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2

5seDIMARK

Executive Summary

This report presents the design and implementation of the core technical enablers for the
SEcure Decentralised Intelligent Data MARKetplace (SEDIMARK) platform. The project aims
to address the limitations of centralized data markets by fostering a secure, trusted, and
intelligent ecosystem based on Distributed Ledger Technology (DLT) and Atrtificial Intelligence
(Al). The work detailed in this document establishes the foundational components for
interoperability, Al-driven services, DLT-based trust, and distributed storage, advancing the
platform from a Technology Readiness Level (TRL) of 5 toward demonstration in real-world
scenarios.

A key contribution of this work is a comprehensive interoperability framework. At its core, the
framework uses the NGSI-LD specification to create a common semantic language for data
assets. This is supplemented by a Marketplace Information Model, which defines crucial
marketplace concepts such as Self-Description, Offering, and Asset. This model builds upon
existing standards like DCAT and ODRL by introducing the "Offering" concept, which allows
multiple diverse assets—such as datasets, Al models, and services—to be bundled and
transacted together. A suite of software components within the Interoperability Enabler handles
data formatting, curation, quality annotation, and validation to ensure data adheres to FAIR
principles.

The platform's intelligence is powered by a multifaceted Al Enabler. This component supports
advanced local model training with techniques like the transformer-based CrossFormer for
multivariate time-series forecasting and model optimization methods like pruning. For
collaborative scenarios, the project introduces two frameworks for distributed training:
deFLight, a dynamic and fully decentralized framework supporting gossip and federated
learning, and Fleviden, a tool for orchestrating complex federated workflows. A significant
innovation is the Offering Generator, which uses Large Language Models (LLMs) to
automatically create standards-compliant, semantically rich marketplace offerings from
unstructured metadata, lowering the barrier to entry for data providers.

Trust and security are ensured by a DLT infrastructure built on a private instance of the IOTA
Tangle (Layer 1) and IOTA Smart Contracts (Layer 2). This two-layer architecture provides a
non-repudiable ledger for managing participant identities, cataloguing offering metadata, and
facilitating secure asset trading. To support the platform's digital assets, a robust Storage
Enabler provides a distributed architecture using Minio for Al model storage and NGSI-LD
brokers for scalable, interoperable storage of linked data.
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5seDIMARK

1 Introduction

This document details the design and implementation of the core technical enablers for the
SEDIMARK platform. These components are fundamental to the project's goal of enabling
seamless, secure, and intelligent data sharing among diverse participants. The work focuses
on four key pillars: comprehensive interoperability, advanced Al capabilities, a trust-based DLT
infrastructure, and scalable distributed storage.

A central achievement is establishing interoperability at multiple levels through:

The adoption of NGSI-LD as a base format for data
entities creates a common semantic language for all assets.

: A Marketplace Information Model defines the core concepts of
Self-Description, Offering, and Asset, providing a structured framework for participants to
register, discover, and exchange resources.

. A suite of components, known as the "Interoperability
Enabler," provides functionalities for data formatting, curation, quality annotation, and
validation, ensuring data conforms to SEDIMARK standards.

The Al Enabler offers sophisticated tools for both local and collaborative machine learning,
including:

: Support for training complex models like the transformer-
based CrossFormer for time-series forecasting and advanced optimization techniques
such as model pruning.

: The document presents two distinct frameworks for
distributed training: deFLight, a dynamic, decentralized framework, and Fleviden, an
extensible tool for orchestrating federated learning workflows.

: An innovative component that uses Large Language
Models (LLMs) to automatically generate semantically rich, standards-compliant
marketplace offerings from unstructured metadata.

Underpinning these capabilities are robust infrastructure components:

: A private DLT instance using IOTA Tangle (Layer 1) and IOTA Smart
Contracts (Layer 2) establishes a trustworthy and immutable ledger.

: SEDIMARK utilizes a distributed storage architecture, including Minio
for Al models and NGSI-LD brokers for scalable, interoperable data storage.

This deliverable presents the work related to the components meant to support interoperability,
distributed storage and system intelligence. These are three main pillars within SEDIMARK to
support the project objectives for enabling seamless data sharing between consumers and
providers. Interoperability is a key part of SEDIMARK to enable the efficient and easy reuse of
datasets, models and services across the whole network of SEDIMARK participants, aiming
i.e. to support them in integrating data from different sources to train more advanced and robust
models or to enable the distributed training of machine learning models on compatible
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datasets. This report is an update of the SEDIMARK Deliverable D3.3 and reports over the
progresses made in WP3.

1.3

Structure of the document

Figure 1 presents the SEDIMARK functional architecture. The components highlighted in
orange are detailed in this deliverable, bridging the data, intelligence, and service layers of the
platform. The document is structured as follows1:

Section 2: Interoperability Assets: Describes the information models for data (NGSI-
LD) and marketplace concepts (Offerings, Assets), which are fundamental to achieving
interoperability.

Section 3: The Interoperability Enabler: Details the software components responsible
for data formatting, curation, quality annotation, and validation.

Section 4: The Al Enabler: Presents the frameworks for local and distributed model
training (CrossFormer, deFLight, Fleviden), model optimization, and the LLM-based
Offering Generator.

Section 5: The DLT Infrastructure: Explains the architecture and software stack of the
IOTA-based distributed ledger used for trust and transactions.

Section 6: The Storage Enabler: Outlines the distributed storage solutions for data and
Al models within the SEDIMARK ecosystem.

SEDIMARK high level functional architecture
) '
— /I_larketplaoe services layer \ @
Offering Offering Offering Data Space i
- (o] (Riien ) (e ) (D (oo, ) ( Commrens )
E Payment / ] [Alasa ] Contract ] [ ) ] User -g
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p— \ [provisioning J [ request J [ Ry J [enabler J [ (R s J /
= Interaction layer
@
Smart : e L
: = () (o) (o) ()
_ _/
)
4 N
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] Model
: B = [
|\ —/
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/ \
Data Data Feature Data Data quality
g Data layer | ;qapter profiling engineering augmentation evaluation
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ze Data Energy Data
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g
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Figure 1: SEDIMARK Functional Architecture: orange highlights functional components that

are being part of this deliverable

Document name:

D3.4 Enabling tools for data interoperability, distributed data storage

and tfraining distributed Al models. Final version Page: 14 0f 89

Reference: SEDIMARK_D3.4 |Dissemination: PU ‘Version:‘ 1.0 | Status:  |Final




2

5seDIMARK

2 Interoperability assets

Interoperability is a crucial facet of modern information management, enabling seamless
communication and exchange of data, models and services across diverse systems, platforms,
and applications. In a world characterized by an abundance of data sources and formats,
achieving interoperability ensures that disparate systems can understand, interpret, and
effectively use shared data. This capability facilitates collaboration, integration, and synergy
among organizations and technologies, breaking down silos and promoting a more
interconnected digital ecosystem.

This introduction explores the significance of data interoperability in overcoming the challenges
posed by data heterogeneity, promoting standardization, and ultimately unlocking the full
potential of interconnected data landscapes. Embracing data interoperability not only
enhances operational efficiency but also lays the groundwork for advanced analytics, artificial
intelligence, and the seamless flow of information in our interconnected, data-driven world.

Before initiating any data processing pipeline within the SEDIMARK platform, data thus need
to be formatted so to be usable by the pipeline. In its initial version, it has been agreed that the
data processing pipeline would consumes and produces data organised along the NGSI-LD
information model [1].

NGSI-LD is represented in JSON-LD and thus have a RDF grounding. It is mainly based on
RDF standards to capture high-level relations between entities (representing or not a real-
world asset) and properties of entities, as shown below. The core concept in the NGSI-LD data
model is the “Entity” which can have properties and relationships to other entities. An Entity is
equivalent to an OWL class. The assumption is that the world consists of entities, which can
be physical entities like a car or a building, but also more abstract entities like a company or
the coverage area of WLAN access points. Entity instances are identified by a unique URI and
a type, e.g., a sensor with identifier urn:ngsi-ld:Sensor:01 and of type Sensor. Different from
rdf:Properties, NGSI-LD properties (and relationship) are also considered as OWL classes
also. Properties and relationships can be annotated by properties and relationships
themselves, e.g. a timestamp, the provenance of the information or the quality of the
information can be provided. The hasObject and hasValuein the NGSI-LD metamodel are
defined to enable RDF reification, based on the blank node pattern, to leverage the property
graph model.

The NGSI-LD cross-domain ontology extends the NGSI-LD metamodel to cover several
general contexts presented below [2]:

Mobility defines the stationary, movable or mobile characteristics of an Entity;

Location differentiates and provides concepts to model the coordination based, set based
or graph-based location;

Temporal specification includes property and values for temporal property definitions;
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e Behavioural system includes properties and values to describe system state,
measurement and reliability;

e System composition and grouping provides a way to model system of systems in which
small systems are composed together to form a complex system following specific
patterns.

The NGSI-LD cross domain ontology is presented in Figure 2.

e A

RDF Grounding
rdfs:subClassOf rdfityps

Entity Relationship Property hasObject  hasValue  Value
. -~ « 4 » v v
¢ Meta-Model
Cross-Domain

......................................... .: Structural System
- Mobility | .l ocation .Tcmpor-lc-Bcha\ ioral System ), Composition & Grouping

Figure 2: RDF standards to capture high-level relations between entities in NGSI-LD (source
ETSI [1])

Below we present a use case example for modelling data and context using the NGSI-LD. The
example consists of a station that returns the measure of the level and flow of a river. This
station has an id which is urn:ngsi-ld:Hydrometric-Station:X061000201. This station is located
in a river identified by urn:ngsi-ld:River:La_Durance. This is defined by the relationship
(isLocatedOn).

To model this example, Figure 3 presents the main symbols signification used in the
medialisation task.

< Value > |Enlity Inshm:e] O O O )'O

rdis.domasin rdfs:renge
000 0
Entity Type
rafs: subClassOd ratype

Relationship

Figure 3: Main Symbols Definition (source ETSI [1])

The Entity "River” (since it is a subclass of NGSI-LD Entity) is instantiated with the identifier
urn:ngsi-ld:River:La_Durance. Several relationships are defined in this example: the first
(isAffluentOf) describes the hierarchy between the rivers, to be used later on for graph-based
data processing. The relationship hasWeatherinformation provides weather related
information for the river.
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The Smart Data Models (SDM) initiative, aims to offer a standardized approach to data
representation across different domains. It aims to enhance interoperability between diverse
systems and applications, thus enabling seamless communication. Developed by the FIWARE
community, the Smart Data Models are open source and are developed through constant
efforts from the community.

Within SEDIMARK, implementing Smart Data Models for Data Assets aims to establish a
homogeneous approach for participants to utilize the reusable common tools proposed by
SEDIMARK, including Al modelling and data processing. Therefore, it complements the like
NGSI-LD semantic-enabled APIs with NGSI-LD data models. The implementation of Smart
Data Models ensures that providers reveal a consistent taxonomy. This enables SEDIMARK
participants to both sell enhanced data and expand the pool of potential customers and data
providers within the Marketplace for service providers.

Smart Data Models offer a customisable framework suitable for diverse domains, allowing for
the creation of multiple domain-specific data models that cater to applications or datasets.

SEDIMARK advocates for the practical use of Smart Data Models in Data Assets, despite the
possibility of needing to adjust proposed models with new attributes and properties. Several
data models have been identified from the domains supported by the initiative, including Smart
Mobility, Smart Cities Smart Environment and Smart Energy. Additionally, Smart Data Models,
such as the Data Quality model, can be used to enrich the content of existing datasets with the
output of the data processing pipeline.

The NGSI-LD API supports several operations, with messages expressed in JSON-LD. The
APl is the standard for management of context information (which can be summarised as being
any piece of information associated with a context such as time-location information). The
overall NGSI-LD API operations include:
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General Operations Batch Operations

Entity create Batch Entity Creation

Entity update Batch Entity Create/Update (Upsert)
Entity partial update Batch Entity Update

Entity delete Batch Entity Delete

Entity retrieval

Queries Temporal Operations

Subscriptions Create/Update Temporal Entity
Representation
Registry Operations Add Attributes to Temporal Entity Rep.

CSRegistryEntry create gelete Attribute from Temporal Entity
CSRegistryEntry update ep.. . .

, , Modify Attribute Instance in Temporal
CSRegistryEntry partial update Entity Rep
CSRegistryEntry delete Delete Attribute Instance from Temporal
CSRegistryEntry retrieval Entity Rep.
CSRegistryEntry query Delete Temporal Entity Representation
CSRegistryEntry subscription Retrieve Temporal Entity Evolution

Query Temporal Entity Evolution

This API relies on the NGSI-LD data model introduced earlier. In short, this model makes use
of the JSON-LD serialisation format which adds linked data capabilities to the JSON format.
The core of the model builds upon the concept of Entity, where an entity can have Properties
and Relationships with other entities, building a property graph model.

The JSON-LD format allows to create a network of standards-based machine interpretable
data across different sources. The JSON-LD format includes an @context clause used to map
short terms used in the serialization to URIs uniquely identifying concepts and mapping to
specific types (e.g. DateTime).

In the following, we present the modelling process of the previous example using the NGSI-
LD API based on JSON-LD messages for creating and querying instances of Sensor and
Station.

An Entity can be created using the following endpoint (among others):
POST {gatewayServer}/ngsi-ld/v1/entities

The payload must contain at least an id and a type for the entity. Any other attribute can also
be added to the entity when creating it.

An example of payload used for the creation of a hydrometric station entity for the water use
case is given below:
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{
"id": "urn:ngsi-1ld:HydrometricStation:X031001001”,
"type": "HydrometricStation”,
"location": {
"type": "GeoProperty",
"value": {
"type": "Point",
"coordinates": [
6.2727640,
44.4709131

An instance of an attribute can be added to an Entity using the following endpoint (among
others):

PATCH {gatewayServer}/ngsi-ld/v1/entities/urn:ngsi-ld:HydrometricStation:X031001001

The payload can contain an instance for any attribute (already existing or not), if an attribute
does not exist, it will be created with the new instance.

An example of payload used to add some flow and water level measurements to a hydrometric
station for the water use case is given below
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{
"flow": {
“value" : 138000.0,
"observedAt" : "2023-12-04T10:15:00Z",
"type" : "Property",
"unitCode" : "G51"
¥
"waterLevel": {
"value" : 1237.0,
"observedAt" : "2023-12-04T10:15:00Z",
"type" : "Property",
"unitCode" : "MMT"
}
}

Figure 6: Payload to add instance of attributes to an Entity.
2.2.3.4 Retrieving an Entity by Id query

An Entity can be retrieved using the following endpoint (among others):
GET {{gatewayServer}}/ngsi-ld/v1/entities/{{entity id}}
An example of the response given for the entity used in the previous example is given below:
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{
"id": "urn:ngsi-ld:HydrometricStation:X031001001",
"type": "HydrometricStation",
"flow": {
"type": "Property",
"value": 139000.0,
"observedAt": "2023-12-04T07:45:00Z",
"unitCode": "G51"
¥
"waterLevel": {
"type": "Property",
"value": 1238.0,
"observedAt": "2023-12-04T07:45:00Z",
"unitCode": "MMT"
¥
"location": {
"type": "GeoProperty",
"value": {
"type": "Point",
"coordinates": [
6.49800996,
44 ,55535641
]
}
}
}

Figure 7 show the current state of the Entity (i.e., only the last instances for each attribute are
displayed).

