest, the Subject or sub-

domain, the Entity of interest and Properties associated with that Entity. The main concepts

extend the SKOS ontology for knowledge organization. Relational properties from the SKOS

ontology are used to link Entities with their Properties, Entities with their Subjects, and Subjects

with their Domains. Hierarchical properties from SKOS are used to link specific Entity concepts,

such as Transportation with its skos:broader concept, i.e. Entity.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 31 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

The instance naming convention follows the naming scheme adopted by SmartDataModels.

Figure 17: Vocabulary for the SEDIMARK Ontology

2.4.2 Vocabulary publication and sharing

The vocabulary described in Section 2.4.1 is made available in a machine-readable format

using JSON-LD (JavaScript Object Notation for Linked Data). JSON-LD is a W3C-

recommended specification [21] designed to enhance data interoperability by enabling the

integration of linked data into JSON based systems.

The vocabulary is published through a GitHub repository, which contains the relevant JSON-

LD context files and corresponding examples of entities/assets. The context files define the

mapping between short-form terms and their full IRIs, in accordance with the SEDIMARK

ontology and the Smart Data Models initiative.

The repository is linked to a GitHub Pages service, which allows the JSON-LD contexts to be

resolved as persistent HTTP URIs. These URIs can be referenced directly by assets, enabling

automated interpretation of semantic annotation.

This publication mechanism ensures that:

• The structure and semantics of the vocabulary are explicitly defined and consistently

applied.

• Contexts can be dereferenced dynamically as part of data exchange processes.

• Example entities illustrate correct usage patterns and support developer adoption.

2.5 Workflow Asset Transformer

The MageToCWLTransformer is a tool that converts Mage.ai pipelines into Common Workflow

Language (CWL) workflows and standard Python scripts, facilitating the integration of user-

friendly design environments with industry-standard execution frameworks. This Asset bridges

SEDIMARK (Vocabulary)

SEDIMARK (Taxonomy)

DCAT (catalogues)

Asset

DataAsset AIModelAsset ServiceAssetOtherAsset

DataServiceDataset Resource

SKOS (Knowledge Organization)

Concept

Offering

ConceptScheme

dcat:themeTaxonomy

inScheme

dcat:themes

Catalog

SmartLogistics VehicleERAhttps://w3id.org/sedimark/vocab/sdm/...

https://w3id.org/sedimark/vocab/sdm/...

battery

https://w3id.org/sedimark/ontology/...

SDM

Domain Subject Entity Property

https://w3id.org/sedimark/vocab/...

skos:broader skos:broader skos:broader skos:broader

skos:related
skos:related skos:related

SDM-EGM

skos:related
Volts

QUDT

hasUnit

ML

skos:hasTopConcept

https://github.com/Sedimark/broker
https://sedimark.github.io/broker/jsonld-contexts/sedimark-helsinki-compound.jsonld

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 32 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

the gap between intuitive pipeline prototyping in Mage.ai and reproducible, portable

deployment environments enabled by CWL [21].

The tool is composed of two main components:

• MageToPython which converts Mage.ai blocks into standalone Python scripts by

removing Mage-specific dependencies, resolving environment variables, and ensuring

direct command-line execution compatibility.

• MageToCWL that wraps the transformed Python blocks into CWL tools and workflows

using structured templates. It builds CWL-compliant execution sequences and outputs

YAML workflows, shell wrappers, and validation scripts.

The output is a ready-to-use ZIP archive containing:

• Converted Python scripts for each Mage block,

• CWL tool definitions and a main CWL workflow,

• A shell script for execution and validation

Optionally, serialization and visualization components (e.g., pickled data states, result

displayer). The transformer supports seamless integration with CWL-WES and TESK [13]

execution backends, use in cloud-native environments including Kubernetes and EDC

connectors as well as enhanced reproducibility for Mage-authored workflows in federated or

regulatory-constrained settings. As presented in Figure 18, we have performed tests, namely

the average execution time over five consecutive runs for the two pipelines described

previously.

Figure 18: Comparison between Mage.ai and CWL performances

The results showed that CWL is faster in execution than Mage AI, which has a large overhead,

presenting the benefits of using CWL for workflow execution.

This asset is aligned with the SEDIMARK objective of standardizing workflow interoperability

across heterogeneous ecosystems.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 33 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

It will be published as a WorkflowAsset under the type sedimark:PipelineConversionTool,

linked to its Mage.ai source and CWL output via provenance metadata.

2.6 Offering Generator

The Offering Generator is a component that transforms asset information into standardized

JSON-LD offerings compliant with the SEDIMARK Marketplace Information Model. It leverages

Large Language Models (LLMs) to automate the creation of semantically rich offering

structures.

In the SEDIMARK workflow, the Offering Generator receives asset details from providers and

produces properly formatted offering documents that the Offering Manager can register in the

marketplace. By using LLMs, this component significantly reduces the technical knowledge

required from providers to create valid offerings while ensuring compliance with the complex

ontological requirements described in section 2.3.

Recent advances in LLMs have demonstrated increasing proficiency in generating structured

data with advanced techniques such as specialized schema usage, prompt engineering, and

routing mechanisms. Leveraging LLMs for structured offering data generation enforces

consistent semantics and structure, enhances interoperability across the marketplace, enables

providers to describe offerings in natural language, drastically accelerates creation, reduces

technical barriers, and minimizes the need for specialized knowledge or manual validation.

 Figure 19: Handling Unstructured Metadata as Context for LLM

Functional description of component

The Offering Generator converts provider input and asset metadata into JSON-LD documents

through prompt-engineered interactions with an LLM, ensuring alignment with the Marketplace

Information Model. The generated output includes appropriate context declarations, semantic

relationships, and contractual terms required for marketplace transactions. These documents

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 34 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

are subsequently validated against SEDIMARK schemas, with corrections applied as needed

to ensure semantic consistency and interoperability within the marketplace ecosystem.

Interaction with Offering Manager

The Offering Generator interacts with the Offering Manager through a structured

communication protocol to ensure seamless integration within the SEDIMARK ecosystem. The

interface the Offering Manager exposes is a REST-based API that takes the generated

Offering Description as the payload, and responds with a JSON payload that confirms the

validity of the Offering Description, and it’s storage in the Self-Listing. Else if the validation of

the Offering Description fails, it will respond with a JSON payload that includes the error,

whether it be basic RDF/JSON-LD compliance, or the Offering Description being incomplete.

Following the JSON-LD generation and validation processes, the Offering Generator will

forward the compliant offering documents to the Offering Manager through a dedicated API

endpoint. The Offering Manager will receive these validated offerings and perform several

critical functions, such as storage in the corresponding Self-Listing and registering the Offering

with the DLT Registry. This interaction will follow a protocol where the Offering Generator will

transmit both the offering content (JSON-LD document) and metadata about the validation

results.

Figure 20: Interaction of Offering Generator with Offering Manager

Architecture of Offering Generator

At its core, this module employs a student-teacher architecture where large, computationally

intensive models (like GPT) serve as teachers that produce structured JSON-LD examples,

while a compact, efficient model (Qwen 2.5-3B) learns to replicate these capabilities through

sophisticated knowledge distillation techniques. The distillation process employs curriculum

learning that progressively challenges the student model, starting with complete contextual

information and gradually reducing this support until the model can generate valid JSON-LD

even with minimal context.

The operational pipeline begins with contextually-aware prompt engineering that provides

carefully structured instructions to the base models. This critical first stage implements

schema-aware prompting techniques that precisely define the expected JSON-LD structure,

relationships, and ontological constraints. A high-capacity teacher model, e.g., a GPT variant,

is leveraged to synthesize high-quality, schema-conformant JSON-LD instances. Each

example is validated against schema requirements using evaluation metrics.

In the next phase, the student model is trained using a progressive context curriculum where

training begins with complete ontologies and schemas, then gradually reduces contextual

support through five distinct stages with increasing context dropout rates. The multi-stage

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 35 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

optimization process employs gradient accumulation, a cosine learning rate scheduler,

adaptive learning rates, and mixed precision training. Advanced regularization techniques,

including label smoothing, tiered dropouts, and stochastic depth, further enhance the model's

performance.

The final phase focuses on refinement and specialization, emphasizing structural refinement

and context retrieval training. During structural refinement, the model undergoes fine-tuning

specifically on complex JSON-LD structures, focusing on proper entity linking, ontology

compliance, and schema validation. Context retrieval training teaches the model to identify

relevant contextual information through input-context-output examples and similarity metrics.

The process also incorporates scheduled sampling to reduce exposure bias between training

and inference.

The technical implementation includes several optimizations to ensure efficient training and

deployment. Memory optimization techniques include gradient checkpointing and 4-bit

quantization using NF4 format during inference. The model architecture benefits from QLoRA

fine-tuning with specific parameters and differential learning rates for different layer groups.

Figure 21: Offering Generator Pipeline

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 36 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

3 The Interoperability enabler

3.1 Data Formatter

Data Formatter is an essential component of the Interoperability Enabler, transforming data

from various formats, such as CSV, XLS, XLSX, and NGSI-LD json, into the SEDIMARK

internal processing format, specifically pandas DataFrames. This process is designed to

standardize data input formats within the SEDIMARK ecosystem, ensuring that heterogeneous

data can be seamlessly ingested and converted into a uniform structure. In this way, data

formatting facilitates efficient data processing, analysis and integration, improving the overall

functionality and reliability of the SEDIMARK system.

This component can automatically detect the file type based on its extension and uses the

appropriate method to load the data. For CSV and Excel files, it uses pandas’ built-in readers.

When dealing with NGSI-LD json (primary standard format within the SEDIMARK ecosystem),

which often contains deeply nested structures, the component applies a recursive flattening

process to transform complex entities into flat, tabular records. It is designed to handle complex

NGSI-LD json data more effectively than the pandas.json_normalize Python library. It

recursively flattens dictionaries while preserving key hierarchies, supporting nested structures

and ensuring efficient processing and interoperability.

This component enables comprehensive data management and seamless integration within

the SEDIMARK ecosystem. The final output is a flat dictionary where complex nested

structures are simplified, making it significantly easier to analyze and manipulate within a

pandas DataFrame. This method enhances data accessibility and streamlines the analytical

process.

Example with nested dictionary (e.g. single bike use case)

Input NGSI-LD json:

Figure 22: example NGSI-LD input for nested dictionary

Output (pandas DataFrame):

id type category.type category.value

urn:ngsiLd:VehicLe:vehicLe:MobilityMana

gement:196636
Vehicle Property tracked

Figure 23: example DataFrame output of a NGSI-LD nested dictionary

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 37 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Example with list handling in NGSI-LD json (e.g. temporal bike use case)

If a list contains dictionaries (list of dictionaries), each entry is flattened with an indexed key.

The lists of primitive values are kept as separate indexed keys

Input NGSI-LD json:

Figure 24: example NGSI-LD input of a temporal value.

Output (pandas DataFrame):

battery[0].type battery[0].value

battery[0].instanceId battery[0].obse

rvedAt

battery[0].

unitCode

...

Property 1 instanceid:b816b94

d-cf8c-445a-bc17-

b3e0dfbca8da

2024-09-

25T04:30:06Z

P1 ...

Figure 25: example DataFrame output of a NGSI-LD temporal value

Example by preserving specific keys like @coordinates (e.g. temporal station use case):

Input NGSI-LD json:

Figure 26: example NGSI-LD input of a geoproperty value.

Output (pandas DataFrame):

location.type location.value.type location.value.coordinates location.instanceId

GeoProperty Point [43.477347, -3.791047] instanceid:0b54df62-

102a-4312-bc1b-

663169d741d4

Figure 27: example DataFrame output of a NGSI-LD geoproperty

3.2 Data Curation

In the realm of data processing and analytics, the utilization of smart data models within the

NGSI-LD data format has emerged as an approach for data annotation and enrichment. This

section explores the dual facets of data annotations: global annotations, applied at the dataset

level, and local annotations, which focus on individual data points.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 38 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Leveraging NGSI-LD's semantic capabilities and the richness of smart data models, this

methodology ensures meaningful and interoperable annotations for improved comprehension

and utilization of data.

Figure 28: flow of local and global annotations

Annotations, whether at the global level, providing global information regarding datasets, or at

the local level, enhancing individual data points with context-specific information, contribute to

a more meaningful and interoperable SEDIMARK ecosystem.

3.2.1 Local annotations: enhancing individual data points metadata

Local annotations play a crucial role in enriching the metadata of individual data points with,

inter alia, specific labels derived from data processing outcomes and specifically incorporating

data quality models. This includes categorizing data points based on predefined criteria,

enabling users to identify patterns, missing values, or anomalies. For instance, in SEDIMARK,

we will use the anomaly scores and other data quality measures to support local annotations

by adding metadata to mark data points that deviate significantly from the expected patterns.