The history of the Entity can be retrieved using this endpoint (among others):

{{gatewayServer}}/ngsi-
ld/v1/temporal/entities/{{entity_id}} ?timerel=after&timeAt={{datetime}}&options=temporalValu
es

An example of the response given for the entity used in the previous example is given below:
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{
"id": "urn:ngsi-ld:HydrometricStation:X031001001",
"type": "HydrometricStation",
"flow": {
"type": "Property",
"values": [
[
80500.0,
"2023-12-01T00:15:00Z"
15
[
82800.0,
"2023-12-01T00:30:00Z"
1,
[
85100.0,
"2023-12-01T00:45:002"
1, -
s
}

The Marketplace Information Model is an RDFS/OWL-ontology covering the fundamental
concepts of SEDIMARK needed for the registration of Participants and the discovery and
exchange of Offerings and Assets. This model establishes a common framework to ensure
interoperability within a SEDIMARK-based Marketplace and includes the terms defined in
Deliverable SEDIMARK_D2.3 [3] to enable participants to discover and exchange Assets in
the form of Offerings. This common ontology is meant to serve as a shared language, fostering
seamless communication and interoperability among the users of SEDIMARK. Therefore, the
use of this information model is enforced for any Participant or component that wants to join
the Marketplace based on SEDIMARK guidelines. The main goal of this model is to ease the
search and discovery of Participants and their offers, describing accurately their information.

The creation of this model is supported by existing proposals by similar initiatives and is built
upon well-known ontologies such as Open Digital Rights Language (ODRL) [4], Data Catalog
vocabulary (DCAT) [5], Friend Of A Friend (FOAF) [6] or the Dublin Core Terms (DCT) [7]. In
particular, the model has its foundations in the proposal shared by the International Data
Spaces Protocol [8], to align as much as possible with such an initiative, although including
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new terms introduced by SEDIMARK (e.g., the concept of Offering; the additional type of
Assets that can be part of the Marketplace; or the data quality information that is part of
SEDIMARK).
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Figure 9: High-level view of the Marketplace Information Model

The current version of the Marketplace Information Model is depicted in Figure 9. The
ontology has been designed using the Protége tool [9] documented using the WIDOCO tool
and hosted online via GitHub and GitHub Pages. The main concepts in this information model
are the Self-Description, Participant, Self-Listing, Offering and Asset and Asset Provision.
Figure 10 illustrates the properties for each of these main concepts.

Self-Listing Offering Asset
dcterms:title xsdstring hasOffering dcterms:title xsd:string hasAsset determs:identifier xsd:string
dcterms:description xsdstring * fdcterms:description xsd:string determs:title xsd:string
decterms:publisher xsdstring dcterms:publisher xsd:string dcterms:description xsd:string
determs:issued xsd:dateTime dcterms:issued xsd:dateTime \ dcterms:creator xsd:string
determs:modified xsd:dateTime dcat:themeTaxonomy  skos:ConceptScheme determs:issued xsd:dateTime
deat:landingPage foaf:Document |hasOfferingRecord dcat:CatalogRecord dcterms:theme skos:Concept
Y dcat:keyword xsd:string
determs:spatial xsd:anyURI
hasSelf-Listing ———————
proviwasGeneratedBy  prov:Activity
deat:isVersionOf dcat:Dataset
Participant
— isProvidedBy
schema:givenName xsd:string ¥
schema:familyName xsd:string AssetProvision
schema:alternateName  xsd:string -
schema:accountid xsd:string dcterms:title xsd:string
schema:email xsd:anyURI dcterms:description xsd:string
schema:member Of xsd:anyURI determs:issued xsd:string
schemazimage xsd:anyURI dact:accessURL rdfs:Resource
foaf:homepage xsd:anyURI e e e e
dcterms:conformsTo dct:Standard
deat:byteSize xsd:NonMNegativelnteger
spebx:checksum spdx:Checksum
dcterms format dcterms:MediaType

dcterms:accessRights  xsdstring

Figure 10: Properties for main classes in the Marketplace Information Model
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As defined in Deliverable SEDIMARK_D2.3 [3], Self-Description is a machine-interpretable
document providing all the information about a Participant. In this case, it can be considered
the main class within the Marketplace Information Model. This concept is also a core part of
other information models, such as the ones from Gaia-X [10] and IDS [11]. Any Participant in
a Marketplace must provide a Self-Description.

There are several concepts that are part of the Self-Description, including the information about
the Participant (name, description and the timestamps where this information was updated or
created). Besides, the Self-Description can also link to a Self-Listing concept, which lists the
set of Offerings from a Participant acting as a Provider.

{
"@id": "https://connector.eu/",
"@type": "sedimark:self-description",
"dct:issued": {
"@type": "xsd:dateTime",
"@value": "2023-11-06T16:54:48.577964"
¥
"dct:modified": {
"@type": "xsd:dateTime",
"@value": "2023-11-06T16:54:48.577964"
¥
"foaf:name": "SEDIMARK Participant A",
"dct:description”: "Participant located in Europe...",
"dct:language": {
"@id":
"http://publications.europa.eu/resource/authority/language/ENG"
¥
"sedimark:hasSelf-1listing": {
"@id": "https://connector.eu/self-listing"
¥
"@context": {
"dct": "https://purl.org/dc/terms/",
"dcat": "https://www.w3.org/ns/dcat/",
"odrl": "http://www.w3.org/ns/odrl/2/",
"dspace": "https://w3id.org/dspace/v0.8/",
"sedimark": "https://sedimark.eu/marketplace-information-
model/0.1/"

}

The Offering is a concept introduced by SEDIMARK and describes and bundles a set of Assets
that are part of an offer, along with their terms and conditions. This concept is conceived
essentially as a subclass of a DCAT Catalog (as well as the Self-Listing concept) with
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additional properties to link to other SEDIMARK concepts such as Assets and Offering
Contracts. As mentioned, only Participants acting as a Provider has a Self-Listing along with
a set of Offerings.

The Offering concept is also a key difference between the SEDIMARK Marketplace Information
Model and the IDS Protocol [11]. In the IDS protocol, every offer is composed of a single Asset,
while in SEDIMARK they can be grouped in an Offering, thus containing multiple assets per
transaction.

Finally, one important aspect of Offerings is contracting. Each Offering contains a mandatory
OfferingContract object and, possibly, an Agreement. Both concepts, Contract and Agreement,
are subclasses of ODRL Offer and Agreement concepts, respectively. While a single Contract
object is mandatory (even if there are no particular restrictions) in each Offering, Agreement
objects are only required per transaction. Agreements are similar to contracts but add specific
properties (i.e., assigner and assignee), which specify the Participants tied to the policies that
are part of the Offering Agreement.

{
"@type": "sedimark:self-listing",
"@id": "https://connector.eu/self-listing",
"sedimark:belongsTo": {
"@id": "https://connector.eu/"
¥
"sedimark:hasOffering": [
{
"@id": "https://connector.eu/offering/offeringID"
}

1,
"@context": {

"dct": "https://purl.org/dc/terms/",

"dcat": "https://www.w3.org/ns/dcat/",

"odrl": "http://www.w3.org/ns/odrl/2/",

"dspace": "https://w3id.org/dspace/v0.8/",

"sedimark": "https://sedimark.eu/marketplace-information-
model/0.1/"

}
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"@id": "https://connector.eu/offering/offeringID",
"@type": "sedimark:OfferingContract”,
"sedimark:participantId": "https://connector.com/",
"dct:title": "offeringName",
"dct:description”: "University from the North of Spain...",
"dct:issued": {
"@type": "xsd:dateTime",
"@value": "2023-11-06T16:54:48.577964"
¥
"dct:modified": {
"@type": "xsd:dateTime",
"@value": "2023-11-06T16:54:48.577964"
¥
"dcat:keyword": [
"keyword 1",
"keyword 2"
]J
"odrl:hasPolicy": {
"@id": "https://connector.eu/policy/policyID",
"@type": "sedimark:Contract",
"odrl:permission”: [],
"odrl:prohibition": [],
"odrl:obligation": []
}J

"sedimark:hasAsset": [

{
"@id": "https://connector.eu/asset/assetID"

1,
"@context": {
"dct": "https://purl.org/dc/terms/",
"dcat": "https://www.w3.org/ns/dcat/",
"odrl": "http://www.w3.org/ns/odrl/2/",
"dspace": "https://w3id.org/dspace/v0.8/",
"sedimark”: "https://sedimark.eu/marketplace-information-
model/0.1/"

}

Figure 13: Offering JSON-LD example

2.3.3 Asset

Assets are the resources being offered in each of the Offerings. Initially, three different Asset
concepts were considered in SEDIMARK depending on the type of the resource they are
representing. In this sense, the Assets defined are datasets (either static or streaming data),
Al Models, Services (e.g., data processing) and other Assets, such as containers or virtual
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machines. This is also another difference with the IDS Protocol proposal, as assets are only
related to data, either streaming or static datasets.

In addition, another concept has been defined within the Marketplace Information Model to
represent the quality of the Asset which extends the QualityMeasurement concept from the
Data Quality Vocabulary (DQV) ontology, thus giving an idea of the Asset composing an
Offering, to foster the exchange and represent what SEDIMARK tools through the Data
Processing Pipeline can provide as an added value to providers which enhance their data
through SEDIMARK.

—
e

—
- Y -
- /s . =~ -

- /

- ~ T~
- - s A e —_
AlModelAsset DataAsset OtherAsset

Figure 14: Types of Assets in the Marketplace Information Model

Data Assets

Datasets are represented in the Marketplace Information Model as a subclass of the Dataset
class from the DCAT ontology. In turn, the DataAsset includes properties relating to
descriptions, keywords, and spatial, temporal and thematic contexts.
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"

"@id": "https://connector.eu/asset/assetID",
"@type": "sedimark:Dataset",
"dct:description”: "data asset description”,
"dct:language": {
"@id": "http://publications.europa.eu/resource/authority/language/ENG"
1
"sedimark:hasDataQuality": {
"@type": "sedimark:dataQuality",
"@id": "https://connector.eu/dataquality/dataQualityID"
1
"dcat:distribution”: [{
"@id": "https://connector.eu/dataquality/distributionID",
"@type": "dcat:Distribution”,
"dct:format": {
"@id": "HttpProxy"
1
"dct:issued": {
"@type": "xsd:dateTime",
"@value": "2023-11-06T16:54:48.577964"
1
"dct:modified": {
"@type": "xsd:dateTime",
"@value": "2023-11-06T16:54:48.577964"
3
"dcat:mediaType": {
"@id": "https://www.iana.org/assignments/media-types/application/1ld+json"
1
"dcat:accessService": {
"@id": "https://connector.eu/serviceID",
"@type": "dcat:DataService",
"dcat:endpointDescription™: "NGSI-LD API",
"dcat:endpointURL": {
"@id": "https://connector.eu/assetID/protocol”

1,

"@context": {
"dct": "https://purl.org/dc/terms/",
"dcat": "https://www.w3.org/ns/dcat/",
"odrl": "http://www.w3.org/ns/odrl/2/",
"dspace": "https://w3id.org/dspace/ve.8/",

"sedimark": "https://sedimark.eu/marketplace-information-model/0.1/"

Figure 15: DataAsset JSON-LD example
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Al Model Assets represent exchangeable Al Models for both centralised and distributed Al
learning techniques. Therefore, the Al Model Asset reflects a number of aspects of Al models
which will be exploited by search and discovery mechanisms to retrieve relevant offerings for
Consumers. The following properties have been identified for this class:

category Type of machine learning algorithms, i.e. Supervised Learning,
Unsupervised Learning, Semi-supervised learning,
Reinforcement Learning

purpose General purpose of the Model e.g. Classification, Natural
Language Understanding, Recommendation, Forecasting,
Synthetic Data Generation etc.

algorithm The algorithm used for the model, e.g. Neural Network,

serialization The model serving serialisation format; e.g. TensorFlow, parquet,
PyTorch etc.

version The version of the Model. This is particularly important for
decentralised learning

execution How the model will be deployed (parallel execution of the
algorithms) (centralised, federated etc,)

size memory size of the model in Gigabytes

modified when the model was last modified

handleStream whether the model is adapted to work with stream data

inputFormat Accepted input format for the model

inputParameters Parameters passed to the model (Stringified array)

outputFormat Output format for the model

outputParameters Parameters passed by the model (Stringified array)

hasTrainingDataset
hasArchitecture

The dataset used for training the Al model Asset
The network architecture that the model adopts

AlModelAsset
category xsd:string
purpose xsd:string
algorithm xsd:string
serialization xsd:string
version xsd:string
hasTrainingDataset— execution xsd:string hasDatasetProcessing— >I WorkflowAsset I
size xsd:float
outputFormat xsd:string
handleStream xsd:boolean
inputFormat xsd:string
InputParameters xsd:string
outputFormat xsd:string
outputParameters xsd:string
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The ServiceAsset class covers service-based assets, such as the provision of data storage or
computation resources, or the application of an Al Model Asset on a Data Asset(s). Each of
these assets represents the information describing the particularities of each service (e.g.,
number and type of processor cores, storage type, etc.).

Other type of assets, such as Virtual Machines or Containers are included here, which will
include additional properties to define their characteristics (e.g., computation requirements,
operating system, etc.).

This Asset reflects the artefact that defines a workflow for either data processing or Al Model
Asset generation or use for inference. Section 2.5 provides details on how the Asset is
generated.

For the Assets to reflect themes or use cases, a vocabulary is required to provide a unified
reference for naming aspects relating to information captured, which are represented as
properties that correspond to the use case's domain of interest.

Assets provided within SEDIMARK marketplace are associated with real and virtual entities of
interest, such as vehicles or weather stations, that are related to a particular theme or use
case, such as “transportation” or “environment”. To capture this, a vocabulary has been
established that reflects the theme taxonomy adopted by the Smart Data Models initiative. The
vocabulary is essentially comprised of instantiations of the Concept class that belongs to the
SKOS Ontology [12], which links with the SEDIMARK ontology via the dcat:theme property, as
part of the Asset class. The vocabulary as a whole is also explicitly declared through
instantiating the ConceptScheme class, which links with the SEDIMARK ontology via the
dcat:themeTaxonomy object property, as part of the Offering class.

The main or top concepts of the vocabulary are the Domain of interest, the Subject or sub-
domain, the Entity of interest and Properties associated with that Entity. The main concepts
extend the SKOS ontology for knowledge organization. Relational properties from the SKOS
ontology are used to link Entities with their Properties, Entities with their Subjects, and Subjects
with their Domains. Hierarchical properties from SKOS are used to link specific Entity concepts,
such as Transportation with its skos:broader concept, i.e. Entity.
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The instance naming convention follows the naming scheme adopted by SmartDataModels.
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The vocabulary described in Section 2.4.1 is made available in a machine-readable format
using JSON-LD (JavaScript Object Notation for Linked Data). JSON-LD is a W3C-
recommended specification [21] designed to enhance data interoperability by enabling the
integration of linked data into JSON based systems.

The vocabulary is published through a GitHub repository, which contains the relevant JSON-
LD context files and corresponding examples of entities/assets. The context files define the
mapping between short-form terms and their full IRIs, in accordance with the SEDIMARK
ontology and the Smart Data Models initiative.

The repository is linked to a GitHub Pages service, which allows the JSON-LD contexts to be
resolved as persistent HTTP URIs. These URIs can be referenced directly by assets, enabling
automated interpretation of semantic annotation.

This publication mechanism ensures that:

The structure and semantics of the vocabulary are explicitly defined and consistently
applied.

Contexts can be dereferenced dynamically as part of data exchange processes.
Example entities illustrate correct usage patterns and support developer adoption.