These annotations are crucial for identifying potential errors, anomalies, or noteworthy events

that may require special attention. This information will be obtained from the Data processing

and AI pipelines.

Local annotations also consider temporal aspects, capturing changes in individual data points

over time. This temporal context enhances the understanding of the dataset dynamics,

supporting applications that require historical analysis or real-time monitoring. In addition to

standardized metadata, local annotations enable the inclusion of custom metadata tailored to

specific SEDIMARK use cases. This flexibility allows users to embed domain-specific

information, enhancing the richness of annotations for individual data points.

The integration of a data quality model to enrich the data within SEDIMARK refines this process

by emphasizing the accuracy and completeness of individual data points and including

information about outliers, missing data, and other anomalies. As shown in Figure 28, this

metadata will be mainly generated from the Data deduplication, Outlier detection, and Missing

value imputation components. For this to happen, the Smart data model “Data Quality” will be

https://github.com/smart-data-models/dataModel.DataQuality/blob/master/DataQualityAssessment/doc/spec.md

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 39 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

used to enrich the content of data points by matching the output of the data processing and AI

pipelines to the properties of the Data Quality model. The existing specific properties for the

different quality aspects that will be considered within SEDIMARK are provided in D3.1 [14].

For example:

• Accuracy

• Completeness (considering the missing values: isMissing, whatAttribute)

• Outlier (isOutlier, outlier score)

• Duplication (isDuplicate, whatInstance)

3.2.2 Global annotations: enhancing datasets/data streams metadata

Global annotations involve enriching the metadata associated with an entire dataset or data

stream, providing a holistic view of the underlying information. This process is important for

establishing a contextual foundation that facilitates a comprehensive understanding and

utilization of the data as a whole. Smart data models with their domain-specific ontologies offer

a structured semantic context for datasets, encapsulating the essential characteristics of the

data.

Global annotations contribute contextual information to the dataset, offering insights into the

overall purpose, source, and relevance that illuminate the overall data quality. Metrics such as

completeness, accuracy, precision, and timeliness are essential components of global

annotations, enabling users to assess the reliability of the dataset as a whole. This metadata

enrichment facilitates efficient data discovery, sharing, and utilization in applications and

analytics. Global annotations encompass general properties related to datasets or data

streams and are presented in Sections 3.5 and 3.6 in the deliverable D3.1. For instance, we

cite:

• Accuracy

• Precision

• Completeness

• Statistics extracted from data (data format, number of attributes, number of instances)

• Information regarding the dataset usage (e.g., with which ML task this data can be used,

isLabeled)

• If data is curated (information on how outliers are identified and handled, how missing

values are handled)

In this context of global metadata, DCAT is used within SEDIMARK as an integral element of
the Offering description. Its role is to augment information about the Offerings, providing
descriptions of datasets and any pertinent information required for enhanced data
discoverability. Consequently, global annotations will be integrated within the Offering
description component.

3.3 Data Quality Annotations

The Data Quality Annotations is designed to enrich pandas DataFrames (from the previous

phase: Data Curation) by adding quality annotations, which are essential for ensuring data

integrity, reliability, and interoperability across different artefacts, including data, AI models,

and service offerings.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 40 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Built to operate directly on Pandas DataFrames, this component supports two levels of

annotation granularity:

• Entity-level, where a quality descriptor is attached to the entire data point (i.e., the row);

• Attribute-level, where specific columns (i.e., attributes) within each record are individually

annotated.

It follows the NGSI-LD standard for linked data, guaranteeing compatibility with decentralized

and federated data architectures. It checks for and generates key metadata fields (id, type,

and @context) if they are missing. It introduces the property "hasQuality" with the type

"Relationship" and the object which specifies a unique identifier (URN) with the data entity

(either an instance or an attribute) to uniquely identify entities and their associated quality

assessments.

The URN follows this specific pattern:

• For attribute-level annotations:

urn:ngsi-ld:DataQualityAssessment:<annotation_name>:<instance_id>:<attribut_name>

• For entity-level annotations:

urn:ngsi-ld:DataQualityAssessment:<annotation_name>:<entity_id>

Examples with the attribute-level annotations (e.g. temporal station use case)

In this example, the selected attribute for annotation is "availableBikeNumber", and the

corresponding annotation entity type (representing the metadata type of the instance) is

"BikeDockingStatus". Since an NGSI-LD json file can contain multiple instances of different

types, specifying the entity type is essential to accurately associate quality annotations with

the correct data entity.

availableBikeNumber[0].hasQuality.type availableBikeNumber[0].hasQuality.object

Relationship urn:ngsi-

ld:DataQualityAssessment:BikeDockingStat

us:urn:ngsild:BikeHireDockingStation:bikest

ation:MobilityManagement:336926289:availa

bleBikeNumber

...

availableBikeNumber[99].hasQuality.type availableBikeNumber[99].hasQuality.object

Relationship urn:ngsi-

ld:DataQualityAssessment:BikeDockingStatu

s:urn:ngsild:BikeHireDockingStation:bikestati

on:MobilityManagement:336926289:availabl

eBikeNumber

We have also the possibility to annotate a specific attribute at a granular-level.The attribute

(metadata) chosen is "availableBikeNumber[0]".

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 41 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

availableBikeNumber[0].hasQuality.type availableBikeNumber[0].hasQuality.object

Relationship urn:ngsi-

ld:DataQualityAssessment:BikeDockingStatu

s:urn:ngsild:BikeHireDockingStation:bikestati

on:MobilityManagement:336926289:available

BikeNumber

Example with the entity-level annotations (e.g. single bike use case)

In this example, only the entity type "FleetVehicleStatus" is selected for annotation.

... hasQuality.type hasQuality.object

... Relationship urn:ngsi-

ld:DataQualityAssessment:FleetVehicleStatus:urn:ngsild:Vehicle:

vehicle:MobilityManagement:196636

3.4 Data Mapper

The Data Mapper component is designed to convert the enriched pandas DataFrame (from

the previous phase: Data Quality Annotations) back to NGSI-LD json, enabling seamless

integration with the NGSI-LD Broker. During this transformation, it restores the original NGSI-

LD structure, including nested attributes and contextual metadata, ensuring consistency with

the source format.

To support incomplete or flat data sources, this component also generates missing semantic

elements. If the id is absent, a default URN-based identifier is created following the pattern:

urn:ngsi-ld:{entity_type}:{DataFrame_row_index}.

If the entity type is not provided, it defaults to the specified entity_type parameter.

When attributes contain "type": "null", they are automatically corrected to "type": "Property" to

conform to NGSI-LD standards.

Additionally, the component handles timestamp normalization, converting raw Unix

timestamps or numeric date fields into the standardized ISO 8601 format (YYYY-MM-

DDTHH:MM:SSZ), such as 2024-04-17T00:00:00Z, to ensure temporal consistency across

interoperable systems.

3.5 Data Extractor

The Data extractor component is to extract and return specific columns from a pandas

DataFrame (from the Data Formatter component) based on the indices provided by the user.

This functionality is crucial for enabling selective data processing and enhancing

interoperability among various artefacts, including datasets, AI models, and service offerings.

By delivering both the filtered DataFrame and the corresponding column names, the

component ensures that downstream components (for examples Data Mapper, Data Quality

Annotators, or AI service) can operate with the exact data they need. This capability supports

the modular, flexible, and traceable data workflows that are essential for seamless integration

within the SEDIMARK ecosystem.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 42 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

3.6 Metadata Restorer

The Metadata Restorer component is designed to restore essential metadata, particularly

column names, into a pandas DataFrame containing prediction results from an AI model.

In many AI processing pipelines, especially those involving raw numerical arrays or

anonymized data, original column headers are often removed for performance or compatibility

reasons. This component addresses the crucial need to restore this contextual information

once predictions are complete.

By aligning a provided list of column names with the structure of the prediction output, it

ensures that the resulting DataFrame is both human-readable and machine-interpretable.

This restoration process supports traceability and consistency within the broader SEDIMARK

ecosystem. The component includes verification mechanisms to ensure that the number of

columns in the prediction results matches the provided metadata, guaranteeing robust and

reliable reintegration of information.

3.7 Data Merger

The Data Merger component is responsible for combining the original input data with the

corresponding prediction results from an AI model. It ensures that the two DataFrames, the

initial DataFrame (from the Data Formatter) and the DataFrame containing the predicted data

with restored column names (from Metadata Restorer component), are aligned by their column

names.

To facilitate a seamless merge, the function first identifies the union of all column names

present in both DataFrames. For any columns missing in either DataFrame, it adds these

columns and fills them with the string "NaN" to clearly indicate missing data.

The component then aligns both DataFrames to a consistent column order, sorted

alphabetically, and concatenates them by row into a single unified DataFrame. This is

particularly valuable in workflows where prediction results need to be reintegrated with the

original dataset for further analysis, visualization, or exporting.

3.8 Data validation / certification

Validation is required to ensure that the formatting applied to data assets and Marketplace self-

descriptions is valid and complies with their respective information models.

For both types of artefacts, validation is done through a set of stages.

• Format: the format that is used for representation complies with an acceptable

serialization format and variant within that format.

• Syntax: the syntax applied to the annotation of the artefact complies with the classes and

properties defined in the corresponding information model.

• Semantic: the axioms defined in relation to the relationships between instantiations of the

concepts defined in the corresponding information model are compliant. This would

include relationships regarding properties, class hierarchies, cardinalities etc.

• Domain-specific: the literal values that represent qualitative and quantifiable properties

are valid in terms of ranges and states.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 43 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Table 3: artefacts and their validation process

Artefact Information

model

Format Artefact Information

model

Format

Self-Description Marketplace

Information

model

JSON-

LD/RDF

schema

validator

RDF model

validator

Ontology

compliance

checker

 Not applicable

Data Asset NGSI-LD,

Smart Data

Models

JSON-LD

schema

validator

JSON-

schema

based

validator,

NGSI-LD

model

validator

SHACL

validator (for

graph-based

validation)

Domain

ontology +

taxonomy

validator

3.8.1 Offering Description Validation

When Offerings are submitted to the Offering Manager, the Offering Manager will check the

validity of the Offering Description with the Validation Suite. The document will be checked

syntactically in that it complies with the JSON-LD schema and is compatible with the RDF

schema. The next step is that it checks that it complies with concepts defined in the SEDIMARK

ontology. It will then check that the minimum required instances of classes and their properties

are provided. To enable this, SHACL validation will be used for this purpose. The document

first should be viewed from an Offering centric perspective, meaning that any validation starts

with the Offering Class. The mandatory requirement for an Offering document must have the

following:

Table 4: SHACL Shape Rules for Offering Validation

Class Property Value Shape (Rule)

Offering dcterms:title xsd:string must have one

 dcterms:description xsd:string must have one

 dcat:themeTaxonomy skos:ConceptScheme must have at least one, and

must exist in document

 sedimark:hasAsset sedimark:Asset must have at least one, and

must exist in document

 sedimark:isListedBy sedimark:Self-Listing must have at least one, and

must exist in document

 sedimark:hasOfferingC

ontract

sedimark:OfferingContr

act

must have at least one, and

must exist in document

 dcterms:license xsd:string must have one

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 44 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Class Property Value Shape (Rule)

Asset sedimark:offeredBy sedimark:Offering must have at least one, and

must exist in document

 sedimark:isProvidedby sedimark:AssetProvisio

n

must have at least one, and

must exist in document

 sedimark:hasAssetQua

lity

sedimark:AssetQuality must have at least one, and

must exist in document

 dcterms:theme skos:Concept must have at least one, and

must exist in document

 dcterms:identifier xsd:string must have one

 dcterms:title xsd:string must have one

 dcterms:description xsd:string must have one

 dcterms:creator xsd:string must have one

 dcterms:issued xsd:string must have one

 dcat:keyword xsd:string must have at least one

 dcterms:spatial xsd:string only one

 prov:generatedBy xsd:dateTime can have one

 dcat:isVersionOf xsd:dateTime can have one

Self-

Listing

sedimark:belongsTo sedimark:Participant must have only one, and must

exist in document

 dcterms:title xsd:string must have one

 dcterms:description xsd:string must have one

 dcterms:issued xsd:dateTime must have one

 dcterms:modified xsd:dateTime must have one

 schema:accountId xsd:string must have one

 schema:email rdf:Resource must have one

OfferingC

ontract

odrl:permission odrl:Duty must have one

 odrl:duty odrl:Duty must have one

 odrl:obligation odrl:Duty must have one

The equivalent SHACL description is provided in Annex 9.1.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 45 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

4 The AI enabler
The AI Enabler of SEDIMARK is a core component designed to empower decentralized,

privacy-preserving, and energy-efficient AI workflows. It integrates tools and services to allow

participants to train, deploy, and optimize machine learning models locally or collaboratively

through federated learning, without sharing raw data. The AI Enabler is delivered as a modular,

containerized toolbox, fully deployable via Docker, Docker compose, and optionally

Kubernetes for scalable environments. The modularity ensures that each organisation or

participant can selectively deploy the services they need, according to their infrastructure, use

case, and privacy requirements.

From a user perspective, the AI Enabler allows to:

• Train models locally on private datasets

• Join a federated learning training session without moving data

• Optimise models for energy efficiency and transferability across environments

• Deploy services via simple commands using Docker/Compose or Kubernetes manifests

4.1 Interoperable Federated Learning for SEDIMARK

4.1.1 Introduction

Federated Learning (FL) is a key paradigm shift introduced in SEDIMARK to enable AI

collaboration without centralized datasets. Instead of uploading sensitive data to a central

server, participants train models locally and only share model updates. These updates are

then securely aggregated to build a shared global model. In SEDIMARK, we focus on

interoperable FL, meaning that:

• Different organisations with different platforms and infrastructures can still collaborate

• Model updates follow standard formats like ONNX, TensorFlow to ensure compatibility

• Communication between nodes is handled through secured APIs.

As a user aiming to participate in a FL session within the SEDIMARK framework, the process

begins by deploying the local FL agent using the provided Docker Compose file or Kubernetes

manifest. Once deployed, the user configures the client to point to their local dataset folder

and defines key training parameters, such as batch size and learning rate, typically through an

.env file or a YAML configuration. The client is then connected to a Federated Learning server,

also provided as part of the SEDIMARK Toolbox, by specifying the appropriate API endpoint.

After setup, the client will execute training locally on the user’s infrastructure and securely

share encrypted model updates with the FL server. This process enables users to

collaboratively build high-quality AI models while fully preserving data sovereignty, ensuring

that raw data remains private and on-premise.

4.2 Local model training

Local model training remains essential when data must not leave the organization's premises

or when specific edge applications are targeted. This service is part of the AI Enabler, allowing

organizations to independently train and optimize AI models while preparing them for potential

future federated learning participation.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 46 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

In the SEDIMARK marketplace, users are empowered to deploy tailored AI model training

pipelines suited to specific use cases—such as energy consumption forecasting or customer

churn prediction. These pipelines are designed for scenarios where users have access to local

datasets, enabling model training to occur entirely on-premise or within a trusted environment.

This approach ensures data privacy and regulatory compliance by eliminating the need to

share raw data externally.

Each AI pipeline is accessible through the SEDIMARK Marketplace interface as a selectable

service tailored to a specific use case, such as energy consumption prediction or customer

churn analysis. Once selected, the pipeline is deployed as a containerized microservice within

the user’s trusted execution environment. The pipeline follows a predefined sequence of steps

including secure data loading, preprocessing using certified processors (e.g., normalization,

feature encoding), local model training with configurable algorithms, and model evaluation

based on relevant performance metrics. This setup ensures full control over data privacy while

enabling reproducible, high-quality machine learning workflows.

To better illustrate this process, the figure below presents the structure and operational flow of

two AI pipelines provided via the SEDIMARK marketplace: one for energy consumption

prediction and another for customer churn analysis. Both pipelines are designed to execute

entirely within the user’s local environment, using their own datasets and resources inside the

SEDIMARK's Marketplace User Interface (UI).

Figure 29: Structure and operational flow of two AI pipelines provided in the marketplace

Each pipeline Is composed of four main stages:

• Data processing: The user’s local data is securely loaded and passed through certified

preprocessing components, including steps such as data cleaning, normalization,

transformation, and feature engineering. These steps ensure consistency and readiness

of the dataset for downstream machine learning tasks.

• Model tuning and training: The pipeline performs local model training using configurable

machine learning algorithms, optionally enhanced with automated hyperparameter tuning.

In scenarios involving Federated Learning, the training process is extended to a

collaborative setup where the user’s environment acts as a decentralized node. Each

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 47 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

node trains the model on its local data and periodically exchanges model updates (not

raw data) with an aggregator through secure protocols. This allows multiple users to

contribute to a shared global model while preserving full data privacy and ensuring

regulatory compliance. The federated approach leverages distributed knowledge across

data owners without requiring central data storage.

• Model evaluation: The trained model is validated using performance metrics such as

accuracy, F1-score, or RMSE, depending on the use case. This evaluation is done locally

and can be used to compare multiple training runs.

• Model saving and tracking: Finally, the trained model and its associated metadata (e.g.,

hyperparameters, metrics, training duration) are logged using MLflow, providing a

versioned, reproducible record of the experiment. This enables the user to track multiple

runs, select the best model, and export it for further use or deployment.

The AI SEDIMARK pipeline will enable the building and training of an AI model.This is

illustrated here with a model defined for energy consumption prediction.

In the electricity consumption prediction endeavour, we harness a week's worth of time-series

energy consumption data, preceding our decision-making juncture, to forecast subsequent

daily consumption in hourly intervals (Figure 30). Utilizing the advanced DeepAR model [15],

we aim to construct a universal framework capable of accurately predicting consumption

patterns across facilities and buildings of diverse magnitudes (Figure 37).

Figure 30: general principals of the locally trained predictive module

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 48 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Figure 31: comparing deepAR based predictions with observations

Another example of a locally trained model relates to customer segmentation and churn

prediction. In this initiative, we meticulously preprocess and sanitize datasets encompassing

electricity consumption patterns, payment histories, geographical metrics, and behavioural

indicators like complaints. Employing state-of-the-art ensemble decision tree algorithms such

as LightGBM [16], Catboost [17], or XGBoost [18], our objective is to segment our customer

base and forecast churn propensity, culminating in a calculated churn probability for each

individual customer (Figure 32).

Figure 32: customer segmentation and churn prediction.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 49 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

4.2.1 Times-series Multivariate Forecasting based on CrossFormer technique

SEDIMARK also provides the support for multivariate forecasting using the latest transformer

based deep learning. Different to classical machine learning, CrossFormer [19] is built to

forecast time-series multivariate by exploiting temporal and cross-variable (inter-dimensional)

information. To achieve this, CrossFormer contains three key components:

• Dimension-Segment-Wise (DSW) Embedding: This method segments and embeds the

input time series across dimensions, allowing the model to capture local temporal patterns

more efficiently.

• Two-Stage Attention (TSA): The attention mechanism operates in two stages — first

across time (to learn temporal dependencies within each variable), and then across

dimensions (to capture relationships between variables).

• Hierarchical Encoder-Decoder (HED): A scalable architecture that helps manage long-

range dependencies while keeping computation efficient.

With above components involved, CrossFormer is well suited for forecasting tasks in

environments like SEDIMARK, where data is high dimensional, noisy and time-dependent.

Furthermore, this technique is available as ready to use as Python package for further

development and usage (not limited to SEDIMARK). Besides, this method can fit to diverse

use cases with different configurations.

CrossFormer Component

As a component of the AI toolbox within SEDIMARK, the CrossFormer module is structured

into two main parts, referring to Figure 20:

• Core Package: This includes the implementation of the CrossFormer model itself and the

associated data interface. It handles model architecture, data preprocessing, and

interaction with training/inference routines.

• Wrapper Scripts: These scripts provide high-level interfaces for training and inference.

They are designed to be easily configurable and support automated integration into

different use cases.

Together, these components enable CrossFormer to serve a variety of forecasting tasks within

SEDIMARK. The modular design allows it to be reused or adapted across domains with

different data formats or prediction requirements, supporting scalable and flexible AI-driven

services.

Core Package includes main features of the algorithm, including model, evaluation, and data

processing.

First, the model feature is implemented by PyTorch Lightning providing the model definitions,

forward logistics and engineering interface support (training and inference). The model can be

initialized with diverse configurations to fit different use cases.

Second, the evaluation feature compresses loss function and evaluation metrics, which is

provided to evaluate the performance of model during training and validation. It includes MAE,

MSE, RMSE, MAPE. MSPE. RSE, CORR, scaled MSE, normalized MSE, scaled Log Cosh

and Hybrid Loss. The details of each function can be found in Annexes - Evaluation Metrics

for CrossFormer. Based on those functions, we define the hybrid loss (score) with a

controllable term for optimizing the model, which can be used to handle input values in diverse

range. It is defined as 𝑆𝐶𝑂𝑅𝐸 = 𝛼𝑆𝑐𝑎𝑙𝑒𝑑𝑀𝑆𝐸 + (1 − 𝛼)𝑆𝑐𝑎𝑙𝑒𝑑𝐿𝑜𝑔𝐶𝑜𝑠ℎ . The purpose of the

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 50 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Hybrid Loss is to balance forecasting on trending and exact estimates on each time step.

Therefore, model can perform higher forecasting accuracy when applied with Hybrid Loss

rather than simple MSE.

Third, the data feature provides the interface to handle general 2D data from different use

cases with various data shape. It supports automatic data loading, batching and dataset setup.

The Wrap Script is another important component. It provides a convenient, standardized

interface for using the CrossFormer model within data processing or pipeline environments

such as SEDIMARK. It contains utility functions for model training (fit/setup) and inference,

reducing boilerplate and abstracting away low-level details. As well, it enables the connection

with MLFlow to register and load models inside Mage AI.

Figure 33: CrossFormer Component Overview

Summary of the CrossFormer Component

CrossFormer plays a key role in the AI pipeline of SEDIMARK, serving as the core forecasting

module based on historical time series data. It processes 2D value-only data frames received

from upstream blocks and supports both training and inference workflows. The model's

behavior is governed by configuration files, allowing flexible adaptation to a wide range of use

cases.

To support robust deployment and lifecycle management, MLflow [20] is integrated for model

versioning, monitoring, and experiment tracking. During training, metrics and artifacts are

automatically logged, and the final model is registered for subsequent inference tasks.

The Figure 34 below illustrates how the CrossFormer component fits into the training and

inference flow within the AI toolbox.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 51 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Figure 34: CrossFormer Component Workflow Overview

 Crossformer Pruning for Efficient Time Series Forecasting

Crossformer Pruning is designed to reduce the computational complexity by removing

redundant parameters without compromising performance. It plays a crucial role in optimizing

model deployment for resource-constrained and federated environments, aligned with the

goals of the SEDIMARK project.

SEDIMARK focuses on secure and efficient machine learning across distributed data

ecosystems. The pruning module contributes by:

• Reducing model size for faster edge inference

• Lowering memory and energy consumption

• Enabling deployability in heterogeneous, low-power nodes

Pruning is a technique that removes less important parts of a neural network (such as weights

or neurons), reducing the overall size and computational cost of the model. This process leads

to more efficient models that can run faster and require fewer resources, often with little or no

drop in predictive performance.

The following two pruning techniques are applied to reduce model complexity and improve

efficiency:

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 52 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

• Unstructured Pruning: unstructured pruning removes individual weights from the network

based on their importance. This type of pruning leads to sparse weight matrices and can

significantly reduce parameter count.

o Typically applied based on magnitude or statistical criteria.

o Maintains model architecture but zeroes out less significant weights.

o Requires sparse-aware hardware or libraries to realize speed or efficiency gains in

practice.

• Structured (Channel) Pruning: Structured pruning removes entire neurons, channels, or

attention heads, resulting in a physically smaller model with fewer operations (FLOPs).

This is especially beneficial for hardware acceleration.

o Applied at a higher architectural level.

o Results in reduced model size and faster inference.

o Maintains dense weight matrices, making it highly compatible with standard hardware

like CPUs and GPUs

Combining unstructured and structured pruning provides a balanced trade-off:

• Unstructured pruning reduces redundancy in weights.

• Structured pruning optimizes the model for deployment.

• The result is a smaller, faster model that can still match original performance when fine-

tuned.

The pruning module fits into Crossformer pipeline at the model optimization stage, after model

loading and before training or inference.

• Input: Config file (JSON), training/evaluation data (CSV/DataFrame)

• Output: Pruned, fine-tuned, and MLflow-registered model

As illustrated in Figure 35, the pruning workflow is structured into stages distinguished by

colour. The blue stages represent the initial setup, including loading the configuration and data,

and initializing the data interface. The orange stages correspond to key model optimization

operations, such as applying pruning (unstructured or channel pruning), saving the

intermediate pruned model, reloading it, and profiling it for FLOPS and size. The purple stages

cover the final training of the pruned model, registration with MLflow, and the testing or

inference phase. This emphasizes the modular and iterative nature of the pruning process

within the Crossformer pipeline.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 53 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Figure 35: Crossformer Pruning Flow

Evaluations for KPIs, benchmarking scenarios, and comparison are documented in the

Performance Evaluation Section of SEDIMARK_D3.2 [14].

4.2.2 Offering Generation training

The Offering Generator transforms asset metadata into semantically rich JSON-LD offerings

aligned with the SEDIMARK Marketplace Information Model. By leveraging Large Language

Models (LLMs) and sophisticated prompt engineering techniques, it bridges the semantic gap

between natural language descriptions and structured marketplace offerings. This section

details the technical implementation, prompt engineering methodology, and training approach

used to develop this module.