The MageToCWLTransformer is a tool that converts Mage.ai pipelines into Common Workflow
Language (CWL) workflows and standard Python scripts, facilitating the integration of user-
friendly design environments with industry-standard execution frameworks. This Asset bridges
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the gap between intuitive pipeline prototyping in Mage.ai and reproducible, portable
deployment environments enabled by CWL [21].

The tool is composed of two main components:

» MageToPython which converts Mage.ai blocks into standalone Python scripts by
removing Mage-specific dependencies, resolving environment variables, and ensuring
direct command-line execution compatibility.

o MageToCWL that wraps the transformed Python blocks into CWL tools and workflows
using structured templates. It builds CWL-compliant execution sequences and outputs
YAML workflows, shell wrappers, and validation scripts.

The output is a ready-to-use ZIP archive containing:
» Converted Python scripts for each Mage block,
o CWL tool definitions and a main CWL workflow,
¢ A shell script for execution and validation

Optionally, serialization and visualization components (e.g., pickled data states, result
displayer). The transformer supports seamless integration with CWL-WES and TESK [13]
execution backends, use in cloud-native environments including Kubernetes and EDC
connectors as well as enhanced reproducibility for Mage-authored workflows in federated or
regulatory-constrained settings. As presented in Figure 18, we have performed tests, namely
the average execution time over five consecutive runs for the two pipelines described
previously.

Comparison between Mage Al and CWL
30 — 28585

25

20

Walue (saconds)

10t 9.335
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& <

Pipeline

Figure 18: Comparison between Mage.ai and CWL performances

The results showed that CWL is faster in execution than Mage Al, which has a large overhead,
presenting the benefits of using CWL for workflow execution.

This asset is aligned with the SEDIMARK objective of standardizing workflow interoperability
across heterogeneous ecosystems.
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It will be published as a WorkflowAsset under the type sedimark:PipelineConversionTool,
linked to its Mage.ai source and CWL output via provenance metadata.

The Offering Generator is a component that transforms asset information into standardized
JSON-LD offerings compliant with the SEDIMARK Marketplace Information Model. It leverages
Large Language Models (LLMs) to automate the creation of semantically rich offering
structures.

In the SEDIMARK workflow, the Offering Generator receives asset details from providers and
produces properly formatted offering documents that the Offering Manager can register in the
marketplace. By using LLMs, this component significantly reduces the technical knowledge
required from providers to create valid offerings while ensuring compliance with the complex
ontological requirements described in section 2.3.

Recent advances in LLMs have demonstrated increasing proficiency in generating structured
data with advanced techniques such as specialized schema usage, prompt engineering, and
routing mechanisms. Leveraging LLMs for structured offering data generation enforces
consistent semantics and structure, enhances interoperability across the marketplace, enables
providers to describe offerings in natural language, drastically accelerates creation, reduces
technical barriers, and minimizes the need for specialized knowledge or manual validation.

P ————
7 ™y

Asset Teacher Model ~ Knowledge Student Model JSON-LD

L T —— Infi Engi
Descriptions (GPT-40) Distillation (Qwen2.5-3B) Crence Lngme Offerings
L. A [ | | | L L
A 5
........ | o v
i - “
i Validation

Layer
L. o’

Multi-Task Learning

L=gl fteacher} + BL_fonrologyi + yL_{schemai

Optimization Pipeline

Context QLoRA Memory Enhanced
Curriculum Quantization Optimization Tokenization

Subject to: C N R — =90% validity, <25 latency

The Offering Generator converts provider input and asset metadata into JSON-LD documents
through prompt-engineered interactions with an LLM, ensuring alignment with the Marketplace
Information Model. The generated output includes appropriate context declarations, semantic
relationships, and contractual terms required for marketplace transactions. These documents
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are subsequently validated against SEDIMARK schemas, with corrections applied as needed
to ensure semantic consistency and interoperability within the marketplace ecosystem.

The Offering Generator interacts with the Offering Manager through a structured
communication protocol to ensure seamless integration within the SEDIMARK ecosystem. The
interface the Offering Manager exposes is a REST-based API that takes the generated
Offering Description as the payload, and responds with a JSON payload that confirms the
validity of the Offering Description, and it's storage in the Self-Listing. Else if the validation of
the Offering Description fails, it will respond with a JSON payload that includes the error,
whether it be basic RDF/JSON-LD compliance, or the Offering Description being incomplete.
Following the JSON-LD generation and validation processes, the Offering Generator will
forward the compliant offering documents to the Offering Manager through a dedicated API
endpoint. The Offering Manager will receive these validated offerings and perform several
critical functions, such as storage in the corresponding Self-Listing and registering the Offering
with the DLT Registry. This interaction will follow a protocol where the Offering Generator will
transmit both the offering content (JSON-LD document) and metadata about the validation
results.

- r"’f Offering Generator \\s ..
R Offering Manager
Asset Description Broker i ;
{Prowder suberits Base! irfarmaton) } ¥ Semantic Processing ~rre | Regeier Ofeing ?.!arimpcm
Onmindegyl
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Structured Data Generation

e e e e b

Information Model repository | Marketplace

(ROFS/OWL Ontology) Validation (Discoveny and exchange of oferinga)
L
\x_ . 4

At its core, this module employs a student-teacher architecture where large, computationally
intensive models (like GPT) serve as teachers that produce structured JSON-LD examples,
while a compact, efficient model (Qwen 2.5-3B) learns to replicate these capabilities through
sophisticated knowledge distillation techniques. The distillation process employs curriculum
learning that progressively challenges the student model, starting with complete contextual
information and gradually reducing this support until the model can generate valid JSON-LD
even with minimal context.

The operational pipeline begins with contextually-aware prompt engineering that provides
carefully structured instructions to the base models. This critical first stage implements
schema-aware prompting techniques that precisely define the expected JSON-LD structure,
relationships, and ontological constraints. A high-capacity teacher model, e.g., a GPT variant,
is leveraged to synthesize high-quality, schema-conformant JSON-LD instances. Each
example is validated against schema requirements using evaluation metrics.

In the next phase, the student model is trained using a progressive context curriculum where
training begins with complete ontologies and schemas, then gradually reduces contextual
support through five distinct stages with increasing context dropout rates. The multi-stage
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optimization process employs gradient accumulation, a cosine learning rate scheduler,
adaptive learning rates, and mixed precision training. Advanced regularization techniques,
including label smoothing, tiered dropouts, and stochastic depth, further enhance the model's
performance.

The final phase focuses on refinement and specialization, emphasizing structural refinement
and context retrieval training. During structural refinement, the model undergoes fine-tuning
specifically on complex JSON-LD structures, focusing on proper entity linking, ontology
compliance, and schema validation. Context retrieval training teaches the model to identify
relevant contextual information through input-context-output examples and similarity metrics.
The process also incorporates scheduled sampling to reduce exposure bias between training
and inference.

The technical implementation includes several optimizations to ensure efficient training and
deployment. Memory optimization techniques include gradient checkpointing and 4-bit
quantization using NF4 format during inference. The model architecture benefits from QLoRA
fine-tuning with specific parameters and differential learning rates for different layer groups.
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3 The Interoperability enabler

Data Formatter is an essential component of the Interoperability Enabler, transforming data
from various formats, such as CSV, XLS, XLSX, and NGSI-LD json, into the SEDIMARK
internal processing format, specifically pandas DataFrames. This process is designed to
standardize data input formats within the SEDIMARK ecosystem, ensuring that heterogeneous
data can be seamlessly ingested and converted into a uniform structure. In this way, data
formatting facilitates efficient data processing, analysis and integration, improving the overall
functionality and reliability of the SEDIMARK system.

This component can automatically detect the file type based on its extension and uses the
appropriate method to load the data. For CSV and Excel files, it uses pandas’ built-in readers.
When dealing with NGSI-LD json (primary standard format within the SEDIMARK ecosystem),
which often contains deeply nested structures, the component applies a recursive flattening
process to transform complex entities into flat, tabular records. It is designed to handle complex
NGSI-LD json data more effectively than the pandas.json_normalize Python library. It
recursively flattens dictionaries while preserving key hierarchies, supporting nested structures
and ensuring efficient processing and interoperability.

This component enables comprehensive data management and seamless integration within
the SEDIMARK ecosystem. The final output is a flat dictionary where complex nested
structures are simplified, making it significantly easier to analyze and manipulate within a
pandas DataFrame. This method enhances data accessibility and streamlines the analytical
process.

Example with nested dictionary (e.g. single bike use case)
Input NGSI-LD json:

"id": "urn:ngsild:Vehicle:vehicle:MobilityManagement:196636",
“"type": "Vehicle",
"category": {

"type": "Property",

"value": "tracked"

Output (pandas DataFrame):

id type category.type | category.value

urn:ngsiLd:VehicLe:vehicLe:MobilityMana

gement: 196636 Vehicle Property tracked
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Example with list handling in NGSI-LD json (e.g. temporal bike use case)

If a list contains dictionaries (list of dictionaries), each entry is flattened with an indexed key.
The lists of primitive values are kept as separate indexed keys
Input NGSI-LD json:

"battery": [
{

"type": “Property",

"value": 1,

[0] "instanceId": "instanceid:b816b94d-cf8c-445a-bc17-b3e@dfbcasda",
"observedAt": "2024-09-25T04:30:06Z",

"unitCode": "P1"

Output (pandas DataFrame):

battery[0].type | battery[O].value | battery[0].instanceld | battery[0].obse | battery[O].

rvedAt unitCode
Property 1 instanceid:b816b94 2024-09- P1
d-cf8c-445a-bc17- 25T04:30:06Z

b3e0dfbca8da

Example by preserving specific keys like @coordinates (e.g. temporal station use case):
Input NGSI-LD json:

"location": {

"type": "GeoProperty",
"value": {
"type": "Point",
"coordinates": [43.477347, -3.791047]
Yy
"instancelId": "instanceid:@b54df62-102a-4312-bc1b-663169d741d4"

Output (pandas DataFrame):

location.type | location.value.type location.value.coordinates location.instanceld
GeoProperty Point [43.477347, -3.791047] instanceid:0b54df62-
102a-4312-bc1b-
663169d741d4

In the realm of data processing and analytics, the utilization of smart data models within the
NGSI-LD data format has emerged as an approach for data annotation and enrichment. This
section explores the dual facets of data annotations: global annotations, applied at the dataset
level, and local annotations, which focus on individual data points.
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Leveraging NGSI-LD's semantic capabilities and the richness of smart data models, this
methodology ensures meaningful and interoperable annotations for improved comprehension
and utilization of data.

Data
Al pipeline Data processing
l pipeline
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Annotations, whether at the global level, providing global information regarding datasets, or at
the local level, enhancing individual data points with context-specific information, contribute to
a more meaningful and interoperable SEDIMARK ecosystem.

Local annotations play a crucial role in enriching the metadata of individual data points with,
inter alia, specific labels derived from data processing outcomes and specifically incorporating
data quality models. This includes categorizing data points based on predefined criteria,
enabling users to identify patterns, missing values, or anomalies. For instance, in SEDIMARK,
we will use the anomaly scores and other data quality measures to support local annotations
by adding metadata to mark data points that deviate significantly from the expected patterns.
These annotations are crucial for identifying potential errors, anomalies, or noteworthy events
that may require special attention. This information will be obtained from the Data processing
and Al pipelines.

Local annotations also consider temporal aspects, capturing changes in individual data points
over time. This temporal context enhances the understanding of the dataset dynamics,
supporting applications that require historical analysis or real-time monitoring. In addition to
standardized metadata, local annotations enable the inclusion of custom metadata tailored to
specific SEDIMARK use cases. This flexibility allows users to embed domain-specific
information, enhancing the richness of annotations for individual data points.

The integration of a data quality model to enrich the data within SEDIMARK refines this process
by emphasizing the accuracy and completeness of individual data points and including
information about outliers, missing data, and other anomalies. As shown in Figure 28, this
metadata will be mainly generated from the Data deduplication, Outlier detection, and Missing
value imputation components. For this to happen, the Smart data model “Data Quality” will be
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used to enrich the content of data points by matching the output of the data processing and Al
pipelines to the properties of the Data Quality model. The existing specific properties for the
different quality aspects that will be considered within SEDIMARK are provided in D3.1 [14].
For example:

Accuracy

Completeness (considering the missing values: isMissing, whatAttribute)
Outlier (isOutlier, outlier score)

Duplication (isDuplicate, whatlnstance)

Global annotations involve enriching the metadata associated with an entire dataset or data
stream, providing a holistic view of the underlying information. This process is important for
establishing a contextual foundation that facilitates a comprehensive understanding and
utilization of the data as a whole. Smart data models with their domain-specific ontologies offer
a structured semantic context for datasets, encapsulating the essential characteristics of the
data.

Global annotations contribute contextual information to the dataset, offering insights into the
overall purpose, source, and relevance that illuminate the overall data quality. Metrics such as
completeness, accuracy, precision, and timeliness are essential components of global
annotations, enabling users to assess the reliability of the dataset as a whole. This metadata
enrichment facilitates efficient data discovery, sharing, and utilization in applications and
analytics. Global annotations encompass general properties related to datasets or data
streams and are presented in Sections 3.5 and 3.6 in the deliverable D3.1. For instance, we
cite:

Accuracy

Precision

Completeness

Statistics extracted from data (data format, number of attributes, number of instances)

Information regarding the dataset usage (e.g., with which ML task this data can be used,
isLabeled)

If data is curated (information on how outliers are identified and handled, how missing
values are handled)

In this context of global metadata, DCAT is used within SEDIMARK as an integral element of
the Offering description. Its role is to augment information about the Offerings, providing
descriptions of datasets and any pertinent information required for enhanced data
discoverability. Consequently, global annotations will be integrated within the Offering
description component.

The Data Quality Annotations is designed to enrich pandas DataFrames (from the previous
phase: Data Curation) by adding quality annotations, which are essential for ensuring data
integrity, reliability, and interoperability across different artefacts, including data, Al models,
and service offerings.
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Built to operate directly on Pandas DataFrames, this component supports two levels of
annotation granularity:

Entity-level, where a quality descriptor is attached to the entire data point (i.e., the row);

Attribute-level, where specific columns (i.e., attributes) within each record are individually
annotated.

It follows the NGSI-LD standard for linked data, guaranteeing compatibility with decentralized
and federated data architectures. It checks for and generates key metadata fields (id, type,
and @context) if they are missing. It introduces the property "hasQuality" with the type
"Relationship" and the object which specifies a unique identifier (URN) with the data entity
(either an instance or an attribute) to uniquely identify entities and their associated quality
assessments.