Prompt Engineering Cycle

The prompt engineering cycle forms the foundation of the Offering Generation system and was

established as the initial phase of development due to the inherent complexity of JSON-LD

structure and the need for semantic precision in marketplace offerings. This approach was

necessitated by the observation that even advanced LLMs struggle with producing consistently

valid JSON-LD structures without proper guidance, particularly when dealing with complex

relationship patterns required by the SEDIMARK ontology.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 54 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

The system implements a cyclical five-stage prompt engineering process as illustrated in

Figure 37

Figure 36: Five stages of Prompt Engineering process

 Design Prompt: Engineer JSON-LD schema-aware prompts with explicit structural

requirements, incorporating ontological constraints and relationship patterns from the

SEDIMARK information model.

Submit to LLM: Present prompts to the model with appropriate context, using controlled

temperature settings (0.7) to balance creativity with precision.

Receive Output: Capture generated JSON-LD structures and parse them for structural and

semantic analysis.

Evaluate Output: Apply comprehensive evaluation metrics to identify pattern failures and

semantic inconsistencies

• Exact Match Comparison is percentage matching of each field.

• Structural Similarity Index (SSI) measures structural resemblance.

• Custom JSON Diff identifies key-value differences.

• Semantic match validation assesses relationship correctness.

BLEU score measures n-gram overlap between generated structures and ground truth

references, calculated as: 𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∙ 𝑒∑ 𝑤𝑛 log𝑝𝑛
𝑁
𝑛=1 where BP is brevity penalty, wn are

weights, and pn is n-gram precision

Refine Prompt: Iteratively improve prompts based on evaluation results, incorporating

successful patterns and adding guardrails against common errors.

This cyclical approach was essential for developing a corpus of reliable prompt templates that

could reliably produce valid JSON-LD structures conforming to the marketplace information

model.

Zero-Shot Testing and Evaluation: After establishing baseline prompt patterns,

comprehensive zero-shot testing was conducted to evaluate the generalizability of the

approach and identify systematic failure modes. This phase was critical for understanding the

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 55 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

inherent limitations of pretrained models when dealing with structured JSON-LD generation

tasks without domain-specific fine-tuning.

The system's evaluation framework measured performance across multiple dimensions as

shown in section 2.6. Structural accuracy was assessed using automated validation against

JSON-LD schemas, with successful generations typically achieving above 95% compliance.

Semantic validity was evaluated through graph-based analysis of entity relationships, ensuring

that connections like "hasAsset," "providedBy," and "references" were correctly established

according to the marketplace ontology.

Initial testing across multiple LLM architectures (Claude, Gemini, Llama, GPT, Mistral)

identified five key differences in zero-shot performance:

• Resource identifier pattern differences: Inconsistent URI formatting and namespace

usage.

• Dublin Core Terms (DCT) implementation differences: Variations in property application

and value representation.

• Entity hierarchy and relationship differences: Incorrect parent-child relationships and

missing mandatory connections.

• Temporal representation differences: Inconsistent datetime formats and temporal

relationship modelling.

• Structural component differences: Variations in entity organization and attribute

placement.

Model Architecture and Pipeline

Based on the limitations identified in zero-shot testing, the system architecture was designed

as a student-teacher framework where large, computationally intensive models serve as

teachers that produce structured JSON-LD examples, while a compact, efficient model (Qwen

2.5-3B) learns to replicate these capabilities through knowledge distillation techniques.

The operational pipeline begins with contextually aware prompt engineering that provides

carefully structured instructions to define the expected JSON-LD structure, relationships, and

ontological constraints, following the marketplace information model. The multi-stage

optimization process employs several advanced techniques:

Gradient accumulation: where gt is the gradient from the i-th microbatch.

Label smoothing: where α is the smoothing factor and K is the

number of classes.

Tiered dropouts: Progressive dropout rates applied to different layers of the network, with

higher rates for later layers.

Cosine learning rate schedule: .

The model was initialized with pretrained weights and then fine-tuned on a diverse corpus of

JSON-LD examples gathered from the prompt engineering cycle. This approach significantly

improved the model's ability to generate semantically valid and structurally correct offerings

across diverse domains.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 56 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Context Dropout Strategy

A key innovation in the training methodology was the implementation of curriculum learning

through a progressive context dropout strategy. This approach was necessary to ensure the

model could generalize beyond the examples provided during training and handle novel input

descriptions with limited or no contextual examples.

The context dropout rate was controlled by the following formula:

𝐶𝐷(𝑡) = min⁡(𝐶𝑚𝑎𝑥, 𝐶0 ∙ (1 − 𝛼 ∙ 𝑡 𝑇⁄)

Where,

• CD(t) is the context dropout rate at training step t

• Cmax is the maximum dropout rate

• C0 is the initial dropout rate

• α is the dropout increase factor

• T is the total number of training steps

 This approach progressively challenges the student model with increasingly difficult context

conditions:

• Initial phase: Full context availability (70% of training) to establish core pattern recognition

• Middle phase: Partial context with progressive dropout (20% of training) to build

generalization capabilities

• Final phase: Minimal or no context (10% of training) to simulate real-world conditions with

limited examples

By abstracting away the complexities of JSON-LD syntax and marketplace ontologies, the

Offering Generator significantly reduces the technical barrier for data providers to participate

in the SEDIMARK ecosystem, while ensuring semantic interoperability across all marketplace

offerings.

4.3 Distributed model training

Distributed model training within SEDIMARK can be divided into two main concepts:

1. Federated learning (FL): this concept employs a server and a set of worker nodes. The

role of the server is to orchestrate the overall training process through model aggregation

and model parameter redistribution approaches. The role of the worker nodes is to train

a local model based on the local data and the updated parameters received from the

server. Here the server has a complete view of the worker nodes, while the individual

worker nodes are only aware of the server.

2. Gossip learning: this concept only contains worker nodes. Here the worker nodes are

connected with a subset of other worker nodes, where they share the model parameters.

Through gossiping of model parameters between worker nodes all worker nodes in the

network will eventually agree on a global model. Differently from the previous setting, here

workers are aware of a subset of other workers, but generally, no worker has a full view

of the complete network of workers.

The differences between federated and gossip learning are illustrated in Figure 37. The clear

advantage of the Gossip approach is that it can avoid the single point of failure by eliminating

the server from the computation. However, this comes at the expense of the gossip approach

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 57 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

taking longer to converge as it takes longer for the model updates to propagate through the

communication network.

a) Federated Learning b) Gossip Learning

Figure 37: the difference between the architecture of a) federated and b) gossip learning.

Within SEDIMARK, two frameworks for distributed learning have been proposed and

developed to cater for different scenarios and different user preferences.

• deFLight: this is a dynamic framework that is used for scenarios when data providers

share through the marketplace either a model for training or a training process. This

scenario is dynamic with participants being able to join or leave the training process at

any given time.

• Fleviden: is an extensible tool to define computational graphs representing the FL agents

and the operations therein. We put special emphasis on tools that improve interoperability

at the AI/ML models level, acknowledging that not all data providers/sources will use the

exact same software to train/run the models from a federated learning point of view

Figure 38: works for distributed learning developed within SEDIMARK.

As shown in Figure 38, the two frameworks are both designed to be modular and adaptive so

that any project modules (i.e. models, aggregation mechanisms, privacy modules, etc.) can be

developed in a framework agnostic way so that they can be used within both networks by

exploiting their pods/wrappers.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 58 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

When developing a FL solution, we need to consider the security requirements as a two-step

process:

• The solution developer must develop the details of a federated algorithm by combining

several techniques.

• The data provider must run a script representing the FL algorithm. This script must provide

guarantees that it will follow the federated learning protocol strictly, e.g., keep the data

and inference artifacts inside the provider infrastructure. This is what we call the minimum

compliance requirement for any federated learning deployment.

There are several ways in which compliance can be accomplished. One alternative is that the

data provider trusts the solution developer, which is not interesting from our perspective as in

such a case we can fall back to more traditional machine learning solutions. Another approach

is for the data provider to come up with their trusted review protocol to ensure the federated

script provided by the solution developer is compliant. However, this is a difficult and expensive

task that requires expertise and the capabilities to read through code and its dependency tree.

A proposal to be considered in future evolutions is the introduction of a third agent in the

development process: the platform provider. The platform provider would create tools for the

solution developer, such as automatic compliance checks, and demands the data provider to

trust the platform provider but not the solution developer. This way, three-sided marketplace

on top of federated learning:

• The data provider side, with private data and infrastructure offerings.

• The solution developer side, with novel algorithmic offerings and advanced

implementations.

• The platform provider side, with their tooling offerings.

4.3.1 deFLight

SEDIMARK provides a flexible, fully decentralised model training framework. Titled “deFLight”

this component offers a modular fully decentralised, asynchronous machine learning training

solution. deFLight is built around a simple HTTP request/response architecture in order to

conform with the constraints of the SEDIMARK connector. Additionally, deFLight is a dynamic

framework, not requiring the set of training participants to be known ahead of time.

deFLight moves beyond a client/server model, and instead makes nodes the first class citizens

within the distributed learning environment. While deFLight primarily targets fully decentralised

model training, an FL paradigm can be easily created by arranging the nodes within a star

topology. deFLight inspired by Flower, has been developed to be scalable, allowing

participation of heterogeneous clients running on different platforms, be framework agnostic

(the group of clients can use Tensorflow, PyTorch, etc. according to their group decision), etc.

Within SEDIMARK, a node can be instantiated by any participant wishing to collaboratively

train a machine learning model and discover participants with similar compatible datasets. A

training process, specifying a model architecture, a dataset specification, and a number of

hyperparameters will then be advertised within the wider SEDIMARK trust infrastructure. New

participants with compatible datasets can discover this advertised training process, and then

launch their own deFLight nodes. Nodes follow a broader Gossip Learning (GL) protocol

whereby they train locally their own version of the ML model and then send updates to other

nodes that they select via a chosen sampling protocol. deFLight is developed in a modular

approach, such that tools developed within the SEDIMARK project in other tasks, i.e., model

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 59 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

types, sampling strategies, quantization, etc. can be easily deployed within deFlight without

the need of rebuilding those tools from scratch, but only with the use of simple wrappers.

4.3.1.1 deFLight node implementation

In many federated learning frameworks, there are two types of nodes that participate in the

federated learning training process: (i) a client and (ii) as server. The client is the node that

does the local training process, running the ML model on top of the local data, periodically

sending the model parameters to the server and receiving the updated parameters for the next

round. The server is the node that at each round samples the clients to run the local training,

receives the parameters from the clients, runs the process for aggregating the parameters and

sends the aggregated parameters back to the clients for the next round.

In deFlight the two types of nodes have been merged into a single deFlight node, whose

internal structure is depicted in Figure 39 below. Inspired by the Gossip Learning approach

where all clients are of a similar type, deFlight generalises the notion of a node in such a way

that it can cover multiple distributed learning scenarios (as discussed below).

As depicted in Figure 39, a deFLight node consists of four main threads of operation:

• Receive thread, which handles the reception of weights from the rest of the nodes

participating in the learning process. As discussed above, deFlight inherits from Flower

the “communication-agnostic” feature, allowing multiple communication protocols

between the nodes. However, currently, only HTTP is tested/supported, while in the future

other protocols (i.e., gRPC) will be fully supported.

• Aggregation thread, which is the main thread that runs the sampling of the fellow nodes

with which the node will communicate in the current round, and the runs rounds of

aggregation of the parameter received from the fellow nodes.

• Training thread, which is the main thread that runs the local training process of the model

based on the local data.

• Send thread, which takes the output weights from the training process and forwards them

to the fellow nodes that participate in the current round.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 60 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Figure 39: the internal structure of a deFLight node.

In its current state of development, deFlight uses a HTTP request/response communication

protocol for sending and receiving model parameters, similar as within the Flower framework.

The communication “receive” component hosts a Starlette HTTP server that continuously

listens for incoming connections from other nodes, receives weights, and places them within

a multiprocessing queue to be later aggregated. The use of a multiprocessing queue is critical

to ensure that no weights are lost due to congestion, when receiving weights from many other

nodes.

The main operational thread runs a local training process using Keras-Core for interoperability,

such that the user can choose from either Pytorch, Tensorflow or Jax as their backend deep

learning framework (more detail on model interoperability is given in SEDIMARK Deliverable

D4.3).

Execution alternates between rounds of aggregating any model updates that have been

collected in the aggregation queue, running the local training procedure, and then launching

connections to communicate model updates to other nodes, selected via a sampling strategy.

The dynamic nature of the deFlight training process allows nodes to enter or leave the process

at any given moment, without any special requirements, apart from following the SEDIMARK

procedures for participating in the training as a service process.