The URN follows this specific pattern:
For attribute-level annotations:
urn:ngsi-ld:DataQualityAssessment:<annotation_name>:<instance_id>:<attribut_name>
For entity-level annotations:
urn:ngsi-ld:DataQualityAssessment:<annotation_name>:<entity_id>

Examples with the attribute-level annotations (e.g. temporal station use case)

In this example, the selected attribute for annotation is "availableBikeNumber", and the
corresponding annotation entity type (representing the metadata type of the instance) is
"BikeDockingStatus". Since an NGSI-LD json file can contain multiple instances of different
types, specifying the entity type is essential to accurately associate quality annotations with
the correct data entity.

availableBikeNumber[0].hasQuality.type availableBikeNumber[0].hasQuality.object

Relationship urn:ngsi-
|d:DataQualityAssessment:BikeDockingStat
us:urn:ngsild:BikeHireDockingStation:bikest
ation:MobilityManagement:336926289:availa
bleBikeNumber

availableBikeNumber[99].hasQuality.type availableBikeNumber[99].hasQuality.object

Relationship urn:ngsi-
Id:DataQualityAssessment:BikeDockingStatu
s:urn:ngsild:BikeHireDockingStation:bikestati
on:MobilityManagement:336926289:availabl
eBikeNumber

We have also the possibility to annotate a specific attribute at a granular-level.The attribute
(metadata) chosen is "availableBikeNumber[0]".
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availableBikeNumber[0].hasQuality.type availableBikeNumber[0].hasQuality.object

Relationship urn:ngsi-
Id:DataQualityAssessment:BikeDockingStatu
s:urn:ngsild:BikeHireDockingStation:bikestati
on:MobilityManagement:336926289:available
BikeNumber

Example with the entity-level annotations (e.g. single bike use case)

In this example, only the entity type "FleetVehicleStatus" is selected for annotation.

hasQuality.type | hasQuality.object

Relationship urn:ngsi-
Id:DataQualityAssessment:FleetVehicleStatus:urn:ngsild:Vehicle:
vehicle:MobilityManagement: 196636

The Data Mapper component is designed to convert the enriched pandas DataFrame (from
the previous phase: Data Quality Annotations) back to NGSI-LD json, enabling seamless
integration with the NGSI-LD Broker. During this transformation, it restores the original NGSI-
LD structure, including nested attributes and contextual metadata, ensuring consistency with
the source format.

To support incomplete or flat data sources, this component also generates missing semantic
elements. If the id is absent, a default URN-based identifier is created following the pattern:

urn:ngsi-ld:{entity_type}.{DataFrame_row_index}.
If the entity type is not provided, it defaults to the specified entity type parameter.

When attributes contain "type": "null", they are automatically corrected to "type": "Property" to
conform to NGSI-LD standards.

Additionally, the component handles timestamp normalization, converting raw Unix
timestamps or numeric date fields into the standardized ISO 8601 format (YYYY-MM-
DDTHH:MM:SSZ), such as 2024-04-17T00:00:00Z, to ensure temporal consistency across
interoperable systems.

The Data extractor component is to extract and return specific columns from a pandas
DataFrame (from the Data Formatter component) based on the indices provided by the user.
This functionality is crucial for enabling selective data processing and enhancing
interoperability among various artefacts, including datasets, Al models, and service offerings.
By delivering both the filtered DataFrame and the corresponding column names, the
component ensures that downstream components (for examples Data Mapper, Data Quality
Annotators, or Al service) can operate with the exact data they need. This capability supports
the modular, flexible, and traceable data workflows that are essential for seamless integration
within the SEDIMARK ecosystem.
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The Metadata Restorer component is designed to restore essential metadata, particularly
column names, into a pandas DataFrame containing prediction results from an Al model.

In many Al processing pipelines, especially those involving raw numerical arrays or
anonymized data, original column headers are often removed for performance or compatibility
reasons. This component addresses the crucial need to restore this contextual information
once predictions are complete.

By aligning a provided list of column names with the structure of the prediction output, it
ensures that the resulting DataFrame is both human-readable and machine-interpretable.

This restoration process supports traceability and consistency within the broader SEDIMARK
ecosystem. The component includes verification mechanisms to ensure that the number of
columns in the prediction results matches the provided metadata, guaranteeing robust and
reliable reintegration of information.

The Data Merger component is responsible for combining the original input data with the
corresponding prediction results from an Al model. It ensures that the two DataFrames, the
initial DataFrame (from the Data Formatter) and the DataFrame containing the predicted data
with restored column names (from Metadata Restorer component), are aligned by their column
names.

To facilitate a seamless merge, the function first identifies the union of all column names
present in both DataFrames. For any columns missing in either DataFrame, it adds these
columns and fills them with the string "NaN" to clearly indicate missing data.

The component then aligns both DataFrames to a consistent column order, sorted
alphabetically, and concatenates them by row into a single unified DataFrame. This is
particularly valuable in workflows where prediction results need to be reintegrated with the
original dataset for further analysis, visualization, or exporting.

Validation is required to ensure that the formatting applied to data assets and Marketplace self-
descriptions is valid and complies with their respective information models.

For both types of artefacts, validation is done through a set of stages.

Format: the format that is used for representation complies with an acceptable
serialization format and variant within that format.

Syntax: the syntax applied to the annotation of the artefact complies with the classes and
properties defined in the corresponding information model.

Semantic: the axioms defined in relation to the relationships between instantiations of the
concepts defined in the corresponding information model are compliant. This would
include relationships regarding properties, class hierarchies, cardinalities etc.

Domain-specific: the literal values that represent qualitative and quantifiable properties
are valid in terms of ranges and states.
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Table 3: artefacts and their validation process

Artefact Information Artefact Information
model model

Self-Description  Marketplace JSON- RDF model |Ontology Not applicable
Information LD/RDF validator compliance
model schema checker
validator
Data Asset NGSI-LD, JSON-LD |JSON- SHACL Domain
Smart Data schema | Schema validator (for ontology +
Models validator | based graph-based |taxonomy
validator, |y zjidation) validator
NGSI-LD
model
validator

3.8.1 Offering Description Validation

When Offerings are submitted to the Offering Manager, the Offering Manager will check the
validity of the Offering Description with the Validation Suite. The document will be checked
syntactically in that it complies with the JSON-LD schema and is compatible with the RDF
schema. The next step is that it checks that it complies with concepts defined in the SEDIMARK
ontology. It will then check that the minimum required instances of classes and their properties
are provided. To enable this, SHACL validation will be used for this purpose. The document
first should be viewed from an Offering centric perspective, meaning that any validation starts
with the Offering Class. The mandatory requirement for an Offering document must have the

following:

Offering

Table 4: SHACL Shape Rules for Offering Validation

Class Property Shape (Rule)

dcterms:title

xsd:string

must have one

dcterms:description

xsd:string

must have one

dcat:themeTaxonomy

skos:ConceptScheme

must have at least one, and
must exist in document

sedimark:hasAsset

sedimark:Asset

must have at least one, and
must exist in document

sedimark:isListedBy

sedimark:Self-Listing

must have at least one, and
must exist in document

sedimark:hasOfferingC
ontract

sedimark:OfferingContr
act

must have at least one, and
must exist in document

dcterms:license

xsd:string

must have one

.|D3.4 Enabling tools for data interoperability, distributed data storage .
Pocument name: and tfraining distributed Al models. Final version Page: 430189
Reference: SEDIMARK_D3.4 |Dissemination: PU ‘Version: ‘ 1.0 |Status:  |Final




SO,

Asset sedimark:offeredBy sedimark:Offering must have at least one, and
must exist in document
sedimark:isProvidedby |sedimark:AssetProvisio | must have at least one, and
n must exist in document
sedimark:hasAssetQua | sedimark:AssetQuality 'must have at least one, and
lity must exist in document
dcterms:theme skos:Concept must have at least one, and
must exist in document
dcterms:identifier xsd:string must have one
dcterms:title xsd:string must have one
dcterms:description xsd:string must have one
dcterms:creator xsd:string must have one
dcterms:issued xsd:string must have one
dcat:keyword xsd:string must have at least one
dcterms:spatial xsd:string only one
prov:generatedBy xsd:dateTime can have one
dcat:isVersionOf xsd:dateTime can have one
Self- sedimark:belongsTo sedimark:Participant must have only one, and must
Listing exist in document
dcterms:title xsd:string must have one
dcterms:description xsd:string must have one
dcterms:issued xsd:dateTime must have one
dcterms:modified xsd:dateTime must have one
schema:accountld xsd:string must have one
schema:email rdf:Resource must have one
OfferingC | odrl:permission odrl:Duty must have one
ontract
odrl:duty odrl:Duty must have one
odrl:obligation odrl:Duty must have one

The equivalent SHACL description is provided in Annex 9.1.
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4 The Al enabler

The Al Enabler of SEDIMARK is a core component designed to empower decentralized,
privacy-preserving, and energy-efficient Al workflows. It integrates tools and services to allow
participants to train, deploy, and optimize machine learning models locally or collaboratively
through federated learning, without sharing raw data. The Al Enabler is delivered as a modular,
containerized toolbox, fully deployable via Docker, Docker compose, and optionally
Kubernetes for scalable environments. The modularity ensures that each organisation or
participant can selectively deploy the services they need, according to their infrastructure, use
case, and privacy requirements.

From a user perspective, the Al Enabler allows to:
Train models locally on private datasets
Join a federated learning training session without moving data
Optimise models for energy efficiency and transferability across environments
Deploy services via simple commands using Docker/Compose or Kubernetes manifests

Federated Learning (FL) is a key paradigm shift introduced in SEDIMARK to enable Al
collaboration without centralized datasets. Instead of uploading sensitive data to a central
server, participants train models locally and only share model updates. These updates are
then securely aggregated to build a shared global model. In SEDIMARK, we focus on
interoperable FL, meaning that:

Different organisations with different platforms and infrastructures can still collaborate
Model updates follow standard formats like ONNX, TensorFlow to ensure compatibility
Communication between nodes is handled through secured APIs.

As a user aiming to participate in a FL session within the SEDIMARK framework, the process
begins by deploying the local FL agent using the provided Docker Compose file or Kubernetes
manifest. Once deployed, the user configures the client to point to their local dataset folder
and defines key training parameters, such as batch size and learning rate, typically through an
.env file or a YAML configuration. The client is then connected to a Federated Learning server,
also provided as part of the SEDIMARK Toolbox, by specifying the appropriate APl endpoint.
After setup, the client will execute training locally on the user’s infrastructure and securely
share encrypted model updates with the FL server. This process enables users to
collaboratively build high-quality Al models while fully preserving data sovereignty, ensuring
that raw data remains private and on-premise.

Local model training remains essential when data must not leave the organization's premises
or when specific edge applications are targeted. This service is part of the Al Enabler, allowing
organizations to independently train and optimize Al models while preparing them for potential
future federated learning participation.
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In the SEDIMARK marketplace, users are empowered to deploy tailored Al model training
pipelines suited to specific use cases—such as energy consumption forecasting or customer
churn prediction. These pipelines are designed for scenarios where users have access to local
datasets, enabling model training to occur entirely on-premise or within a trusted environment.
This approach ensures data privacy and regulatory compliance by eliminating the need to
share raw data externally.

Each Al pipeline is accessible through the SEDIMARK Marketplace interface as a selectable
service tailored to a specific use case, such as energy consumption prediction or customer
churn analysis. Once selected, the pipeline is deployed as a containerized microservice within
the user’s trusted execution environment. The pipeline follows a predefined sequence of steps
including secure data loading, preprocessing using certified processors (e.g., normalization,
feature encoding), local model training with configurable algorithms, and model evaluation
based on relevant performance metrics. This setup ensures full control over data privacy while
enabling reproducible, high-quality machine learning workflows.

To better illustrate this process, the figure below presents the structure and operational flow of
two Al pipelines provided via the SEDIMARK marketplace: one for energy consumption
prediction and another for customer churn analysis. Both pipelines are designed to execute
entirely within the user’s local environment, using their own datasets and resources inside the
SEDIMARK's Marketplace User Interface (Ul).

USER
| SEDIMARK's Marketplace Ul | "
/ Energy Consumption Churn Prediction Al \
Prediction Al Pipeline Pipeline

Data preprocessing «u.r. Local Data loading, Data Cleaning, Data Transformation, Feature Engingeering ....... Data preprocessing

Model Tuning/
Training

Model
“| Evaluation
Model
saving

Model Tuning/
Training

Model

Evaluation |~~~ T
Model

saving | T

<eenens LOCEL Model Evaluation

cereneenn.Model Logging and Tracking with MLAIOW ...occveeeviecccccc

- /

Each pipeline Is composed of four main stages:

: The user’s local data is securely loaded and passed through certified
preprocessing components, including steps such as data cleaning, normalization,
transformation, and feature engineering. These steps ensure consistency and readiness
of the dataset for downstream machine learning tasks.

: The pipeline performs local model training using configurable
machine learning algorithms, optionally enhanced with automated hyperparameter tuning.
In scenarios involving Federated Learning, the training process is extended to a
collaborative setup where the user’s environment acts as a decentralized node. Each
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node trains the model on its local data and periodically exchanges model updates (not
raw data) with an aggregator through secure protocols. This allows multiple users to
contribute to a shared global model while preserving full data privacy and ensuring
regulatory compliance. The federated approach leverages distributed knowledge across
data owners without requiring central data storage.

: The trained model is validated using performance metrics such as
accuracy, F1-score, or RMSE, depending on the use case. This evaluation is done locally
and can be used to compare multiple training runs.

: Finally, the trained model and its associated metadata (e.g.,
hyperparameters, metrics, training duration) are logged using MLflow, providing a
versioned, reproducible record of the experiment. This enables the user to track multiple
runs, select the best model, and export it for further use or deployment.

The Al SEDIMARK pipeline will enable the building and training of an Al model.This is
illustrated here with a model defined for energy consumption prediction.

In the electricity consumption prediction endeavour, we harness a week's worth of time-series
energy consumption data, preceding our decision-making juncture, to forecast subsequent
daily consumption in hourly intervals (Figure 30). Utilizing the advanced DeepAR model [15],
we aim to construct a universal framework capable of accurately predicting consumption
patterns across facilities and buildings of diverse magnitudes (Figure 37).
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| N
|
. | | |
141 m"ilw
1\ 1
\ I
124 IR L
]
{1,
|
|
[ 1 11}
| 1]
84 |
on for the
101 20

Power consumption [kW]

06§ —— Moasurements of last woek
» the next 24K
23-01-02 2023-01-03 2023-01-04 2023-01.05 2023-01-06 2023-01-07 2023-01-08 20230109
Date

:V'°df' 24 H Prediction
npu output
Preprocessing | > Al Model

D3.4 Enabling tools for data interoperability, distributed data storage

Document name: and training distributed Al models. Final version

Page: 47 of 89

Reference: SEDIMARK_D3.4 |Dissemination: PU Version: | 1.0 |Status: |Final



Another example of a locally trained model relates to customer segmentation and churn
prediction. In this initiative, we meticulously preprocess and sanitize datasets encompassing
electricity consumption patterns, payment histories, geographical metrics, and behavioural
indicators like complaints. Employing state-of-the-art ensemble decision tree algorithms such
as LightGBM [16], Catboost [17], or XGBoost [18], our objective is to segment our customer
base and forecast churn propensity, culminating in a calculated churn probability for each
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Figure 32: customer segmentation and churn prediction.

Figure 31: comparing deepAR based predictions with observations
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SEDIMARK also provides the support for multivariate forecasting using the latest transformer
based deep learning. Different to classical machine learning, CrossFormer [19] is built to
forecast time-series multivariate by exploiting temporal and cross-variable (inter-dimensional)
information. To achieve this, CrossFormer contains three key components:

Dimension-Segment-Wise (DSW) Embedding: This method segments and embeds the
input time series across dimensions, allowing the model to capture local temporal patterns
more efficiently.

Two-Stage Attention (TSA): The attention mechanism operates in two stages — first
across time (to learn temporal dependencies within each variable), and then across
dimensions (to capture relationships between variables).

Hierarchical Encoder-Decoder (HED): A scalable architecture that helps manage long-
range dependencies while keeping computation efficient.

With above components involved, CrossFormer is well suited for forecasting tasks in
environments like SEDIMARK, where data is high dimensional, noisy and time-dependent.
Furthermore, this technique is available as ready to use as Python package for further
development and usage (not limited to SEDIMARK). Besides, this method can fit to diverse
use cases with different configurations.

As a component of the Al toolbox within SEDIMARK, the CrossFormer module is structured
into two main parts, referring to Figure 20:

Core Package: This includes the implementation of the CrossFormer model itself and the
associated data interface. It handles model architecture, data preprocessing, and
interaction with training/inference routines.

Wrapper Scripts: These scripts provide high-level interfaces for training and inference.
They are designed to be easily configurable and support automated integration into
different use cases.

Together, these components enable CrossFormer to serve a variety of forecasting tasks within
SEDIMARK. The modular design allows it to be reused or adapted across domains with
different data formats or prediction requirements, supporting scalable and flexible Al-driven
services.

Core Package includes main features of the algorithm, including model, evaluation, and data
processing.

First, the model feature is implemented by PyTorch Lightning providing the model definitions,
forward logistics and engineering interface support (training and inference). The model can be
initialized with diverse configurations to fit different use cases.

Second, the evaluation feature compresses loss function and evaluation metrics, which is
provided to evaluate the performance of model during training and validation. It includes MAE,
MSE, RMSE, MAPE. MSPE. RSE, CORR, scaled MSE, normalized MSE, scaled Log Cosh
and Hybrid Loss. The details of each function can be found in Annexes - Evaluation Metrics
for CrossFormer. Based on those functions, we define the hybrid loss (score) with a
controllable term for optimizing the model, which can be used to handle input values in diverse
range. It is defined as SCORE = aScaledMSE + (1 — a)ScaledLogCosh . The purpose of the
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Hybrid Loss is to balance forecasting on trending and exact estimates on each time step.
Therefore, model can perform higher forecasting accuracy when applied with Hybrid Loss
rather than simple MSE.

Third, the data feature provides the interface to handle general 2D data from different use
cases with various data shape. It supports automatic data loading, batching and dataset setup.

The Wrap Script is another important component. It provides a convenient, standardized
interface for using the CrossFormer model within data processing or pipeline environments
such as SEDIMARK. It contains utility functions for model training (fit/setup) and inference,
reducing boilerplate and abstracting away low-level details. As well, it enables the connection
with MLFlow to register and load models inside Mage Al.

CrossFormer
Component

[ ]

Core Package Wrapper Scripts
Al Model Training
Data Interface Inference

CrossFormer plays a key role in the Al pipeline of SEDIMARK, serving as the core forecasting
module based on historical time series data. It processes 2D value-only data frames received
from upstream blocks and supports both training and inference workflows. The model's
behavior is governed by configuration files, allowing flexible adaptation to a wide range of use
cases.

To support robust deployment and lifecycle management, MLflow [20] is integrated for model
versioning, monitoring, and experiment tracking. During training, metrics and artifacts are
automatically logged, and the final model is registered for subsequent inference tasks.

The Figure 34 below illustrates how the CrossFormer component fits into the training and
inference flow within the Al toolbox.
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Crossformer Pruning is designed to reduce the computational complexity by removing
redundant parameters without compromising performance. It plays a crucial role in optimizing
model deployment for resource-constrained and federated environments, aligned with the
goals of the SEDIMARK project.

SEDIMARK focuses on secure and efficient machine learning across distributed data
ecosystems. The pruning module contributes by:

Reducing model size for faster edge inference
Lowering memory and energy consumption
Enabling deployability in heterogeneous, low-power nodes

Pruning is a technique that removes less important parts of a neural network (such as weights
or neurons), reducing the overall size and computational cost of the model. This process leads
to more efficient models that can run faster and require fewer resources, often with little or no
drop in predictive performance.

The following two pruning techniques are applied to reduce model complexity and improve
efficiency:
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Unstructured Pruning: unstructured pruning removes individual weights from the network
based on their importance. This type of pruning leads to sparse weight matrices and can
significantly reduce parameter count.

Typically applied based on magnitude or statistical criteria.
Maintains model architecture but zeroes out less significant weights.

Requires sparse-aware hardware or libraries to realize speed or efficiency gains in
practice.

Structured (Channel) Pruning: Structured pruning removes entire neurons, channels, or
attention heads, resulting in a physically smaller model with fewer operations (FLOPs).
This is especially beneficial for hardware acceleration.

Applied at a higher architectural level.
Results in reduced model size and faster inference.

Maintains dense weight matrices, making it highly compatible with standard hardware
like CPUs and GPUs

Combining unstructured and structured pruning provides a balanced trade-off:
Unstructured pruning reduces redundancy in weights.
Structured pruning optimizes the model for deployment.

The result is a smaller, faster model that can still match original performance when fine-
tuned.

The pruning module fits into Crossformer pipeline at the model optimization stage, after model
loading and before training or inference.

Input: Config file (JSON), training/evaluation data (CSV/DataFrame)
Output: Pruned, fine-tuned, and MLflow-registered model

As illustrated in Figure 35, the pruning workflow is structured into stages distinguished by
colour. The blue stages represent the initial setup, including loading the configuration and data,
and initializing the data interface. The orange stages correspond to key model optimization
operations, such as applying pruning (unstructured or channel pruning), saving the
intermediate pruned model, reloading it, and profiling it for FLOPS and size. The purple stages
cover the final training of the pruned model, registration with MLflow, and the testing or
inference phase. This emphasizes the modular and iterative nature of the pruning process
within the Crossformer pipeline.
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Evaluations for KPIs, benchmarking scenarios, and comparison are documented in the
Performance Evaluation Section of SEDIMARK D3.2 [14].

The Offering Generator transforms asset metadata into semantically rich JSON-LD offerings
aligned with the SEDIMARK Marketplace Information Model. By leveraging Large Language
Models (LLMs) and sophisticated prompt engineering techniques, it bridges the semantic gap
between natural language descriptions and structured marketplace offerings. This section
details the technical implementation, prompt engineering methodology, and training approach
used to develop this module.

The prompt engineering cycle forms the foundation of the Offering Generation system and was
established as the initial phase of development due to the inherent complexity of JSON-LD
structure and the need for semantic precision in marketplace offerings. This approach was
necessitated by the observation that even advanced LLMs struggle with producing consistently
valid JSON-LD structures without proper guidance, particularly when dealing with complex
relationship patterns required by the SEDIMARK ontology.
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The system implements a cyclical five-stage prompt engineering process as illustrated in
Figure 37

Stage 1
Design Propmt

Stage 5 .-:_—_\‘.5» Stage 2
Refine Prompt 4 '\’\,.»\ Submit to LLM
---------- (;r 02 )"\'J
Yl
h

Stage 4 Stage 3

Evaluate Output Receive Output
""""" 03

Engineer JSON-LD schema-aware prompts with explicit structural
requirements, incorporating ontological constraints and relationship patterns from the
SEDIMARK information model.

. Present prompts to the model with appropriate context, using controlled
temperature settings (0.7) to balance creativity with precision.

: Capture generated JSON-LD structures and parse them for structural and
semantic analysis.

: Apply comprehensive evaluation metrics to identify pattern failures and
semantic inconsistencies

Exact Match Comparison is percentage matching of each field.
Structural Similarity Index (SSI) measures structural resemblance.
Custom JSON Diff identifies key-value differences.

Semantic match validation assesses relationship correctness.

BLEU score measures n-gram overlap between generated structures and ground truth

references, calculated as: BLEU = BP - eXn=1"n108Pn where BP is brevity penalty, w, are
weights, and pn is n-gram precision

: lteratively improve prompts based on evaluation results, incorporating
successful patterns and adding guardrails against common errors.

This cyclical approach was essential for developing a corpus of reliable prompt templates that
could reliably produce valid JSON-LD structures conforming to the marketplace information
model.

After establishing baseline prompt patterns,
comprehensive zero-shot testing was conducted to evaluate the generalizability of the
approach and identify systematic failure modes. This phase was critical for understanding the
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inherent limitations of pretrained models when dealing with structured JSON-LD generation
tasks without domain-specific fine-tuning.

The system's evaluation framework measured performance across multiple dimensions as
shown in section 2.6. Structural accuracy was assessed using automated validation against
JSON-LD schemas, with successful generations typically achieving above 95% compliance.
Semantic validity was evaluated through graph-based analysis of entity relationships, ensuring
that connections like "hasAsset," "providedBy," and "references" were correctly established
according to the marketplace ontology.

Initial testing across multiple LLM architectures (Claude, Gemini, Llama, GPT, Mistral)
identified five key differences in zero-shot performance:

Resource identifier pattern differences: Inconsistent URI formatting and namespace
usage.

Dublin Core Terms (DCT) implementation differences: Variations in property application
and value representation.

Entity hierarchy and relationship differences: Incorrect parent-child relationships and
missing mandatory connections.

Temporal representation differences: Inconsistent datetime formats and temporal
relationship modelling.

Structural component differences: Variations in entity organization and attribute
placement.

Based on the limitations identified in zero-shot testing, the system architecture was designed
as a student-teacher framework where large, computationally intensive models serve as
teachers that produce structured JSON-LD examples, while a compact, efficient model (Qwen
2.5-3B) learns to replicate these capabilities through knowledge distillation techniques.

The operational pipeline begins with contextually aware prompt engineering that provides
carefully structured instructions to define the expected JSON-LD structure, relationships, and
ontological constraints, following the marketplace information model. The multi-stage
optimization process employs several advanced techniques:

1 n_i
= ;219;

Yis = (1 s/ ﬁ) Yone-hot +

Gradient accumulation: Ge where gt is the gradient from the i-th microbatch.

Label smoothing: ¥ where a is the smoothing factor and K is the

number of classes.

Tiered dropouts: Progressive dropout rates applied to different layers of the network, with
higher rates for later layers.

1
H H Ne = 7 1+"( ne _’1;)1‘5‘(‘05
Cosine learning rate schedule: Te = Mmin + 3 (Mmax = min) ( (T))_

The model was initialized with pretrained weights and then fine-tuned on a diverse corpus of
JSON-LD examples gathered from the prompt engineering cycle. This approach significantly
improved the model's ability to generate semantically valid and structurally correct offerings
across diverse domains.
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A key innovation in the training methodology was the implementation of curriculum learning
through a progressive context dropout strategy. This approach was necessary to ensure the
model could generalize beyond the examples provided during training and handle novel input
descriptions with limited or no contextual examples.

The context dropout rate was controlled by the following formula:
CD(t) = min (Cingz, Co* (1 —a - /)

Where,

CD(t) is the context dropout rate at training step t

Chax is the maximum dropout rate

Co is the initial dropout rate

a is the dropout increase factor

T is the total number of training steps

This approach progressively challenges the student model with increasingly difficult context
conditions:

Initial phase: Full context availability (70% of training) to establish core pattern recognition

Middle phase: Partial context with progressive dropout (20% of training) to build
generalization capabilities

Final phase: Minimal or no context (10% of training) to simulate real-world conditions with
limited examples

By abstracting away the complexities of JSON-LD syntax and marketplace ontologies, the
Offering Generator significantly reduces the technical barrier for data providers to participate
in the SEDIMARK ecosystem, while ensuring semantic interoperability across all marketplace
offerings.

Distributed model training within SEDIMARK can be divided into two main concepts:

this concept employs a server and a set of worker nodes. The
role of the server is to orchestrate the overall training process through model aggregation
and model parameter redistribution approaches. The role of the worker nodes is to train
a local model based on the local data and the updated parameters received from the
server. Here the server has a complete view of the worker nodes, while the individual
worker nodes are only aware of the server.

this concept only contains worker nodes. Here the worker nodes are
connected with a subset of other worker nodes, where they share the model parameters.
Through gossiping of model parameters between worker nodes all worker nodes in the
network will eventually agree on a global model. Differently from the previous setting, here
workers are aware of a subset of other workers, but generally, no worker has a full view
of the complete network of workers.

The differences between federated and gossip learning are illustrated in Figure 37. The clear
advantage of the Gossip approach is that it can avoid the single point of failure by eliminating
the server from the computation. However, this comes at the expense of the gossip approach
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taking longer to converge as it takes longer for the model updates to propagate through the
communication network.
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Within SEDIMARK, two frameworks for distributed learning have been proposed and
developed to cater for different scenarios and different user preferences.

this is a dynamic framework that is used for scenarios when data providers
share through the marketplace either a model for training or a training process. This
scenario is dynamic with participants being able to join or leave the training process at
any given time.

is an extensible tool to define computational graphs representing the FL agents
and the operations therein. We put special emphasis on tools that improve interoperability
at the AI/ML models level, acknowledging that not all data providers/sources will use the
exact same software to train/run the models from a federated learning point of view
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As shown in Figure 38, the two frameworks are both designed to be modular and adaptive so
that any project modules (i.e. models, aggregation mechanisms, privacy modules, etc.) can be
developed in a framework agnostic way so that they can be used within both networks by
exploiting their pods/wrappers.
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When developing a FL solution, we need to consider the security requirements as a two-step
process:

The solution developer must develop the details of a federated algorithm by combining
several techniques.

The data provider must run a script representing the FL algorithm. This script must provide
guarantees that it will follow the federated learning protocol strictly, e.g., keep the data
and inference artifacts inside the provider infrastructure. This is what we call the minimum
compliance requirement for any federated learning deployment.

There are several ways in which compliance can be accomplished. One alternative is that the
data provider trusts the solution developer, which is not interesting from our perspective as in
such a case we can fall back to more traditional machine learning solutions. Another approach
is for the data provider to come up with their trusted review protocol to ensure the federated
script provided by the solution developer is compliant. However, this is a difficult and expensive
task that requires expertise and the capabilities to read through code and its dependency tree.

A proposal to be considered in future evolutions is the introduction of a third agent in the
development process: the platform provider. The platform provider would create tools for the
solution developer, such as automatic compliance checks, and demands the data provider to
trust the platform provider but not the solution developer. This way, three-sided marketplace
on top of federated learning:

The data provider side, with private data and infrastructure offerings.

The solution developer side, with novel algorithmic offerings and advanced
implementations.

The platform provider side, with their tooling offerings.

SEDIMARK provides a flexible, fully decentralised model training framework. Titled “deFLight”
this component offers a modular fully decentralised, asynchronous machine learning training
solution. deFLight is built around a simple HTTP request/response architecture in order to
conform with the constraints of the SEDIMARK connector. Additionally, deFLight is a dynamic
framework, not requiring the set of training participants to be known ahead of time.

deFLight moves beyond a client/server model, and instead makes nodes the first class citizens
within the distributed learning environment. While deFLight primarily targets fully decentralised
model training, an FL paradigm can be easily created by arranging the nodes within a star
topology. deFLight inspired by Flower, has been developed to be scalable, allowing
participation of heterogeneous clients running on different platforms, be framework agnostic
(the group of clients can use Tensorflow, PyTorch, etc. according to their group decision), etc.

Within SEDIMARK, a node can be instantiated by any participant wishing to collaboratively
train a machine learning model and discover participants with similar compatible datasets. A
training process, specifying a model architecture, a dataset specification, and a number of
hyperparameters will then be advertised within the wider SEDIMARK trust infrastructure. New
participants with compatible datasets can discover this advertised training process, and then
launch their own deFLight nodes. Nodes follow a broader Gossip Learning (GL) protocol
whereby they train locally their own version of the ML model and then send updates to other
nodes that they select via a chosen sampling protocol. deFLight is developed in a modular
approach, such that tools developed within the SEDIMARK project in other tasks, i.e., model
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types, sampling strategies, quantization, etc. can be easily deployed within deFlight without
the need of rebuilding those tools from scratch, but only with the use of simple wrappers.