4.3.1.2 Interaction of deFLight framework with the rest of the SEDIMARK components

To implement the distributed learning process, deFLight interacts with several other layers and

components within the SEDIMARK architecture. These interactions are provided in the figures

below.

https://www.starlette.io/

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 61 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Figure 40: deFLight-based Federated Learning process.

Figure 40 shows the interactions between deFLight and the rest of the SEDIMARK

components during the initiation and the execution of a Federated Learning process. It is clear

that deFLight basically interacts with the AI Orchestrator, which is the main component that

handles the training process. In this scenario, the assumption is that an “Initiator”, which is a

SEDIMARK user (i.e. a provider) wants to start training a ML model on their data and then start

a Federated Learning process, so that more participants join and help to train a better model.

In this respect, the AI Orchestrator provides deFLight with the user preferences and settings,

i.e. the framework to use, the model to train, etc. deFLight then initiates the training process,

by initialising the model structure and its weights and forwards them to the Offering registration

(through the AI Orchestrator) so that the training process is registered to the marketplace. A

participant interested in the process can discover the training process in the marketplace,

finding the respective offering and receiving it from the “Initiator” via the Offering sharing

component. The details of the distributed process are forwarded to deFLight through the AI

Orchestrator. The deFLight module on the Participant contacts the respective module of the

Initiator to register as a client and receive the latest version of the model weights. Then

deFLight initialises the local model and starts the local training process, updating the model

and sharing the model updates with the “Initiator”.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 62 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Figure 41: deFLight-based Gossip Learning process.

Figure 41 shows the interactions between deFLight and the rest of the SEDIMARK

components during the initiation and the execution of a Gossip Learning process. The

initialisation of the process is similar to that of Federated Learning (discussed above). The

difference here is that there is not a server that holds a registry of the connected clients. To

allow nodes to know the participants in the process, we exploit the distributed storage

component of SEDIMARK, storing a “network graph”, which is updated any time a node enters

or leaves the training process. This is done by the “Peer discovery” component, which gets

information from deFLight regarding the training process id, etc. When a “participant” discovers

and wants to join the training process, the deFLight component initialises the received model

and contacts the Peer discovery module to find out the fellow nodes participating in the current

round. Then, deFLight executes the next round, training the local model, updating the weights

and sending the weights to the fellow participants, while at the same time received the updates

from its neighbours, performs the weight aggregation and continues to the next iteration of the

training process.

In the current implementation, the communication between the deFLight nodes takes place

directly through the deFLight component. In future versions, deFLight will be extended to use

the interaction and communication protocol of SEDIMARK.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 63 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Figure 42: deFLight-sample user interface

deFLight is developed mainly as a command line tool, but for ease of use for novice users a

simple user interface has been developed as seen in Figure 42. This user interface gives users

the option to set the desired topology, to add their peers, to add the configuration about the

dataset to use, the model to run, etc., and then they can start the local training process and/or

participate in the decentralised training. When the training process starts, there is the option

to visualise the results, showing the training process and the set metric, i.e. loss. A more

thorough and SEDIMARK-specific user interface has been developed within the integration

process and will be presented in WP5.

Beyond SEDIMARK, we will continue to iterate on the development of deFLight. We intend to

test its robustness when run across a greater number of machines, with larger datasets and

larger models. We intend to further modularise deFLight, to allow for the simple composition

of the modules for aggregation, sampling and quantization that will be developed elsewhere

within SEDIMARK. Some evaluation results are given in both D3.1 and D3.2, where the trade-

offs between communication and performance are provided.

4.3.2 The Fleviden tool

As introduced in deliverable D3.3, Fleviden is an extensible framework developed by ATOS

for orchestrating federated learning (FL) pipelines. Its architecture is based on the pipes and

filters pattern, where agents (mainly several clients and one server) act as filters, and

messages are exchanged through wires (pipes).

The basic functional unit in Fleviden is the pod, a modular entity with input and output wires.

The mentioned pipelines are built by instantiating pods, linking them, and waiting for or bridging

messages to/from external sources (e.g., HTTP or Kafka interfaces). Each pod encapsulates

a logic that processes incoming messages and triggers outputs, enabling the creation of

distributed learning workflows with privacy-preserving features. This modular architecture

facilitates flexible and secure deployments across heterogeneous environments.

4.3.2.1 Handling of model interoperability in Fleviden

Fleviden includes support for the most used deep learning frameworks, such as Keras (with

TensorFlow backend), Torch, and ONNX, enabling a wide range of neural models to be

https://keras.io/guides/serialization_and_saving
https://pytorch.org/docs/stable/notes/serialization.html

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 64 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

incorporated into federated learning pipelines. Fleviden pods were designed to load and run

serialized model definitions, such as Keras .h5, TorchScript .pt, or ONNX .onnx files.

Since then, Fleviden's capabilities in terms of model interoperability have expanded

significantly. One major update is the inclusion of native support for models developed using

scikit-learn, a widely adopted machine learning library. Notably, support has been added for

decision trees, a model type not previously available in Fleviden. This addition expands

Fleviden's use cases, particularly in areas where interpretability, computational efficiency, and

non-gradient-based training matter.

Moreover, a new feature has been added to further enhance model flexibility: in addition to

loading models from files, Fleviden now allows creating models directly from Python class

definitions. That is, an architecture can be defined directly in a .py script and injected into the

Fleviden trainer pod at runtime. This provides a smoother development experience, enabling

users to define and initialize models programmatically within their application code. This

functionality is particularly useful in research settings or when deploying experimental models

without going through a full serialization pipeline.

Fleviden also has a variety of customizable pods that allows developers to define the internal

logic that gets executed when calling its interfaces, which is usually encapsulated and hidden

from end-users. In this regard, the CustomTrainer pod –and other Custom pods from other

packages– can be leveraged to define a fully customized training pipeline that is adjusted to

the use-case at hand, which enables training models in frameworks that are not natively

supported within Fleviden, as long as the required libraries and dependencies are installed in

the application environment. All user-defined custom functions must follow the Fleviden

request message convention, namely, by taking a Python dictionary as input and returning a

JSON-serializable dictionary as output. By enforcing this convention, we make sure that

Fleviden is open for extension without breaking interoperability with the rest of pods.

These developments not only increase the scope of Fleviden's interoperability layer but also

align with SEDIMARK’s broader objective of supporting heterogeneous federated learning

across multiple organizations, technologies, and regulatory requirements.

4.3.2.2 Handling of service interoperability in Fleviden

In deliverable SEDIMARK_D3.3, working on the development of a high-level scripting layer for

Fleviden, referred to as Fleviscript, was reported. The initial motivation behind this proposal

was twofold:

• Technical simplification: Fleviscript was designed to reduce the complexity of

programming federated learning workflows directly in Python. It aimed to provide a more

user-friendly interface for non-expert users or stakeholders who did not need fine-grained

control over pod-level logic but still required the ability to define orchestrated federated

learning pipelines.

• Compliance and security: This script also aimed to satisfy a key business requirement: to

ensure that client scripts remained compliant with federated learning principles. This

meant enforcing local data processing and limiting the set of operations to those that could

not compromise privacy (e.g., create, link, wait, bridge), thereby reducing the attack

surface and ensuring minimum compliance guarantees.

Fleviscript was conceived as a declarative, domain-specific language design to connect

Fleviden pods and build federated learning workflows. A full specification of its syntax and

semantic model (including the structure of import, input/output wire registration, variable

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 65 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

assignments, and pod configuration instructions) was detailed in an annex of deliverable

SEDIMARK_D3.3.

However, as the development of the Fleviden framework progressed and implementation of

some use cases and more advanced orchestration logic began, it became clear that

maintaining a separate domain-specific scripting language posed several challenges:

• Limited flexibility and capabilities: Although Fleviscript was originally meant for simple

workflows, it didn’t have enough power to handle more dynamic or complex ones. Adding

features like conditions, loops, or error handling would have made the interpreter much

more complicated and moved it away from its goal of being a safe and straightforward

language.

• High maintenance cost: Introducing a new language also meant maintaining a full set of

tools, including a parser, interpreter, debugger, and possibly even custom editors or

validators. This added significant technical work without offering clear long-term

advantages compared to using existing Python-based tools.

• New needs and use cases: As the Fleviden ecosystem grew and new partners joined, the

need for flexibility and easy integration became more important than keeping the language

simple. Supporting different environments, performance improvements, and integration

with external connectors required a more flexible and extensible setup.

In this context, the decision was made to deprecate the Fleviscript approach and replace it

with a more modular and scalable system based on multiple layers. This new design allows

developers and end users to choose the level of control or simplicity that works best for them.

Fleviden now uses a layered architecture that offers different ways to define federated learning

pipelines, depending on the user’s experience the complexity of the deployment. Currently, the

two main layers are core and engine.

The core layer represents the lowest level of abstraction within the Fleviden framework. It is

designed for expert users who require full control over the definition and execution of federated

learning workflows. At this level, users interact directly with pods, which are processing units

organized by function, such as aggregators (fleviden.core.aggregators), trainers

(fleviden.core.trainers), and others. Developers can create custom pods by using the

fleviden.core.pod.pod.Pod class, enabling fine-grained customization of the logic involved in

the federated learning process. This layer is ideal for those with a deep understanding of

federated learning principles who need to implement novel or non-standard patterns.

Core pods are simple by definition, implementing an atomic functionality with one specific

responsibility. Different Fleviden packages follow a strategy pattern approach, making pods

with similar logic easily interchangeable. For example, all aggregators register the same input

and output wires so that the specific aggregation technique (weighted average, median, Krum,

etc) can be selected at runtime. To enforce this strategy pattern approach, although Python

supports duck typing, Fleviden relies on the ABC (Abstract Base Classes) module to define

the base pods of each package (e.g., an abstract Aggregator). This design choice is key to

building generic pipelines and enabling a programming-to-interface approach that facilitates

building Fleviden’s layers of abstraction.

The engine layer, by contrast, provides an intermediate abstraction that significantly simplifies

the construction of federated learning systems. It offers a collection of high-level components

that encapsulate common FL workflow patterns, such as the local data loading or the server’s

aggregation setup, which would require several core pods connections to achieve. Engine level

components are built as Fleviden pods that are internally composed of core level atomic pods,

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 66 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

mixed and matched with common connections that abstract away the links that a typical

Federated Learning pipeline would implement. For example, the application script of a Server

agent is typically comprised of an aggregation pipeline (i.e., gathering the local updates from

clients, performing the aggregation step and updating the global model) and an orchestration

block (handling the subscription of clients, selecting the active participants in each round, and

managing the start and end of the process). The set of pods and the connection that implement

these pipelines form a common pattern that can be encapsulated in an engine-level Server

package to simplify greatly how the Fleviden application is deployed. By exposing the

configuration parameters of the core pods, but treating their connections as a black-box, users

maintain the flexibility to tune the process to their particular needs without having to struggle

with defining the computational graph at the lowest level.

It’s important to note that engine pods do not implement any additional logic besides what is

already present in the core layer pods they encapsulate. Instead, they simplify the definition of

the computational graph and abstract the configuration of hyperparameters for common flows.

In the application script for Fleviden agents, users can connect engine and core pods without

distinction, as there are some core components that are feature complete and thus do not

implement an analogous engine variant (e.g., communication protocols).

In conclusion, while the original concept of Fleviscript addressed important goals such as

simplicity and compliance, the framework’s technical requirements evolved over time, making

a change in direction necessary. The new multi-layer design in Fleviden offers greater

flexibility, allowing users to choose between more control or a higher level of abstraction,

depending on their needs. This shift improves compatibility with a wider range of use cases

and makes future development easier to manage. It reflects a deeper understanding of what

is needed to support federated learning across different environments, and positions Fleviden

as a reliable framework for integration within SEDIMARK and other contexts.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 67 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

5 The DLT Infrastructure
This section describes the functionalities and the final architectures of the DLT Infrastructure

employed as the underlying foundation for the final version of the SEDIMARK Marketplace.

The SEDIMARK Marketplace relies on a robust DLT Infrastructure to underpin its operations.

This foundation provides verifiable and immutable records of Participant information and

Offering details, ensuring trustworthiness and non-repudiation.

The target of the infrastructure is identified in the following functionalities:

• Identity Management: Securely manages Participants' identities.

• Metadata Management: Enables information related to Offerings for the Catalogue.

• Trust Metadata Storage: Provides transparent and auditable records of trust information.

• Tokenization: Facilitates secure asset ownership and trading.

• User Wallet Integration: Seamless integration with participant wallets for efficient

transaction management.

Such infrastructure enables interconnection among the various enablers and mechanism

realising the functionalities of the SEDIMARK Marketplace.

The DLT infrastructure is built on a two-layer architecture:

1. Layer 1 (L1): IOTA Tangle, offering decentralized data sharing.

2. Layer 2 (L2): IOTA Smart Contract (ISC) chain, enabling smart contract execution and

transactions.