In many federated learning frameworks, there are two types of nodes that participate in the
federated learning training process: (i) a client and (ii) as server. The client is the node that
does the local training process, running the ML model on top of the local data, periodically
sending the model parameters to the server and receiving the updated parameters for the next
round. The server is the node that at each round samples the clients to run the local training,
receives the parameters from the clients, runs the process for aggregating the parameters and
sends the aggregated parameters back to the clients for the next round.

In deFlight the two types of nodes have been merged into a single deFlight node, whose
internal structure is depicted in Figure 39 below. Inspired by the Gossip Learning approach
where all clients are of a similar type, deFlight generalises the notion of a node in such a way
that it can cover multiple distributed learning scenarios (as discussed below).

As depicted in Figure 39, a deFLight node consists of four main threads of operation:

Receive thread, which handles the reception of weights from the rest of the nodes
participating in the learning process. As discussed above, deFlight inherits from Flower
the “communication-agnostic” feature, allowing multiple communication protocols
between the nodes. However, currently, only HTTP is tested/supported, while in the future
other protocols (i.e., gRPC) will be fully supported.

Aggregation thread, which is the main thread that runs the sampling of the fellow nodes
with which the node will communicate in the current round, and the runs rounds of
aggregation of the parameter received from the fellow nodes.

Training thread, which is the main thread that runs the local training process of the model
based on the local data.

Send thread, which takes the output weights from the training process and forwards them
to the fellow nodes that participate in the current round.
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In its current state of development, deFlight uses a HTTP request/response communication
protocol for sending and receiving model parameters, similar as within the Flower framework.
The communication “receive” component hosts a Starlette HTTP server that continuously
listens for incoming connections from other nodes, receives weights, and places them within
a multiprocessing queue to be later aggregated. The use of a multiprocessing queue is critical
to ensure that no weights are lost due to congestion, when receiving weights from many other
nodes.

The main operational thread runs a local training process using Keras-Core for interoperability,
such that the user can choose from either Pytorch, Tensorflow or Jax as their backend deep
learning framework (more detail on model interoperability is given in SEDIMARK Deliverable
D4.3).

Execution alternates between rounds of aggregating any model updates that have been
collected in the aggregation queue, running the local training procedure, and then launching
connections to communicate model updates to other nodes, selected via a sampling strategy.

The dynamic nature of the deFlight training process allows nodes to enter or leave the process
at any given moment, without any special requirements, apart from following the SEDIMARK
procedures for participating in the training as a service process.

To implement the distributed learning process, deFLight interacts with several other layers and
components within the SEDIMARK architecture. These interactions are provided in the figures
below.
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Figure 40 shows the interactions between deFLight and the rest of the SEDIMARK
components during the initiation and the execution of a Federated Learning process. It is clear
that deFLight basically interacts with the Al Orchestrator, which is the main component that
handles the training process. In this scenario, the assumption is that an “Initiator”, which is a
SEDIMARK user (i.e. a provider) wants to start training a ML model on their data and then start
a Federated Learning process, so that more participants join and help to train a better model.
In this respect, the Al Orchestrator provides deFLight with the user preferences and settings,
i.e. the framework to use, the model to train, etc. deFLight then initiates the training process,
by initialising the model structure and its weights and forwards them to the Offering registration
(through the Al Orchestrator) so that the training process is registered to the marketplace. A
participant interested in the process can discover the training process in the marketplace,
finding the respective offering and receiving it from the “Initiator” via the Offering sharing
component. The details of the distributed process are forwarded to deFLight through the Al
Orchestrator. The deFLight module on the Participant contacts the respective module of the
Initiator to register as a client and receive the latest version of the model weights. Then
deFLight initialises the local model and starts the local training process, updating the model
and sharing the model updates with the “Initiator”.
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Figure 41: deFLight-based Gossip Learning process.

Figure 41 shows the interactions between deFLight and the rest of the SEDIMARK
components during the initiation and the execution of a Gossip Learning process. The
initialisation of the process is similar to that of Federated Learning (discussed above). The
difference here is that there is not a server that holds a registry of the connected clients. To
allow nodes to know the participants in the process, we exploit the distributed storage
component of SEDIMARK, storing a “network graph”, which is updated any time a node enters
or leaves the training process. This is done by the “Peer discovery” component, which gets
information from deFLight regarding the training process id, etc. When a “participant” discovers
and wants to join the training process, the deFLight component initialises the received model
and contacts the Peer discovery module to find out the fellow nodes participating in the current
round. Then, deFLight executes the next round, training the local model, updating the weights
and sending the weights to the fellow participants, while at the same time received the updates
from its neighbours, performs the weight aggregation and continues to the next iteration of the
training process.

In the current implementation, the communication between the deFLight nodes takes place
directly through the deFLight component. In future versions, deFLight will be extended to use
the interaction and communication protocol of SEDIMARK.

D3.4 Enabling tools for data interoperability, distributed data storage

and training distributed Al models. Final version Page: 62 0f 89

Document name:

Reference: SEDIMARK_D3.4 |Dissemination: PU Version: | 1.0 |Status: |Final



deFLight Training Progress
Node Status
RecBole - .
Training Progress Training active: True
Topelogy Config e
Topology Config —
DecentralisedFLClient e
Peers
127001 o
8990
[ 5 10 15 o
b b Iteration
127.0.0.1:8989
127.0.0.1:8930 Training progress: 21 iterations
Training started
Dataset Config ~
Model Config A4
Meode Config o

deFLight is developed mainly as a command line tool, but for ease of use for novice users a
simple user interface has been developed as seen in Figure 42. This user interface gives users
the option to set the desired topology, to add their peers, to add the configuration about the
dataset to use, the model to run, etc., and then they can start the local training process and/or
participate in the decentralised training. When the training process starts, there is the option
to visualise the results, showing the training process and the set metric, i.e. loss. A more
thorough and SEDIMARK-specific user interface has been developed within the integration
process and will be presented in WP5.

Beyond SEDIMARK, we will continue to iterate on the development of deFLight. We intend to
test its robustness when run across a greater number of machines, with larger datasets and
larger models. We intend to further modularise deFLight, to allow for the simple composition
of the modules for aggregation, sampling and quantization that will be developed elsewhere
within SEDIMARK. Some evaluation results are given in both D3.1 and D3.2, where the trade-
offs between communication and performance are provided.

As introduced in deliverable D3.3, Fleviden is an extensible framework developed by ATOS
for orchestrating federated learning (FL) pipelines. Its architecture is based on the pipes and
filters pattern, where agents (mainly several clients and one server) act as filters, and
messages are exchanged through wires (pipes).

The basic functional unit in Fleviden is the pod, a modular entity with input and output wires.
The mentioned pipelines are built by instantiating pods, linking them, and waiting for or bridging
messages to/from external sources (e.g., HTTP or Kafka interfaces). Each pod encapsulates
a logic that processes incoming messages and triggers outputs, enabling the creation of
distributed learning workflows with privacy-preserving features. This modular architecture
facilitates flexible and secure deployments across heterogeneous environments.

Fleviden includes support for the most used deep learning frameworks, such as Keras (with
TensorFlow backend), Torch, and ONNX, enabling a wide range of neural models to be
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incorporated into federated learning pipelines. Fleviden pods were designed to load and run
serialized model definitions, such as Keras .h5, TorchScript .pt, or ONNX .onnx files.

Since then, Fleviden's capabilities in terms of model interoperability have expanded
significantly. One major update is the inclusion of native support for models developed using
scikit-learn, a widely adopted machine learning library. Notably, support has been added for
decision trees, a model type not previously available in Fleviden. This addition expands
Fleviden's use cases, particularly in areas where interpretability, computational efficiency, and
non-gradient-based training matter.

Moreover, a new feature has been added to further enhance model flexibility: in addition to
loading models from files, Fleviden now allows creating models directly from Python class
definitions. That is, an architecture can be defined directly in a .py script and injected into the
Fleviden trainer pod at runtime. This provides a smoother development experience, enabling
users to define and initialize models programmatically within their application code. This
functionality is particularly useful in research settings or when deploying experimental models
without going through a full serialization pipeline.

Fleviden also has a variety of customizable pods that allows developers to define the internal
logic that gets executed when calling its interfaces, which is usually encapsulated and hidden
from end-users. In this regard, the CustomTrainer pod —and other Custom pods from other
packages— can be leveraged to define a fully customized training pipeline that is adjusted to
the use-case at hand, which enables training models in frameworks that are not natively
supported within Fleviden, as long as the required libraries and dependencies are installed in
the application environment. All user-defined custom functions must follow the Fleviden
request message convention, namely, by taking a Python dictionary as input and returning a
JSON-serializable dictionary as output. By enforcing this convention, we make sure that
Fleviden is open for extension without breaking interoperability with the rest of pods.

These developments not only increase the scope of Fleviden's interoperability layer but also
align with SEDIMARK’s broader objective of supporting heterogeneous federated learning
across multiple organizations, technologies, and regulatory requirements.

In deliverable SEDIMARK_D3.3, working on the development of a high-level scripting layer for
Fleviden, referred to as Fleviscript, was reported. The initial motivation behind this proposal
was twofold:

Technical simplification: Fleviscript was designed to reduce the complexity of
programming federated learning workflows directly in Python. It aimed to provide a more
user-friendly interface for non-expert users or stakeholders who did not need fine-grained
control over pod-level logic but still required the ability to define orchestrated federated
learning pipelines.

Compliance and security: This script also aimed to satisfy a key business requirement: to
ensure that client scripts remained compliant with federated learning principles. This
meant enforcing local data processing and limiting the set of operations to those that could
not compromise privacy (e.g., create, link, wait, bridge), thereby reducing the attack
surface and ensuring minimum compliance guarantees.

Fleviscript was conceived as a declarative, domain-specific language design to connect
Fleviden pods and build federated learning workflows. A full specification of its syntax and
semantic model (including the structure of import, input/output wire registration, variable
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assignments, and pod configuration instructions) was detailed in an annex of deliverable
SEDIMARK_D3.3.

However, as the development of the Fleviden framework progressed and implementation of
some use cases and more advanced orchestration logic began, it became clear that
maintaining a separate domain-specific scripting language posed several challenges:

Limited flexibility and capabilities: Although Fleviscript was originally meant for simple
workflows, it didn’t have enough power to handle more dynamic or complex ones. Adding
features like conditions, loops, or error handling would have made the interpreter much
more complicated and moved it away from its goal of being a safe and straightforward
language.

High maintenance cost: Introducing a new language also meant maintaining a full set of
tools, including a parser, interpreter, debugger, and possibly even custom editors or
validators. This added significant technical work without offering clear long-term
advantages compared to using existing Python-based tools.

New needs and use cases: As the Fleviden ecosystem grew and new partners joined, the
need for flexibility and easy integration became more important than keeping the language
simple. Supporting different environments, performance improvements, and integration
with external connectors required a more flexible and extensible setup.

In this context, the decision was made to deprecate the Fleviscript approach and replace it
with a more modular and scalable system based on multiple layers. This new design allows
developers and end users to choose the level of control or simplicity that works best for them.
Fleviden now uses a layered architecture that offers different ways to define federated learning
pipelines, depending on the user’s experience the complexity of the deployment. Currently, the
two main layers are core and engine.

The core layer represents the lowest level of abstraction within the Fleviden framework. It is
designed for expert users who require full control over the definition and execution of federated
learning workflows. At this level, users interact directly with pods, which are processing units
organized by function, such as aggregators (fleviden.core.aggregators), trainers
(fleviden.core.trainers), and others. Developers can create custom pods by using the
fleviden.core.pod.pod.Pod class, enabling fine-grained customization of the logic involved in
the federated learning process. This layer is ideal for those with a deep understanding of
federated learning principles who need to implement novel or non-standard patterns.

Core pods are simple by definition, implementing an atomic functionality with one specific
responsibility. Different Fleviden packages follow a strategy pattern approach, making pods
with similar logic easily interchangeable. For example, all aggregators register the same input
and output wires so that the specific aggregation technique (weighted average, median, Krum,
etc) can be selected at runtime. To enforce this strategy pattern approach, although Python
supports duck typing, Fleviden relies on the ABC (Abstract Base Classes) module to define
the base pods of each package (e.g., an abstract Aggregator). This design choice is key to
building generic pipelines and enabling a programming-to-interface approach that facilitates
building Fleviden'’s layers of abstraction.

The engine layer, by contrast, provides an intermediate abstraction that significantly simplifies
the construction of federated learning systems. It offers a collection of high-level components
that encapsulate common FL workflow patterns, such as the local data loading or the server’s
aggregation setup, which would require several core pods connections to achieve. Engine level
components are built as Fleviden pods that are internally composed of core level atomic pods,
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mixed and matched with common connections that abstract away the links that a typical
Federated Learning pipeline would implement. For example, the application script of a Server
agent is typically comprised of an aggregation pipeline (i.e., gathering the local updates from
clients, performing the aggregation step and updating the global model) and an orchestration
block (handling the subscription of clients, selecting the active participants in each round, and
managing the start and end of the process). The set of pods and the connection that implement
these pipelines form a common pattern that can be encapsulated in an engine-level Server
package to simplify greatly how the Fleviden application is deployed. By exposing the
configuration parameters of the core pods, but treating their connections as a black-box, users
maintain the flexibility to tune the process to their particular needs without having to struggle
with defining the computational graph at the lowest level.

It's important to note that engine pods do not implement any additional logic besides what is
already present in the core layer pods they encapsulate. Instead, they simplify the definition of
the computational graph and abstract the configuration of hyperparameters for common flows.
In the application script for Fleviden agents, users can connect engine and core pods without
distinction, as there are some core components that are feature complete and thus do not
implement an analogous engine variant (e.g., communication protocols).

In conclusion, while the original concept of Fleviscript addressed important goals such as
simplicity and compliance, the framework’s technical requirements evolved over time, making
a change in direction necessary. The new multi-layer design in Fleviden offers greater
flexibility, allowing users to choose between more control or a higher level of abstraction,
depending on their needs. This shift improves compatibility with a wider range of use cases
and makes future development easier to manage. It reflects a deeper understanding of what
is needed to support federated learning across different environments, and positions Fleviden
as a reliable framework for integration within SEDIMARK and other contexts.
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5 The DLT Infrastructure

This section describes the functionalities and the final architectures of the DLT Infrastructure
employed as the underlying foundation for the final version of the SEDIMARK Marketplace.

The SEDIMARK Marketplace relies on a robust DLT Infrastructure to underpin its operations.
This foundation provides verifiable and immutable records of Participant information and
Offering details, ensuring trustworthiness and non-repudiation.

The target of the infrastructure is identified in the following functionalities:
Identity Management: Securely manages Participants' identities.
Metadata Management: Enables information related to Offerings for the Catalogue.
Trust Metadata Storage: Provides transparent and auditable records of trust information.
Tokenization: Facilitates secure asset ownership and trading.

User Wallet Integration: Seamless integration with participant wallets for efficient
transaction management.

Such infrastructure enables interconnection among the various enablers and mechanism
realising the functionalities of the SEDIMARK Marketplace.

The DLT infrastructure is built on a two-layer architecture:
Layer 1 (L1): IOTA Tangle, offering decentralized data sharing.

Layer 2 (L2): IOTA Smart Contract (ISC) chain, enabling smart contract execution and
transactions.

These two layers have been previously analysed in the SEDIMARK deliverable D4.1. The
initial version of the hardware and software implementation of this infrastructure, described in
SEDIMARK deliverable D3.3, has been adopted for experimenting and testing of the various
features developed during the SEDIMARK project.

The underlying SEDIMARK infrastructure has been improved and extended to reach the final
and stable version. The following subsections analyse instead the final implementation of the
underlying infrastructure from the hardware and software point of view.

The IOTA network operates on a distributed ledger system, known as the Tangle. This
technology forms the core of the SEDIMARK decentralized platform by providing a secure and
efficient way to record transactions. The Nodes within the network are interconnected and
maintain this shared ledger through a consensus protocol.

The IOTA full-node software is called HORNET and it is written in Go. HORNET serves as the
foundation of any IOTA node network configuration. This software is designed to ensure
efficient operations and flexibility in deployment.

One of the key features of HORNET is the “INX” interface, which allows seamless extension
through ad-hoc plugins. This allows developers to create specialized functionalities tailored to
their specific needs, opening up a world of possibilities.

HORNET additionally enables the integrated dashboard, which provides real-time transaction
information for monitoring, allowing users to visualize the activity on their node in real time.
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To enhance the capabilities of IOTA beyond basic transactions, they introduced Wasp - a smart
contract platform built upon the IOTA network. Wasp uses its lightweight and efficient core
contracts (EVM — Ethereum VM) to handle EVM/Solidity contracts (as well as Wasm based
contracts) — expanding the application of the IOTA network. This allows developers to build
complex decentralized applications with ease.

To ensure seamless integration with existing tools, Wasp provides a standardized JSON-RPC
service for user interaction. Users can effortlessly connect their wallets or development
frameworks to interact with the EVM layer through this interface. Deploying EVM contracts on
Wasp becomes as simple as connecting your development tool to this defined endpoint.

In essence, IOTA's technology combines a distributed ledger system, decentralized nodes,
and specialized software for smart contract development, empowering developers to create
innovative solutions across a variety of domains.

The final version of the infrastructure employed in the SEDIMARK Marketplace is composed
of a layered architecture. From a high-level point-of-view, it is composed with the two distinct
DLT layers stacked each other, i.e., IOTA Tangle (Layer 1) and IOTA Smart Contract Chain
(Layer 2). Such layers are stacked on top of the hardware infrastructure providing the
necessary computational capabilities.

A simple installation of the software stack prepares a node able to interface and connect with
the public network (i.e., the mainnet) of the IOTA Foundation. As a consequence, an instance
of a Hornet node would be consistent with the content of the ledger public network, holding
data and transactions not related to SEDIMARK Marketplace. Also, the computational
capabilities of the hardware acting as nodes and their related cost would be exploited to
become a peer of the decentralized public network.

For the scope of the SEDIMARK project, the underlying structure is reserved and adapted for
the project target. Thus, the SEDIMARK Marketplace has its root in a private instance of the
entire DLT, as well as the necessary smart contracts engine.

The official repository containing the resources for the instantiation of the infrastructure is
https://github.com/Sedimark/hornet-extra/ .

The collection of configurations and scripts enables both to join an existing decentralized
SEDIMARK Marketplace and to instantiate a new existing infrastructure, with minimal
intervention and changes needed. The external dependencies are also limited and managed
resorting to containers technology for ease of deployment and portability.

The top-level underlying infrastructure of the DLT is reported in Figure 43. The figure
represents the two logical layers previously defined, together with the auxiliary services block.
The logical intra- and inter- communications for the two layers is described in SEDIMARK
deliverables D4.1 [21] and D4.2 [22].
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From an architectural point-of-view, the changes of the infrastructure in the second part of the
project did not directly concern the two specific layers. Instead, they mostly focused on the
scalability of the infrastructure, interconnection and management aspects. As example, in the
previous settings, the various instances of Hornet nodes were not directly exposed to the
internet. In the current and final version, they are instead able to communicate directly with
external services, enhancing the connectivity in a real decentralized manner. These features
requested additional software and the related configuration, not specifically needed by the
logical infrastructure (L1 and L2) but required to allow proper interconnections.

Additional specific services have been added and newly created. Such services enable a set
of convenient functionalities needed to limit manual intervention. For instance, the services for
sharing the current status of the ledger (i.e., the so-called snapshots) allow other Nodes to
connect more rapidly and in a programmed manner.

Other instantiated services instead focused on the management side. Ad-hoc software has
been integrated in the previous software stack to provide the owner of the Node a quick and
simplified interface to get an idea of the current state of the situation at a glance. Obviously,
such situation might in turn refer to different aspects of the management. For example, the
situation to glimpse might refer to the logical layers (both on ledger and chain), which is
provided through the dashboard services instantiated and already configured.

From the logical point-of-view each node of the underlying infrastructure is made of several
components. The minimum set of components needed to deploy the infrastructure is formed
with Hornet and Wasp software, as in the previous version.

The current and final set of components in shown in Figure 44. Each component has a specific
role that either define a functionality or complements it.
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The figure above shows the architectural components of the infrastructure and how they are
interconnected.

The SEDIMARK baseline infrastructure relies entirely onto the IOTA ecosystem, which is
powered by two essential components (Main Components). Such components are modular by
design and their functionality is extended through the INX-Plugins.

Hornet: Software for L1. It is lightweight and efficient IOTA node implementation designed
for high performance and scalability. Hornet is built in Go and focuses on providing a
robust and user-friendly interface for interacting with the IOTA Tangle. It supports various
features such as automatic peer discovery, a built-in API for transactions, and integration
with INX plugins, making it suitable for both developers and end-users.

Wasp: Software for L2. It is smart contract platform for IOTA that enables the development
and execution of decentralized applications (so-called dApps). Wasp allows developers
to create and deploy smart contracts using familiar programming languages, providing a
secure and scalable environment for executing complex logic on the IOTA Tangle. It
features a unique consensus mechanism and supports various functionalities, including
state management and event handling, to facilitate the development of innovative
applications.

One of the key strengths of Hornet is its extensibility through INX plugins, which enhance its
functionality and provide additional capabilities. Below is reported the list of the INX plugins
integrated with the deployment of Hornet, detailing their specific purposes.

INX-Dashboard: provides a user-friendly interface to overview the system.

INX-MQTT: provides an event-based real-time streaming node API. The built-in MQTT
broker offers a list of topics clients can subscribe to, to receive the latest blocks and
outputs attached to the tangle.
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INX-Indexer: is an indexing tool to provide structured data that can be searched and
utilised by wallets and other applications. The indexer maintains its own database
separate from that of the node.

INX-Participation: is an extension for nodes to enable on-tangle voting. The extensions
maintain its own database separate from that of the node and provides means to track
events and votes.

INX-POI: enables you to generate and verify Proof-of-Inclusion of blocks in the Tangle.
Given a piece of data or transaction and the proof, it is possible to verify whether it was
included in the Tangle at any given time.

INX-Coordinator: performs the core functionalities of a node. It generates and issues the
Milestones transactions, which are a special kind of transactions employed as markers of
the progress and for providing timestamps for different points in the Tangle. Any
transaction points, directly or indirectly, to at least one Milestone. The coordinator decides
which transactions to approve. Moreover, it prevents double-spending issues and ensures
that transactions cannot be reversed. The coordinator helps new nodes join the
decentralized network by providing checkpoints for history, promoting faster
synchronization. This ensures that new nodes have a starting point for validating the
Tangle.

INX-Faucet: faucet is employed for dispensing native tokens. For development and testing
purposes, two faucets are deployed respectively in L1 and L2. (Note that L2 faucet is not
an INX plugin. Conversely L1 faucet is the INX plugin).

INX-Spammer: is a client application, running locally, which sends dummy transactions to
the Tangle to provide a constant flow of transactions. This happens for performance
reasons: a new transaction must be indeed referenced by at least three blocks. The
spammer transactions increase the reference and confirmation rates of the DLT.

Each node is complemented with a set of components that enables the real-time observation
of transactions and smart contracts. Additionally, effective monitoring is crucial for maintaining
the health and performance of the SEDIMARK infrastructure. The monitoring components
provide real-time insights on resource usage and application performance. Such components
are listed below.

cAdvisor (Container Advisor): collects, aggregates, and exports metrics about container
resource usage and performance characteristics, such as CPU, memory, and network 1/0

Prometheus: is a monitoring and alerting toolkit designed for reliability and scalability. It
collects metrics from configured targets at specified intervals, stores them in a time-series
database, and provides a powerful query language for analysis. Prometheus is particularly
well-suited for monitoring microservices and cloud-native applications.

Grafana: is an analytics and monitoring platform that integrates with various data sources,
including Prometheus. It provides a rich visualization layer for displaying metrics and logs
through customizable dashboards. Grafana allows users to create interactive graphs and
alerts, making it easier to monitor system performance and health in real-time.

Utility and services components play a vital role in supporting the IOTA infrastructure by
providing essential functionalities such as traffic management, load balancing, and custom
service integrations. These components enhance the overall architecture, streamline
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operations, and facilitate the deployment of additional features, ensuring a robust and efficient
environment for both developers and users.

Traefik: reverse proxy and load balancer designed for microservices. The configurations
set the services and routes traffic to them based on the routes defined. Traefik supports
various backends, including Docker, Kubernetes, and more, and provides features such
as SSL termination, traffic management, and real-time monitoring through a user-friendly
dashboard.

Nginx Proxy Manager: nginx with a graphical interface for ease of configuration.
Create-snapshots: creates an initial (empty) snapshot.
Bootstrap-Network: creates the file needed to start a new DLT.

The physical architecture is employed to provide computational capabilities to the software
components described in the previous section. The two layers (L1 and L2) are mapped onto
physical hardware.

The decentralized network for L1 is composed by four instances of Hornet. A copy of the
software for the node is deployed across different physical machine. The functionality of each
Hornet node is extended with the respective INX-Plugins. For every instance of Hornet, a
corresponding instance of Wasp (for L2) is instantiated as well on the same machine. Each
Hornet node is interconnected with the others. Analogously, each Wasp instance is interfaced
with both other instances the related instance of Hornet. The physical setup is shown in Figure
45.
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The physical deployment exploits servers installed on the partner premises (Fondazione
LINKS — LINKS, University of Cantabria — UC and EGM) for the duration of the project. As
example, the physical machine in LINKS are three Dell server blades (R650), each equipped
with Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz (with 16 cores). The RAM available
amounts to 64GB (7% is used). The disk space available is 900GB and the rough total space
taken up by the installation with the operating system is about 8%. The Tangle currently employ
30GB. However, it does not have a fixed upper limit.

Already in the first instantiation described in SEDIMARK deliverable D3.3 [23], the servers
were interconnected to each other. Moreover, one additional server had a public interface
exposed to the internet with a Public IP address. This allows the specific machine to act as a
gateway for connecting other decentralized external nodes.

Conversely from the first version, every server in the final instance is able to communicate with
other nodes, either internal or external. In turn, external clients are able to interact with the
network while maintaining secure communication among the instances. The specific public
interface is preferred for ease of communication and for scalability purposes. The server with
this interface is in fact equipped with a reverse proxy and load balancer able to handle multiple
concurrent requests. From the security point-of-view, the services exposed resort to HTTPS
communications, implying the necessary actions to undertake for obtaining and keeping
updated certificates for establishing secure connections.

In the context of trust, the initial setup provided multiple Wasp nodes, but a single validator. In
the final version, all the validators are reachable from outside peers enhancing the mutual trust
required for the validation of transactions. Moreover, such architectural changes to the
connectivity enable a good degree of decentralization and node distribution of the network.
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In the final version of the infrastructure, several endpoints have been defined and published
for the sake of improving access. Here below it is reported a complete list of the endpoints with
their intended usage.

https://stardust.linksfoundation.com/node1/dashboard/

https://stardust.unican.sedimark.eu/dashboard/

Hornet Dashboard Public page
https://stardust.linksfoundation.com/node1/wasp/dashboard/login

https://stardust.unican.sedimark.eu/wasp/dashboard/
Wasp Dashboard Public page
http://192.168.94.12/grafana/login

Grafana Webpage — private monitoring
http://192.168.94.12:8088/dashboard/#/

Traefik Webpage — private monitoring
http://192.168.94.14:81/login

Nginx Proxy Manager Dashboard — Configuration of nginx

https://snapshots.stardust.linksfoundation.com/I1/

Hornet snapshots download page (delta and full)
https://snapshots.stardust.linksfoundation.com/I2/

Wasp snapshots download page
https://stardust.linksfoundation.com/node1/sedimark-chain

https://stardust.unican.sedimark.eu/sedimark-chain
Node 1 — endpoint for accessing SEDIMARK RPC (Node 2 and Node 3 also available)
https://stardust.linksfoundation.com/node1/api/routes

Node 1 — endpoint for accessing APIs (Node 2 and Node 3 also available)
https://stardust.linksfoundation.com/faucet/I1/

L1 Network Faucet
https://stardust.linksfoundation.com/faucet/I2/

L2 Network Faucet
https://json-rpc.evm.stardust.linksfoundation.com/sedimark-chain

Endpoint for accessing SEDIMARK RPC (this endpoint is load-balanced with round-robin
logic)

https://stardust.linksfoundation.com/node1/wasp/api/routes

Node 1 — Endpoint for accessing the Wasp API (Node 2 and Node 3 are also available)

The servers are interconnected to each other in a local network. These three machines are the
peers composing the DLT and the Smart Contract chains for the SEDIMARK Marketplace.
Incoming connections related to the digital identity are managed at L1 level, where the
transactions store (partially) the elements of the SSI. Smart contract applications are deployed
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at L2 with the ISC allowing the trading of assets between SEDIMARK users and implementing
the Marketplace business logic.

The infrastructure exposes a public interface that allows the interactions with remote users.
SEDIMARK users are able to connect and interact with the services detailed resorting to the
toolbox and the applications developed during the other WPs. The partners who want to
enforce the capability of the SEDIMARK Marketplace can provide their own computational
capabilities and storage facilities by deploying their own instances. The software stack is
containerised for the ease of deployment on an external physical infrastructure. A newly
deployed infrastructure can be linked to the existing one, thereby extending the capability of
the whole system. In such a way, the partners’ infrastructures become members of the ledger
by acting as peers of the decentralized network and/or of network of validators.

The final SEDIMARK infrastructure is designed with scalability and resilience in mind, using
the hardware composed of three interconnected physical on the partners premises to host
Hornet and Wasp instances. This setup enhances the performances and also demonstrates
that the system can grow as demand increases.

The decentralized nature of this infrastructure is a significant advantage, as it allows additional
servers to join the network easily. This flexibility means that other users (usually the Providers
in the SEDIMARK Marketplace, but also the Partners of the SEDIMARK Consortium) can
contribute their own nodes, further enhancing the robustness and capacity of the overall
system. The infrastructure as-is at the time of writing this deliverable is already resilient to
server failures and maintenance activities considering the number of servers employed. In this
configuration, if one server experiences issues or requires maintenance (meaning downtime
due to e.g., physical updates of hardware), the remaining servers can continue to operate,
ensuring uninterrupted service. Therefore, this decentralized architecture fully support
scalability and fosters also external participation from other partners and user willing to
strengthen the infrastructure.

Additional mechanisms have been established to facilitate the scalability of the infrastructure.
The RPC endpoint is load-balanced according to a round-robin scheme, providing the users
and other services a simplified access, through load-balancing. Nevertheless, it is still
preserved the possibility to access directly the RPC of the L2 chain of the specific node.
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6 The Storage enabler

In the digital age, data stands as one of most important components of any modern business
ecosystem. Its value is especially magnified in the realm of distributed marketplaces, which
serve as hubs of vast and diverse data exchanges across various regions.

These systems go beyond traditional storage paradigms by spreading data across multiple
physical locations, be it within a single data centre location or across countries. Such an
approach is not just a matter of scalability, but a pivotal strategy to ensure data availability,
fault tolerance, and efficient distribution.