These two layers have been previously analysed in the SEDIMARK deliverable D4.1. The

initial version of the hardware and software implementation of this infrastructure, described in

SEDIMARK deliverable D3.3, has been adopted for experimenting and testing of the various

features developed during the SEDIMARK project.

The underlying SEDIMARK infrastructure has been improved and extended to reach the final

and stable version. The following subsections analyse instead the final implementation of the

underlying infrastructure from the hardware and software point of view.

5.1 Background and recap

The IOTA network operates on a distributed ledger system, known as the Tangle. This

technology forms the core of the SEDIMARK decentralized platform by providing a secure and

efficient way to record transactions. The Nodes within the network are interconnected and

maintain this shared ledger through a consensus protocol.

The IOTA full-node software is called HORNET and it is written in Go. HORNET serves as the

foundation of any IOTA node network configuration. This software is designed to ensure

efficient operations and flexibility in deployment.

One of the key features of HORNET is the “INX” interface, which allows seamless extension

through ad-hoc plugins. This allows developers to create specialized functionalities tailored to

their specific needs, opening up a world of possibilities.

HORNET additionally enables the integrated dashboard, which provides real-time transaction

information for monitoring, allowing users to visualize the activity on their node in real time.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 68 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

To enhance the capabilities of IOTA beyond basic transactions, they introduced Wasp - a smart

contract platform built upon the IOTA network. Wasp uses its lightweight and efficient core

contracts (EVM – Ethereum VM) to handle EVM/Solidity contracts (as well as Wasm based

contracts) – expanding the application of the IOTA network. This allows developers to build

complex decentralized applications with ease.

To ensure seamless integration with existing tools, Wasp provides a standardized JSON-RPC

service for user interaction. Users can effortlessly connect their wallets or development

frameworks to interact with the EVM layer through this interface. Deploying EVM contracts on

Wasp becomes as simple as connecting your development tool to this defined endpoint.

In essence, IOTA's technology combines a distributed ledger system, decentralized nodes,

and specialized software for smart contract development, empowering developers to create

innovative solutions across a variety of domains.

5.2 Final architecture

The final version of the infrastructure employed in the SEDIMARK Marketplace is composed

of a layered architecture. From a high-level point-of-view, it is composed with the two distinct

DLT layers stacked each other, i.e., IOTA Tangle (Layer 1) and IOTA Smart Contract Chain

(Layer 2). Such layers are stacked on top of the hardware infrastructure providing the

necessary computational capabilities.

A simple installation of the software stack prepares a node able to interface and connect with

the public network (i.e., the mainnet) of the IOTA Foundation. As a consequence, an instance

of a Hornet node would be consistent with the content of the ledger public network, holding

data and transactions not related to SEDIMARK Marketplace. Also, the computational

capabilities of the hardware acting as nodes and their related cost would be exploited to

become a peer of the decentralized public network.

For the scope of the SEDIMARK project, the underlying structure is reserved and adapted for

the project target. Thus, the SEDIMARK Marketplace has its root in a private instance of the

entire DLT, as well as the necessary smart contracts engine.

The official repository containing the resources for the instantiation of the infrastructure is

https://github.com/Sedimark/hornet-extra/ .

The collection of configurations and scripts enables both to join an existing decentralized

SEDIMARK Marketplace and to instantiate a new existing infrastructure, with minimal

intervention and changes needed. The external dependencies are also limited and managed

resorting to containers technology for ease of deployment and portability.

The top-level underlying infrastructure of the DLT is reported in Figure 43. The figure

represents the two logical layers previously defined, together with the auxiliary services block.

The logical intra- and inter- communications for the two layers is described in SEDIMARK

deliverables D4.1 [21] and D4.2 [22].

https://github.com/Sedimark/hornet-extra/

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 69 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Figure 43: Layered architecture for DLT infrastructure

From an architectural point-of-view, the changes of the infrastructure in the second part of the

project did not directly concern the two specific layers. Instead, they mostly focused on the

scalability of the infrastructure, interconnection and management aspects. As example, in the

previous settings, the various instances of Hornet nodes were not directly exposed to the

internet. In the current and final version, they are instead able to communicate directly with

external services, enhancing the connectivity in a real decentralized manner. These features

requested additional software and the related configuration, not specifically needed by the

logical infrastructure (L1 and L2) but required to allow proper interconnections.

Additional specific services have been added and newly created. Such services enable a set

of convenient functionalities needed to limit manual intervention. For instance, the services for

sharing the current status of the ledger (i.e., the so-called snapshots) allow other Nodes to

connect more rapidly and in a programmed manner.

Other instantiated services instead focused on the management side. Ad-hoc software has

been integrated in the previous software stack to provide the owner of the Node a quick and

simplified interface to get an idea of the current state of the situation at a glance. Obviously,

such situation might in turn refer to different aspects of the management. For example, the

situation to glimpse might refer to the logical layers (both on ledger and chain), which is

provided through the dashboard services instantiated and already configured.

5.3 Architecture Components

From the logical point-of-view each node of the underlying infrastructure is made of several

components. The minimum set of components needed to deploy the infrastructure is formed

with Hornet and Wasp software, as in the previous version.

The current and final set of components in shown in Figure 44. Each component has a specific

role that either define a functionality or complements it.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 70 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Figure 44: Architectural components of the infrastructure

The figure above shows the architectural components of the infrastructure and how they are

interconnected.

The SEDIMARK baseline infrastructure relies entirely onto the IOTA ecosystem, which is

powered by two essential components (Main Components). Such components are modular by

design and their functionality is extended through the INX-Plugins.

Main Components

• Hornet: Software for L1. It is lightweight and efficient IOTA node implementation designed

for high performance and scalability. Hornet is built in Go and focuses on providing a

robust and user-friendly interface for interacting with the IOTA Tangle. It supports various

features such as automatic peer discovery, a built-in API for transactions, and integration

with INX plugins, making it suitable for both developers and end-users.

• Wasp: Software for L2. It is smart contract platform for IOTA that enables the development

and execution of decentralized applications (so-called dApps). Wasp allows developers

to create and deploy smart contracts using familiar programming languages, providing a

secure and scalable environment for executing complex logic on the IOTA Tangle. It

features a unique consensus mechanism and supports various functionalities, including

state management and event handling, to facilitate the development of innovative

applications.

One of the key strengths of Hornet is its extensibility through INX plugins, which enhance its

functionality and provide additional capabilities. Below is reported the list of the INX plugins

integrated with the deployment of Hornet, detailing their specific purposes.

INX-Plugins enabled

• INX-Dashboard: provides a user-friendly interface to overview the system.

• INX-MQTT: provides an event-based real-time streaming node API. The built-in MQTT

broker offers a list of topics clients can subscribe to, to receive the latest blocks and

outputs attached to the tangle.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 71 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

• INX-Indexer: is an indexing tool to provide structured data that can be searched and

utilised by wallets and other applications. The indexer maintains its own database

separate from that of the node.

• INX-Participation: is an extension for nodes to enable on-tangle voting. The extensions

maintain its own database separate from that of the node and provides means to track

events and votes.

• INX-POI: enables you to generate and verify Proof-of-Inclusion of blocks in the Tangle.

Given a piece of data or transaction and the proof, it is possible to verify whether it was

included in the Tangle at any given time.

• INX-Coordinator: performs the core functionalities of a node. It generates and issues the

Milestones transactions, which are a special kind of transactions employed as markers of

the progress and for providing timestamps for different points in the Tangle. Any

transaction points, directly or indirectly, to at least one Milestone. The coordinator decides

which transactions to approve. Moreover, it prevents double-spending issues and ensures

that transactions cannot be reversed. The coordinator helps new nodes join the

decentralized network by providing checkpoints for history, promoting faster

synchronization. This ensures that new nodes have a starting point for validating the

Tangle.

• INX-Faucet: faucet is employed for dispensing native tokens. For development and testing

purposes, two faucets are deployed respectively in L1 and L2. (Note that L2 faucet is not

an INX plugin. Conversely L1 faucet is the INX plugin).

• INX-Spammer: is a client application, running locally, which sends dummy transactions to

the Tangle to provide a constant flow of transactions. This happens for performance

reasons: a new transaction must be indeed referenced by at least three blocks. The

spammer transactions increase the reference and confirmation rates of the DLT.

Each node is complemented with a set of components that enables the real-time observation

of transactions and smart contracts. Additionally, effective monitoring is crucial for maintaining

the health and performance of the SEDIMARK infrastructure. The monitoring components

provide real-time insights on resource usage and application performance. Such components

are listed below.

Monitoring Components

• cAdvisor (Container Advisor): collects, aggregates, and exports metrics about container

resource usage and performance characteristics, such as CPU, memory, and network I/O

• Prometheus: is a monitoring and alerting toolkit designed for reliability and scalability. It

collects metrics from configured targets at specified intervals, stores them in a time-series

database, and provides a powerful query language for analysis. Prometheus is particularly

well-suited for monitoring microservices and cloud-native applications.

• Grafana: is an analytics and monitoring platform that integrates with various data sources,

including Prometheus. It provides a rich visualization layer for displaying metrics and logs

through customizable dashboards. Grafana allows users to create interactive graphs and

alerts, making it easier to monitor system performance and health in real-time.

Utility and services components play a vital role in supporting the IOTA infrastructure by

providing essential functionalities such as traffic management, load balancing, and custom

service integrations. These components enhance the overall architecture, streamline

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 72 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

operations, and facilitate the deployment of additional features, ensuring a robust and efficient

environment for both developers and users.

Additional Utility and Services Components

• Traefik: reverse proxy and load balancer designed for microservices. The configurations

set the services and routes traffic to them based on the routes defined. Traefik supports

various backends, including Docker, Kubernetes, and more, and provides features such

as SSL termination, traffic management, and real-time monitoring through a user-friendly

dashboard.

• Nginx Proxy Manager: nginx with a graphical interface for ease of configuration.

• Create-snapshots: creates an initial (empty) snapshot.

• Bootstrap-Network: creates the file needed to start a new DLT.

5.4 Physical Architecture

The physical architecture is employed to provide computational capabilities to the software

components described in the previous section. The two layers (L1 and L2) are mapped onto

physical hardware.

The decentralized network for L1 is composed by four instances of Hornet. A copy of the

software for the node is deployed across different physical machine. The functionality of each

Hornet node is extended with the respective INX-Plugins. For every instance of Hornet, a

corresponding instance of Wasp (for L2) is instantiated as well on the same machine. Each

Hornet node is interconnected with the others. Analogously, each Wasp instance is interfaced

with both other instances the related instance of Hornet. The physical setup is shown in Figure

45.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 73 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Figure 45: instantiation of DLT Layers onto physical hardware machines

The physical deployment exploits servers installed on the partner premises (Fondazione

LINKS – LINKS, University of Cantabria – UC and EGM) for the duration of the project. As

example, the physical machine in LINKS are three Dell server blades (R650), each equipped

with Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz (with 16 cores). The RAM available

amounts to 64GB (7% is used). The disk space available is 900GB and the rough total space

taken up by the installation with the operating system is about 8%. The Tangle currently employ

30GB. However, it does not have a fixed upper limit.

Already in the first instantiation described in SEDIMARK deliverable D3.3 [23], the servers

were interconnected to each other. Moreover, one additional server had a public interface

exposed to the internet with a Public IP address. This allows the specific machine to act as a

gateway for connecting other decentralized external nodes.

Conversely from the first version, every server in the final instance is able to communicate with

other nodes, either internal or external. In turn, external clients are able to interact with the

network while maintaining secure communication among the instances. The specific public

interface is preferred for ease of communication and for scalability purposes. The server with

this interface is in fact equipped with a reverse proxy and load balancer able to handle multiple

concurrent requests. From the security point-of-view, the services exposed resort to HTTPS

communications, implying the necessary actions to undertake for obtaining and keeping

updated certificates for establishing secure connections.

In the context of trust, the initial setup provided multiple Wasp nodes, but a single validator. In

the final version, all the validators are reachable from outside peers enhancing the mutual trust

required for the validation of transactions. Moreover, such architectural changes to the

connectivity enable a good degree of decentralization and node distribution of the network.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 74 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

In the final version of the infrastructure, several endpoints have been defined and published

for the sake of improving access. Here below it is reported a complete list of the endpoints with

their intended usage.

List of public endpoints:

https://stardust.linksfoundation.com/node1/dashboard/

https://stardust.unican.sedimark.eu/dashboard/

Hornet Dashboard Public page

https://stardust.linksfoundation.com/node1/wasp/dashboard/login

https://stardust.unican.sedimark.eu/wasp/dashboard/

Wasp Dashboard Public page

http://192.168.94.12/grafana/login

Grafana Webpage – private monitoring

http://192.168.94.12:8088/dashboard/#/

Traefik Webpage – private monitoring

http://192.168.94.14:81/login

Nginx Proxy Manager Dashboard – Configuration of nginx

https://snapshots.stardust.linksfoundation.com/l1/

Hornet snapshots download page (delta and full)

https://snapshots.stardust.linksfoundation.com/l2/

Wasp snapshots download page

https://stardust.linksfoundation.com/node1/sedimark-chain

https://stardust.unican.sedimark.eu/sedimark-chain

Node 1 – endpoint for accessing SEDIMARK RPC (Node 2 and Node 3 also available)

https://stardust.linksfoundation.com/node1/api/routes

Node 1 – endpoint for accessing APIs (Node 2 and Node 3 also available)

https://stardust.linksfoundation.com/faucet/l1/

L1 Network Faucet

https://stardust.linksfoundation.com/faucet/l2/

L2 Network Faucet

https://json-rpc.evm.stardust.linksfoundation.com/sedimark-chain

Endpoint for accessing SEDIMARK RPC (this endpoint is load-balanced with round-robin

logic)

https://stardust.linksfoundation.com/node1/wasp/api/routes

Node 1 – Endpoint for accessing the Wasp API (Node 2 and Node 3 are also available)

The servers are interconnected to each other in a local network. These three machines are the

peers composing the DLT and the Smart Contract chains for the SEDIMARK Marketplace.

Incoming connections related to the digital identity are managed at L1 level, where the

transactions store (partially) the elements of the SSI. Smart contract applications are deployed

https://stardust.linksfoundation.com/node1/dashboard/
https://stardust.linksfoundation.com/node1/wasp/dashboard/login
http://192.168.94.12/grafana/login
http://192.168.94.12:8088/dashboard/#/
http://192.168.94.14:81/login
https://snapshots.stardust.linksfoundation.com/l1/
https://snapshots.stardust.linksfoundation.com/l2/
https://stardust.linksfoundation.com/node1/sedimark-chain
https://stardust.linksfoundation.com/node1/api/routes
https://stardust.linksfoundation.com/faucet/l1/
https://stardust.linksfoundation.com/faucet/l2/
https://json-rpc.evm.stardust.linksfoundation.com/sedimark-chain
https://stardust.linksfoundation.com/node3/wasp/api/routes

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 75 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

at L2 with the ISC allowing the trading of assets between SEDIMARK users and implementing

the Marketplace business logic.

The infrastructure exposes a public interface that allows the interactions with remote users.

SEDIMARK users are able to connect and interact with the services detailed resorting to the

toolbox and the applications developed during the other WPs. The partners who want to

enforce the capability of the SEDIMARK Marketplace can provide their own computational

capabilities and storage facilities by deploying their own instances. The software stack is

containerised for the ease of deployment on an external physical infrastructure. A newly

deployed infrastructure can be linked to the existing one, thereby extending the capability of

the whole system. In such a way, the partners’ infrastructures become members of the ledger

by acting as peers of the decentralized network and/or of network of validators.

5.5 Scalability considerations

The final SEDIMARK infrastructure is designed with scalability and resilience in mind, using

the hardware composed of three interconnected physical on the partners premises to host

Hornet and Wasp instances. This setup enhances the performances and also demonstrates

that the system can grow as demand increases.

The decentralized nature of this infrastructure is a significant advantage, as it allows additional

servers to join the network easily. This flexibility means that other users (usually the Providers

in the SEDIMARK Marketplace, but also the Partners of the SEDIMARK Consortium) can

contribute their own nodes, further enhancing the robustness and capacity of the overall

system. The infrastructure as-is at the time of writing this deliverable is already resilient to

server failures and maintenance activities considering the number of servers employed. In this

configuration, if one server experiences issues or requires maintenance (meaning downtime

due to e.g., physical updates of hardware), the remaining servers can continue to operate,

ensuring uninterrupted service. Therefore, this decentralized architecture fully support

scalability and fosters also external participation from other partners and user willing to

strengthen the infrastructure.

Additional mechanisms have been established to facilitate the scalability of the infrastructure.

The RPC endpoint is load-balanced according to a round-robin scheme, providing the users

and other services a simplified access, through load-balancing. Nevertheless, it is still

preserved the possibility to access directly the RPC of the L2 chain of the specific node.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 76 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

6 The Storage enabler
In the digital age, data stands as one of most important components of any modern business

ecosystem. Its value is especially magnified in the realm of distributed marketplaces, which

serve as hubs of vast and diverse data exchanges across various regions.

These systems go beyond traditional storage paradigms by spreading data across multiple

physical locations, be it within a single data centre location or across countries. Such an

approach is not just a matter of scalability, but a pivotal strategy to ensure data availability,

fault tolerance, and efficient distribution.

As these platforms deal with heterogeneous data – from city traffic information and user profiles

to transaction records and user-generated content – the need for a robust, scalable, and

interoperable storage mechanism becomes implicit.

Furthermore, as AI and machine learning continue to play a more significant role in data

analysis and decision-making processes within these marketplaces, the integration between

storage and computational resources gains even more prominence.

6.1 Significance of data storage

There are three pivotal attributes one must consider when choosing the data storage solution

for these systems: scalability, fault tolerance and data interoperability.

• Scalability refers to the system's ability to handle increased load or demand by adding

more resources or nodes, without affecting the system's performance or architecture.

Distributed storage systems, unlike traditional systems, don't require massive fine-tuning

or downtime to scale. As the need arises, new storage nodes can be incorporated

seamlessly.

• Fault tolerance is the property that enables a system to continue operating seamlessly in

the event of the failure of some of its components. Distributed storage systems typically

replicate data across multiple nodes. This means if one node encounters a failure, the

system can retrieve the data from another node. This redundancy always ensures data

availability.

• Data interoperability is the ability of systems and services that create, store, and exchange

data to have clear, shared expectations for the contents, context, and meaning of that

data. In a distributed marketplace, data might originate from various sources - different

vendors, platforms, or services. Distributed storage solutions can store diverse data types

and structures, offering a unified access point irrespective of the data's origin. For

marketplaces that involve multiple stakeholders, from vendors to third-party service

providers, data interoperability ensures that all parties can access and understand the

shared data, facilitating smoother collaborations and transactions.

6.2 Storage Enabling software

Below are defined the storage enabling software split in two sections, one for data storage,

using NGSI-LD broke, and the other for model storage, using Minio.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 77 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

6.2.1 AI model storage enabler (Minio)

Minio [24] is a high-performance, distributed object storage server, designed for large-scale

data infrastructures. It is S3 compatible, built for the cloud-native world, supports object

versioning, encryption, and event notifications. Minio provides scalable storage for

marketplace assets, in the case of SEDIMARK marketplace it will be used as a performant

storage enable for model storage through MLFlow, which is a model management software,

and it will use Minio to store the models created inside the SEDIMARK Toolbox.

Each toolbox will have deployed an instance of Minio to save and load models through MLFlow

and to pass the models to the connector when it is required to retrieve a model.

The deployment for Minio will be done through a docker compose file that will deploy the entire

toolbox with all the necessary components for a provider or consumer to be able to create,

share and retrieve models. The deployment for the SEDIMARK Toolbox will be available on

GitHub to ease the installation of the Toolbox.

For a consumer to retrieve a particular model stored at a provider, the connectors of both the

provider and the consumer needs to interact with Minio, either directly or indirectly, in such a

way that the connector at the provider side will get the model through a REST API from Minio

and pass it to the connector on the consumer side.

Below is described the components that are involved in the transaction of a model from a

provider to a consumer, and the process behind it.

Figure 46: Sequence diagram for model downloading from the consumer side.

All the components presented in the diagram are present on GitHub.

6.2.2 Data storage enabler (NGSI-LD brokers)

NGSI-LD brokers implementing the temporal API described in section 2.2 also act as a storage.

As an example, the Stellio context broker embeds a PostgreSQL database empowered with

https://min.io/
https://mlflow.org/docs/latest/index.html
https://github.com/stellio-hub/stellio-context-broker

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 78 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

TimescaleDB and PostGIS extensions to handle time series as well as geographic information.

Data exchange within the Stellio broker are made over a high-speed exchange bus built on

Apache Kafla which allow to scale while a spring boot-based API gateway ensures the

conformity to the NGSI-LD specification. Such an implementation provides interoperability

while allowing fast ingestion rates. As visible in Figure 47, ingestion rates of more than 20k

events/s have been demonstrated on machine with 8 vcore, 32 Go RAM and 4 To disks. Based

on NGSI-LD specification, deployment architecture includes centralised, distributed and

federated options.

The Stellio broker has been significantly extended to include context source registration

capability, enabling it to participate in distributed deployments. This enhancement allows

Stellio to support multiple deployment configurations beyond its original centralized

architecture, including distributed and federated deployments where context sources can

register themselves with information they can provide on request. In distributed settings, Stellio

can discover context sources that may have information for answering requests based on their

registrations, request and aggregate information from different context sources, and provide it

to requesting context consumers. The broker's architecture is built around a modular design

following reactive and functional paradigms, with services that are thoroughly tested and

deployed in many production environments.

Based on NGSI-LD specification, deployment architecture includes centralised, distributed and

federated options. The centralized architecture features a central context broker that stores

context information provided by context producers, while distributed settings allow all context

information to be stored by context sources themselves. In federated architectures, context

sources can be context brokers that make aggregated information from lower hierarchy levels

available, and these architectural approaches are not mutually exclusive - actual deployments

may combine them in different ways. The deployed architecture is designed to evolve from

centralized to distributed to federated configurations without requiring software reinstallation.

Figure 47: example of scaling capacity of Stellio context broker (number of inserted items per

second over time)

6.2.3 Offering storage enabler (Catalogue)

Offerings are modelled in RDF and formatted in JSON-LD, and they can be found either in the

participant premises (as part of a Participant Self-Listing) or in the Marketplace Catalogue.

Offerings embedded in Self-Listings are stored in a local relational database based on

PostgreSQL (see Figure 48). This storage solution is shared by other components in a

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 79 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

SEDIMARK Toolbox (e.g. DLT-Booth, Stellio Context Broker). The component in charge of

storing and maintain the Self-listing, the Offering Manager, stores as well a reference to the

specific Offering and its hash into the DLT, through the DLT-Booth.

Figure 48: SEDIMARK Toolbox components and storage

Offerings are also stored in the Catalogue, a triple-store database based on the Jena TDB

store and Fuseki server. The management of Offerings at the Catalogue is done through a

custom handler for encapsulating Offering within named graphs, which will allow the creation

and removal of Offerings without leaving the possibility of any orphan RDF nodes which can

be caused if Offerings are managed within one default graph.

For the decentralised Catalogue, a Catalogue Coordinator within the domain of a Participant

hosting a Catalogue, uses the management custom handler for distributing the Offerings

retrieved from Self-Listings. In the case of discovery, Consumer SPARQL requests are

modified so that Federated Queries are applied.

Over time the triple store can become fragmented and grow inefficiently, which normally occurs

when CRUD operations are applied to the RDF graphs in the triple store. The compaction

function provided by the Fuseki API addresses this by creating a new compacted version,

copying over the current state of the RDF graphs into the new store, and switching to it once

the process is done. The process can be done while the Catalogue is running and therefore

does not affect availability.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 80 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

7 Conclusions
In conclusion, this deliverable has presented the comprehensive design and initial

implementation of the foundational technical enablers for the SEDIMARK platform. The work

detailed herein successfully establishes the critical pillars of interoperability, artificial

intelligence, distributed ledger technology, and storage, which are essential to realise the

project's overarching vision for a secure, trusted, and efficient marketplace for data and

services. These components collectively represent a significant advancement from the

project's starting point, moving the platform closer to its goal of a high Technology Readiness

Level (TRL) demonstration.

A cornerstone of the reported achievements is the establishment of a multi-faceted

interoperability framework. By standardizing on NGSI-LD for data assets and developing a

bespoke Marketplace Information Model for describing participants, offerings, and assets, a

common semantic language has been created for the ecosystem. This is a crucial step toward

ensuring that data can be discovered, accessed, and reused seamlessly, in alignment with

FAIR (Findable Accessible Interoperable Reusable) principles. The development of the

Interoperability Enabler, with its suite of tools for data formatting, curation, quality annotation,

and validation, provides the practical mechanisms to enforce these standards and transform

heterogeneous data sources into compliant, high-quality assets ready for exchange. The

introduction of the Offering concept, which allows multiple assets to be bundled, represents a

key innovation that provides greater flexibility for data providers compared to existing models.