As these platforms deal with heterogeneous data — from city traffic information and user profiles
to transaction records and user-generated content — the need for a robust, scalable, and
interoperable storage mechanism becomes implicit.

Furthermore, as Al and machine learning continue to play a more significant role in data
analysis and decision-making processes within these marketplaces, the integration between
storage and computational resources gains even more prominence.

There are three pivotal attributes one must consider when choosing the data storage solution
for these systems: scalability, fault tolerance and data interoperability.

Scalability refers to the system's ability to handle increased load or demand by adding
more resources or nodes, without affecting the system's performance or architecture.
Distributed storage systems, unlike traditional systems, don't require massive fine-tuning
or downtime to scale. As the need arises, new storage nodes can be incorporated
seamlessly.

Fault tolerance is the property that enables a system to continue operating seamlessly in
the event of the failure of some of its components. Distributed storage systems typically
replicate data across multiple nodes. This means if one node encounters a failure, the
system can retrieve the data from another node. This redundancy always ensures data
availability.

Data interoperability is the ability of systems and services that create, store, and exchange
data to have clear, shared expectations for the contents, context, and meaning of that
data. In a distributed marketplace, data might originate from various sources - different
vendors, platforms, or services. Distributed storage solutions can store diverse data types
and structures, offering a unified access point irrespective of the data's origin. For
marketplaces that involve multiple stakeholders, from vendors to third-party service
providers, data interoperability ensures that all parties can access and understand the
shared data, facilitating smoother collaborations and transactions.

Below are defined the storage enabling software split in two sections, one for data storage,
using NGSI-LD broke, and the other for model storage, using Minio.
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Minio [24] is a high-performance, distributed object storage server, designed for large-scale
data infrastructures. It is S3 compatible, built for the cloud-native world, supports object
versioning, encryption, and event notifications. Minio provides scalable storage for
marketplace assets, in the case of SEDIMARK marketplace it will be used as a performant
storage enable for model storage through MLFlow, which is a model management software,
and it will use Minio to store the models created inside the SEDIMARK Toolbox.

Each toolbox will have deployed an instance of Minio to save and load models through MLFlow
and to pass the models to the connector when it is required to retrieve a model.

The deployment for Minio will be done through a docker compose file that will deploy the entire
toolbox with all the necessary components for a provider or consumer to be able to create,
share and retrieve models. The deployment for the SEDIMARK Toolbox will be available on
GitHub to ease the installation of the Toolbox.

For a consumer to retrieve a particular model stored at a provider, the connectors of both the
provider and the consumer needs to interact with Minio, either directly or indirectly, in such a
way that the connector at the provider side will get the model through a REST API from Minio
and pass it to the connector on the consumer side.

Below is described the components that are involved in the transaction of a model from a
provider to a consumer, and the process behind it.

SEDIMAKR UI Consumer Provider MLFlow API MLFlow Minio
Connector Connector
i = i i
Consumer | L . | |
< 1 Provide information | ;
to the connector ! ! !
Asks for a g i Query the endpoint | i
particular . - URL provided in the - : :
model Asks the connector on the Provider »| | offering description i :
i
» | Queries MLFiow M
for the model Retrieves the files of
the model
»
returns retums
P
e
Package the model
into a zip file
R L EEE L
returns
Download 7 L
the model
return T
€ -oomeemnmeoooy P !
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All the components presented in the diagram are present on GitHub.

NGSI-LD brokers implementing the temporal API described in section 2.2 also act as a storage.
As an example, the Stellio context broker embeds a PostgreSQL database empowered with
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TimescaleDB and PostGIS extensions to handle time series as well as geographic information.
Data exchange within the Stellio broker are made over a high-speed exchange bus built on
Apache Kafla which allow to scale while a spring boot-based APl gateway ensures the
conformity to the NGSI-LD specification. Such an implementation provides interoperability
while allowing fast ingestion rates. As visible in Figure 47, ingestion rates of more than 20k
events/s have been demonstrated on machine with 8 vcore, 32 Go RAM and 4 To disks. Based
on NGSI-LD specification, deployment architecture includes centralised, distributed and
federated options.

The Stellio broker has been significantly extended to include context source registration
capability, enabling it to participate in distributed deployments. This enhancement allows
Stellio to support multiple deployment configurations beyond its original centralized
architecture, including distributed and federated deployments where context sources can
register themselves with information they can provide on request. In distributed settings, Stellio
can discover context sources that may have information for answering requests based on their
registrations, request and aggregate information from different context sources, and provide it
to requesting context consumers. The broker's architecture is built around a modular design
following reactive and functional paradigms, with services that are thoroughly tested and
deployed in many production environments.

Based on NGSI-LD specification, deployment architecture includes centralised, distributed and
federated options. The centralized architecture features a central context broker that stores
context information provided by context producers, while distributed settings allow all context
information to be stored by context sources themselves. In federated architectures, context
sources can be context brokers that make aggregated information from lower hierarchy levels
available, and these architectural approaches are not mutually exclusive - actual deployments
may combine them in different ways. The deployed architecture is designed to evolve from
centralized to distributed to federated configurations without requiring software reinstallation.

Change Stats

Rows

07:00 07:30 08:00 08:30 09:00 09:30 10:00 10:30

INSERT 0 40.1K 20.5K 0

Offerings are modelled in RDF and formatted in JSON-LD, and they can be found either in the
participant premises (as part of a Participant Self-Listing) or in the Marketplace Catalogue.

Offerings embedded in Self-Listings are stored in a local relational database based on
PostgreSQL (see Figure 48). This storage solution is shared by other components in a

D3.4 Enabling tools for data interoperability, distributed data storage

Document name: and training distributed Al models. Final version

Page: 78 of 89

Reference: SEDIMARK_D3.4 |Dissemination: PU Version: | 1.0 |Status: |Final



SO,

SEDIMARK Toolbox (e.g. DLT-Booth, Stellio Context Broker). The component in charge of
storing and maintain the Self-listing, the Offering Manager, stores as well a reference to the
specific Offering and its hash into the DLT, through the DLT-Booth.

Offering

Self-listing

Manager

> DLT-Booth

Stellio Context
Broker

Toolbox API

Marketplace GUI

Connector deFLight

Fleviden

||\
||j

MageAl

Other Toolbox Components

\ v

Figure 48: SEDIMARK Toolbox components and storage

Offerings are also stored in the Catalogue, a triple-store database based on the Jena TDB
store and Fuseki server. The management of Offerings at the Catalogue is done through a
custom handler for encapsulating Offering within named graphs, which will allow the creation
and removal of Offerings without leaving the possibility of any orphan RDF nodes which can
be caused if Offerings are managed within one default graph.

For the decentralised Catalogue, a Catalogue Coordinator within the domain of a Participant
hosting a Catalogue, uses the management custom handler for distributing the Offerings
retrieved from Self-Listings. In the case of discovery, Consumer SPARQL requests are
modified so that Federated Queries are applied.

Over time the triple store can become fragmented and grow inefficiently, which normally occurs
when CRUD operations are applied to the RDF graphs in the triple store. The compaction
function provided by the Fuseki APl addresses this by creating a new compacted version,
copying over the current state of the RDF graphs into the new store, and switching to it once
the process is done. The process can be done while the Catalogue is running and therefore
does not affect availability.
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7 Conclusions

In conclusion, this deliverable has presented the comprehensive design and initial
implementation of the foundational technical enablers for the SEDIMARK platform. The work
detailed herein successfully establishes the critical pillars of interoperability, artificial
intelligence, distributed ledger technology, and storage, which are essential to realise the
project's overarching vision for a secure, trusted, and efficient marketplace for data and
services. These components collectively represent a significant advancement from the
project's starting point, moving the platform closer to its goal of a high Technology Readiness
Level (TRL) demonstration.

A cornerstone of the reported achievements is the establishment of a multi-faceted
interoperability framework. By standardizing on NGSI-LD for data assets and developing a
bespoke Marketplace Information Model for describing participants, offerings, and assets, a
common semantic language has been created for the ecosystem. This is a crucial step toward
ensuring that data can be discovered, accessed, and reused seamlessly, in alignment with
FAIR (Findable Accessible Interoperable Reusable) principles. The development of the
Interoperability Enabler, with its suite of tools for data formatting, curation, quality annotation,
and validation, provides the practical mechanisms to enforce these standards and transform
heterogeneous data sources into compliant, high-quality assets ready for exchange. The
introduction of the Offering concept, which allows multiple assets to be bundled, represents a
key innovation that provides greater flexibility for data providers compared to existing models.

In the domain of artificial intelligence, the Al Enabler introduces a sophisticated and versatile
suite of tools designed to support both local and distributed machine learning scenarios. The
provision of advanced models like CrossFormer for multivariate time-series forecasting, along
with novel optimization techniques such as structured and unstructured pruning, empowers
users to create efficient, high-performance models suitable for deployment in resource-
constrained or federated environments. Furthermore, the development of two complementary
distributed learning frameworks, the dynamic and fully decentralized deFLight and the
extensible Fleviden tool, provides the necessary flexibility to support diverse collaborative
training arrangements across multiple organizations and regulatory settings. The innovative,
LLM-powered Offering Generator significantly lowers the technical barrier for participation by
automating the creation of semantically rich, standards-compliant marketplace offerings from
simple metadata descriptions.

These advanced data and Al capabilities are built upon a secure and scalable infrastructure.
The private DLT instance, leveraging IOTA Tangle and Smart Contracts, forms the trusted
backbone of the marketplace, providing an immutable and non-repudiable ledger for managing
participant identities, offering metadata, and facilitating asset trading. This directly addresses
the project's core requirement for a system that is secure and trustworthy by design.
Complementing this, the distributed Storage Enabler, which utilizes Minio for Al models and
NGSI-LD brokers for data, ensures that the heterogeneous assets within the marketplace can
be stored, managed, and accessed in a scalable, fault-tolerant, and performant manner.

Looking forward, the components detailed in this document are now primed for the next phase
of the project, which will focus on their integration into a cohesive platform and validation within
the project's real-world scenarios.
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9 Annexes

9.1 SHACL Shapes for Offering Validation

1. @prefix dash: <http://datashapes.org/dash#> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

@prefix schema: <http://schema.org/> .

@prefix sh: <http://www.w3.org/ns/shacl#> .

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

@prefix dcat: <http://www.w3.org/ns/dcat#> .

@prefix sedimark: <https://w3id.org/sedimark/ontology#> .

# Shape to ensure at least one instance of Offering class exists

sedimark:OfferingExistsShape

a sh:NodeShape ;

sh:targetClass sedimark:Offering ;

sh:sparql

a sh:SPARQL Constraint ;

sh:message "At least one instance of sedimark:Offering must exist." ;

sh:select """

PREFIX sedimark: <https://w3id.org/sedimark/ontology#>

SELECT $this

WHERE {

FILTER NOT EXISTS {

?offering a sedimark:Offering .

-}
1

o
_

1
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# Shape for validating Offering instances

sedimark:OfferingShape

a sh:NodeShape ;

sh:targetClass sedimark:Offering ;

# Offering must have at least one Asset

sh:property

sh:path sedimark:hasAsset ;

sh:class sedimark:Asset ;

sh:minCount 1 ;

sh:message "Each Offering must have at least one Asset." ;

L

# Offering must have at least one OfferingContract

sh:property

sh:path sedimark:hasOfferingContract ;

sh:class sedimark:OfferingContract ;

sh:minCount 1 ;

sh:message "Each Offering must have at least one OfferingContract." ;

L

# Required properties

sh:property

sh:path dcat:title ;

sh:datatype xsd:string ;

sh:minCount 1 ;

sh:message "Each Offering must have at least one dcat:title." ;

L
sh:property

sh:path dcat:description ;

sh:datatype xsd:string ;

sh:minCount 1 ;
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sh:message "Each Offering must have at least one dcat:description.'

[
Il

_L
sh:property

sh:path dcat:keyword ;

sh:datatype xsd:string ;

sh:minCount 1 ;

sh:message "Each Offering must have at least one dcat:keyword." ;

1

# Shape for validating Asset instances

sedimark:AssetShape

a sh:NodeShape ;

sh:targetClass sedimark:Asset ;

# Required properties

sh:property

sh:path dcat:title ;

sh:datatype xsd:string ;

sh:minCount 1 ;

sh:message "Each Asset must have at least one dcat:title." ;

1
sh:property

sh:path dcat:description ;

sh:datatype xsd:string ;

sh:minCount 1 ;

sh:message "Each Asset must have at least one dcat:description." ;

L
sh:property

sh:path dcat:keyword ;

sh:datatype xsd:string ;

sh:minCount 1 ;
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sh:message "Each Asset must have at least one dcat:keyword." ;

1

# Shape for validating OfferingContract instances

sedimark:OfferingContractShape

a sh:NodeShape ;

sh:targetClass sedimark:OfferingContract ;

# Required properties

sh:property

sh:path dcat:title ;

sh:datatype xsd:string ;

sh:minCount 1 ;

sh:message "Each OfferingContract must have at least one dcat:title." ;

_L
sh:property

sh:path dcat:description ;

sh:datatype xsd:string ;

sh:minCount 1 ;

sh:message "Each OfferingContract must have at least one dcat:description." ;

1
sh:property

sh:path dcat:keyword ;

sh:datatype xsd:string ;

sh:minCount 1 ;

sh:message "Each OfferingContract must have at least one dcat:keyword." ;

—1
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5seDIMARK

In this section, each function in evaluation metrics is provided as below. Before discussing

each equation, the notation is defined as: ¥i is the ground truth at time L Viis the predict, the

symbol  means the average, N is the total number of data points, £ means a very small

positive constant to avoid division by zero, and 5: is the scaled factor.

is @ common loss function and evaluation metric used in
regression tasks. It measures the average magnitude of the errors between predicted values
and actual values, without considering their direction (i.e., it treats all errors equally, whether
positive or negative).

J'\‘I

1 .

MAE = NZD’: -yl
i=

is another widely used loss function and evaluation metric in
regression problems. It measures the average of the squares of the differences between
predicted and actual values.

N
1
MSE = — E  —y)?

is the square root of the Mean Squared Error. It retains
the advantages of MSE (e.g., sensitivity to large errors) while having the same unit as the
target variable, making it easier to interpret.

v .
RMSE = N_Zlm—yf)
i=

is a commonly used metric for evaluating
regression models, especially in forecasting. It expresses prediction accuracy as a percentage,
showing the average relative error between predicted and actual values.

MAPE =

J'V
100% Vi —5)}|
N i i +e

is a regression evaluation metric that calculates
the between predictions and actual values. It's similar
in spirit to MAPE but squares the percentage error, making it more sensitive to large relative
errors.
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100% <
MSPE = Z( )
= y;+¢&

is a regression metric that measures how well a model’s
predictions approximate the actual data , typically the mean of
the target values. It helps assess how much better (or worse) a model performs compared to
a naive predictor.

Yi—1 (7 )
RSE =

1 1(y:

5‘2 =
| |
<2 =

p—
b %]

Considering the MSE may impact by data in diverse value range, the scaled or normalized
operation is considered as:

2
ScaledMSE = — S 00 =9
N sI + ¢
i=1
N )
1 = 3)?
NormalizedMSE = — (}’;Z—}’;)
N&i (7 +e)
i=1

is a smooth regression loss function that behaves similarly to Mean
Squared Error (MSE) near zero but is —like Mean Absolute Error
(MAE)—due to its logarithmic growth at large errors. The “scaled” version introduces a scaling
factor to control the sharpness of the penalty.

N

1 log(cosh(y; — ¥
ScaledLogCosh = — E 8( i = %)
N o s;ite
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