In the domain of artificial intelligence, the AI Enabler introduces a sophisticated and versatile

suite of tools designed to support both local and distributed machine learning scenarios. The

provision of advanced models like CrossFormer for multivariate time-series forecasting, along

with novel optimization techniques such as structured and unstructured pruning, empowers

users to create efficient, high-performance models suitable for deployment in resource-

constrained or federated environments. Furthermore, the development of two complementary

distributed learning frameworks, the dynamic and fully decentralized deFLight and the

extensible Fleviden tool, provides the necessary flexibility to support diverse collaborative

training arrangements across multiple organizations and regulatory settings. The innovative,

LLM-powered Offering Generator significantly lowers the technical barrier for participation by

automating the creation of semantically rich, standards-compliant marketplace offerings from

simple metadata descriptions.

These advanced data and AI capabilities are built upon a secure and scalable infrastructure.

The private DLT instance, leveraging IOTA Tangle and Smart Contracts, forms the trusted

backbone of the marketplace, providing an immutable and non-repudiable ledger for managing

participant identities, offering metadata, and facilitating asset trading. This directly addresses

the project's core requirement for a system that is secure and trustworthy by design.

Complementing this, the distributed Storage Enabler, which utilizes Minio for AI models and

NGSI-LD brokers for data, ensures that the heterogeneous assets within the marketplace can

be stored, managed, and accessed in a scalable, fault-tolerant, and performant manner.

Looking forward, the components detailed in this document are now primed for the next phase

of the project, which will focus on their integration into a cohesive platform and validation within

the project's real-world scenarios.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 81 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

8 Bibliographie

[1] E. I. CIM, «ETSI GS CIM006 - 3NGSI-LD Information model",» ETSI, 2023.

[2] W. Li, G. Tropea, A. Abid, A. Detti et F. Le Gall, «Review of Standard Ontologies for the

Web of Things,» chez Global Internet of Things Summit (GIoTS), Aarhus, 2019.

[3] SEDIMARK, «D2.3 - SEDIMARK Architecture and Interfaces. Final version.».

[4] R. Iannella et S. Villata, «ODRL Information Model 2.2,» 15 February 2018. [En ligne].

Available: https://www.w3.org/TR/odrl-model/.

[5] R. Albertoni, D. Browning, S. Cox, A. González Beltrán, A. Perego et P. Winstanley,

«https://www.w3.org/TR/vocab-dcat-2/,» 4 Ferbruary 2020. [En ligne]. Available:

https://www.w3.org/TR/vocab-dcat-2/.

[6] D. Brickley et L. Miller, «Friend Of A Friend - version 0.99,» 14 June 2014. [En ligne].

Available: http://xmlns.com/foaf/0.1/.

[7] DCMI Usage Board, «DCMI Metadata Terms,» 20 January 2020. [En ligne]. Available:

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/.

[8] Internatonal Data Spaces Association, «International Data Space Protocol - Working

Draft,» 2023. [En ligne]. Available: https://docs.internationaldataspaces.org/ids-

knowledgebase/v/dataspace-protocol/.

[9] Stanford University, «Protégé,» [En ligne]. Available: https://protege.stanford.edu/.

[10] G.-X. E. A. f. D. a. Cloud, «Gaia-X Specifications,» [En ligne]. Available: https://docs.gaia-

x.eu/#/.

[11] I. D. S. (IDS), «IDS Knowledge Base,» [En ligne]. Available:

https://docs.internationaldataspaces.org/ids-knowledgebase.

[12] W3C, «SKOS Simple Knowledge Organization System Reference,» 18 August 2009. [En

ligne]. Available: https://www.w3.org/TR/skos-reference/.

[13] TESK, «Tesk Documentation,» [En ligne]. Available:

https://tesk.readthedocs.io/en/latest/.

[14] S. p. (. 101070074), «D3.2 Energy efficient AI-based toolset for improving data quality.

Final version,» 2025.

[15] V. F. J. G. David Salinas, «DeepAR: Probabilistic Forecasting with Autoregressive

Recurrent Networks,» 22 February 2019.

[16] Microsoft Corporation, «LightGBM Documentation,» [En ligne]. Available:

https://lightgbm.readthedocs.io/en/stable/.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 82 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

[17] Yandex, «CatBoost is a high-performance open source library for gradient boosting on

decision trees,» [En ligne]. Available: https://catboost.ai/.

[18] xgboost developpers, «XGBoost Documentation,» [En ligne]. Available:

https://xgboost.readthedocs.io/en/stable/.

[19] H. W. O. M. S. D. S. L. Ria Doshi, «CrossFormer: Scaling Cross-Embodied Learning for

Manipulation, Navigation, Locomotion, and Aviation,» [En ligne]. Available:

https://crossformer-model.github.io/.

[20] «MLflow 3,» [En ligne]. Available: https://mlflow.org/docs/latest/genai/mlflow-3/.

[21] SEDIMARK, «D4.1 - Decentralized infrastructure and access management. First

version,» 2023.

[22] SEDIMARK, «D4.2 - Decentralized infrastructure and access management,» 2025.

[23] SEDIMARK, «D3.3 - Enabling tools for data interoperability, distributed data storage and

training distributed AI models. First version,» 2024.

[24] N. A. M. P. M. Ian F. Adams, «Enabling near-data processing in distributed object storage

systems,» vol. Proceedings of the 13th ACM Workshop on Hot Topics in Storage and

File Systems, 2021.

[25] n. (. A. F. Lead author (surname, «Project name, deliverable number and title (i.e.

WITDOM. D2.2 - Functional analysis and use cases identification),» Year (i.e. 2015).

[26] Y. Z. P. Y. H. J. L. L. Buwen Wu, «SemStore: A Semantic-Preserving Distributed RDF

Triple Store,» vol. CIKM '14: Proceedings of the 23rd ACM International Conference on

Conference on Information and Knowledge, 2014.

[27] J. D. S. G. W. C. H. D. A. W. M. B. T. C. A. F. a. R. E. G. Fay Chang, «Bigtable: A

Distributed Storage System for Structured Data,» Vols. %1 sur %2ACM Trans. Comput.

Syst. 26, 2, Article 4 , 2008.

[28] SEDIMARK, «D2.1 - Use Cases Definition and Initial Requirement Analysis».

[29] Institute of Electrical and Electronics Engineers, «IEEE Standard Computer Dictionary: A

Compilation of IEEE Standard Computer Glossaries,» New York, NY, 1990.

[30] W. W. C. a. S. E. F. P. Ravikumar, «A secure protocol for computing string distance

metrics,,» chez Fourth IEEE International Conference on Data Mining , Brigthon, 2004.

[31] M. F. D. G. S. J. M. S. a. J. T. R. Egert, «Privately computing set-union and set-

intersection cardinality via bloom lters,» chez Information Security and Privacy, E. F. a.

D. Stebila, Éd., Springer International Publishing, 2015, pp. 413-430.

[32] V. I. B. K. A. M. H. B. M. S. P. D. R. A. S. a. K. S. K. Bonawitz, «Practical secure

aggregation for privacy-preserving machine learning,» chez ACM SIGSAC Conference

on Computer and Communications Security, ser. CCS '17, New York, NY, 2017.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 83 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

[33] D. J. B. a. T. T. a. A. M. a. X. Q. a. J. F.-M. a. Y. G. a. L. S. a. K. H. L. a. T. P. a. P. P. B.

d. G. a. N. D. Lane, Flower: A friendly federated learning research framework.", arXiv

2007.14390, 2022, p. v.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 84 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

9 Annexes

9.1 SHACL Shapes for Offering Validation

1. @prefix dash: <http://datashapes.org/dash#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix schema: <http://schema.org/> .

@prefix sh: <http://www.w3.org/ns/shacl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix dcat: <http://www.w3.org/ns/dcat#> .

@prefix sedimark: <https://w3id.org/sedimark/ontology#> .

Shape to ensure at least one instance of Offering class exists

sedimark:OfferingExistsShape

 a sh:NodeShape ;

 sh:targetClass sedimark:Offering ;

 sh:sparql [

 a sh:SPARQLConstraint ;

 sh:message "At least one instance of sedimark:Offering must exist." ;

 sh:select """

 PREFIX sedimark: <https://w3id.org/sedimark/ontology#>

 SELECT $this

 WHERE {

 FILTER NOT EXISTS {

 ?offering a sedimark:Offering .

 }

 }

 """ ;

] .

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 85 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

Shape for validating Offering instances

sedimark:OfferingShape

 a sh:NodeShape ;

 sh:targetClass sedimark:Offering ;

 # Offering must have at least one Asset

 sh:property [

 sh:path sedimark:hasAsset ;

 sh:class sedimark:Asset ;

 sh:minCount 1 ;

 sh:message "Each Offering must have at least one Asset." ;

] ;

 # Offering must have at least one OfferingContract

 sh:property [

 sh:path sedimark:hasOfferingContract ;

 sh:class sedimark:OfferingContract ;

 sh:minCount 1 ;

 sh:message "Each Offering must have at least one OfferingContract." ;

] ;

 # Required properties

 sh:property [

 sh:path dcat:title ;

 sh:datatype xsd:string ;

 sh:minCount 1 ;

 sh:message "Each Offering must have at least one dcat:title." ;

] ;

 sh:property [

 sh:path dcat:description ;

 sh:datatype xsd:string ;

 sh:minCount 1 ;

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 86 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

 sh:message "Each Offering must have at least one dcat:description." ;

] ;

 sh:property [

 sh:path dcat:keyword ;

 sh:datatype xsd:string ;

 sh:minCount 1 ;

 sh:message "Each Offering must have at least one dcat:keyword." ;

] .

Shape for validating Asset instances

sedimark:AssetShape

 a sh:NodeShape ;

 sh:targetClass sedimark:Asset ;

 # Required properties

 sh:property [

 sh:path dcat:title ;

 sh:datatype xsd:string ;

 sh:minCount 1 ;

 sh:message "Each Asset must have at least one dcat:title." ;

] ;

 sh:property [

 sh:path dcat:description ;

 sh:datatype xsd:string ;

 sh:minCount 1 ;

 sh:message "Each Asset must have at least one dcat:description." ;

] ;

 sh:property [

 sh:path dcat:keyword ;

 sh:datatype xsd:string ;

 sh:minCount 1 ;

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 87 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

 sh:message "Each Asset must have at least one dcat:keyword." ;

] .

Shape for validating OfferingContract instances

sedimark:OfferingContractShape

 a sh:NodeShape ;

 sh:targetClass sedimark:OfferingContract ;

 # Required properties

 sh:property [

 sh:path dcat:title ;

 sh:datatype xsd:string ;

 sh:minCount 1 ;

 sh:message "Each OfferingContract must have at least one dcat:title." ;

] ;

 sh:property [

 sh:path dcat:description ;

 sh:datatype xsd:string ;

 sh:minCount 1 ;

 sh:message "Each OfferingContract must have at least one dcat:description." ;

] ;

 sh:property [

 sh:path dcat:keyword ;

 sh:datatype xsd:string ;

 sh:minCount 1 ;

 sh:message "Each OfferingContract must have at least one dcat:keyword." ;

] .

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 88 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

9.2 Evaluation Metrics for CrossFormer

In this section, each function in evaluation metrics is provided as below. Before discussing

each equation, the notation is defined as: is the ground truth at time , is the predict, the

symbol means the average, is the total number of data points, means a very small

positive constant to avoid division by zero, and is the scaled factor.

MAE (Mean Absolute Error) is a common loss function and evaluation metric used in

regression tasks. It measures the average magnitude of the errors between predicted values

and actual values, without considering their direction (i.e., it treats all errors equally, whether

positive or negative).

MSE (Mean Squared Error) is another widely used loss function and evaluation metric in

regression problems. It measures the average of the squares of the differences between

predicted and actual values.

RMSE (Root Mean Squared Error) is the square root of the Mean Squared Error. It retains

the advantages of MSE (e.g., sensitivity to large errors) while having the same unit as the

target variable, making it easier to interpret.

MAPE (Mean Absolute Percentage Error) is a commonly used metric for evaluating

regression models, especially in forecasting. It expresses prediction accuracy as a percentage,

showing the average relative error between predicted and actual values.

MSPE (Mean Squared Percentage Error) is a regression evaluation metric that calculates

the mean of squared percentage errors between predictions and actual values. It's similar

in spirit to MAPE but squares the percentage error, making it more sensitive to large relative

errors.

Document name:
D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed AI models. Final version
Page: 89 of 89

Reference: SEDIMARK_D3.4 Dissemination: PU Version: 1.0 Status: Final

RSE (Relative Squared Error) is a regression metric that measures how well a model’s

predictions approximate the actual data relative to a baseline model, typically the mean of

the target values. It helps assess how much better (or worse) a model performs compared to

a naïve predictor.

Considering the MSE may impact by data in diverse value range, the scaled or normalized

operation is considered as:

Scaled Log-Cosh is a smooth regression loss function that behaves similarly to Mean

Squared Error (MSE) near zero but is less sensitive to outliers—like Mean Absolute Error

(MAE)—due to its logarithmic growth at large errors. The “scaled” version introduces a scaling

factor to control the sharpness of the penalty.

