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Executive Summary 

SEDIMARK_D3.3 “Enabling tools for data interoperability, distributed data storage and training 

distributed AI models” is a report produced by the SEDIMARK project. It aims at providing 

insights in relation to progress made for: 

• Management of interoperability in data flows by proper definition and usage of metadata 

and semantic technologies 

• Distributed storage considering interoperability and scalability issues of such storages. 

• Finally, on the use of distributed AI and analytics, considering in particular federated 

learning,  

Description is purposedly made short as this report is meant to accompany the 

implementations developed in the first period of the project and guide the user in understanding 

the rationale behind the tools selections and configurations as they exist in the project git 

repository. 

The content of the report is built as follows: 

• Section 1 provides introduction to the document, describing how the different sections 

relates to the elements of the SEDIMARK architecture. 

• Section 2 describes the interoperability approach chosen for assets. It provides an 

overview of the related specification (NGSI-LD from ETSI ISG CIM) as well as the 

community driven smart data models initiative used for the data asset and describes the 

models used for the Marketplace offers and assets descriptions. 

• Section 3 discusses how data points and datasets get annotated to report their quality 

level or encompassed processes. 

• Section 4 dives into the development and training of AI models focusing on distributed 

models training using federated learning methods. Two frameworks (Fleviden and 

shamrock) deployed in the project are presented. 

• Finally, sections 5 and 6 discuss the storage layer with section 5 describing an IOTA 

based distributed storage layer and section 6 focused on storage meant for scalability and 

semantic interoperability. 
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1. Introduction 

1.1 Purpose of the document 

Data quality is considered to be of the highest importance for companies to improve their 

decision-making systems and the efficiency of their products. In this current data-driven era, it 

is important to understand the effect that “dirty” or low-quality data (i.e., data that is inaccurate, 

incomplete, inconsistent, or contains errors) can have on a business. Manual data cleaning is 

the common way to process data, accounting for more than 50% of the time of knowledge 

workers. SEDIMARK acknowledges the importance of data quality for both sharing and 

using/analysing data to extract knowledge and information for decision-making processes.  

Common types of dirty or low-quality data include: 

1. Missing Data: Incomplete datasets where certain values are not recorded. 

2. Inaccurate Data: Data that contains errors, inaccuracies, or typos. This can happen due 

to manual data entry errors or system malfunctions. 

3. Inconsistent Data: Data that is inconsistent across different sources or within the same 

dataset. For example, the same entity may be represented in different ways (e.g., "Mr. 

Smith" vs. "Smith, John"). 

4. Duplicate Data: Repetition of the same data in a dataset, which can distort analyses and 

lead to incorrect results. 

5. Outliers: Data points that deviate significantly from the majority of the dataset, potentially 

skewing the analysis. 

6. Bias: Data that reflects systematic errors due to a particular group's overrepresentation or 

underrepresentation in the dataset. 

7. Unstructured Data: Data that lacks a predefined data model or organization, making it 

difficult to analyse. 

Thus, one of the main work items of SEDIMARK is to develop a usable data processing 

pipeline that assesses and improves the quality of data generated and shared by the 

SEDIMARK data providers. 

1.2 Relation to another project work  

This deliverable presents the work related to the components meant to support interoperability, 

distributed storage, and system intelligence. These are three main pillars within SEDIMARK to 

support the project objectives for enabling seamless data sharing between consumers and 

providers. Interoperability is a key part of SEDIMARK to enable the efficient and easy reuse of 

datasets, models, and services across the whole network of SEDIMARK participants, aiming 

i.e., to support them in integrating data from different sources to train more advanced and 

robust models or to enable the distributed training of machine learning models on compatible 

datasets. 

1.3 Structure of the document 

Figure 1 presents the SEDIMARK functional architecture that was described in Deliverable 

SEDIMARK_D2.2 in detail. With orange highlights are the functional components that are part 

of this deliverable. As it is evident, these components are split between the data layer and the 



 
 

 

Document name: 
D3.3 Enabling tools for data interoperability, distributed data storage 

and training distributed AI models. First version 
Page:  12 of 63 

Reference: SEDIMARK_D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

Intelligence layer of SEDIMARK, with one component from the Service layer. More details 

about these components and their mapping to sections in the deliverable are given below: 

• Data formatting: this component is described in Section 2.2 and is related to discussing 

the ontologies and the data models that will be used for the internal (within the data quality 

pipeline) and external format of the data (the format to be used during data sharing).  

• Offering description: this component is part of section 2.3, discussing the format of the 

offerings that will be used to describe the assets to be shared within the marketplace. 

• Semantic enrichment, Data quality annotation, Model annotation, ML-oriented data quality 

annotation, AI model quality annotation, AI model validation, data validation/certification: 

these components are related to functionalities presented in section 4, discussing the 

interoperability enabler. 

• Data analytics, Model inference, Local model training, AI orchestration: these are 

components of the AI layer described in section 4.1, showing how SEDIMARK supports 

the providers and the consumers to train their own models and use them for inference 

and analytics. 

• Distributed model training: this component is split into two parts and presented in sections 

4.2 and 4.3, discussing the two different and complementary frameworks developed within 

SEDIMARK to allow joint training of ML models between distant participants. 

• Interaction, transactions: these components are related to the Interaction layer of 

SEDIMARK and are described in section 5. 

• Local storage, distributed storage: these are components of the Storage layer of 

SEDIMARK and are described in section 6, discussing the various options available within 

SEDIMARK for supporting distributed storage of data and assets. 
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Figure 1: SEDIMARK Functional Architecture: orange highlights functional components that 

are being part of this deliverable 
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2 Interoperability assets 

2.1 Introduction 

Interoperability is a crucial facet of modern information management, enabling seamless 

communication and exchange of data, models and services across diverse systems, platforms, 

and applications. In a world characterized by an abundance of data sources and formats, 

achieving interoperability ensures that disparate systems can understand, interpret, and 

effectively use shared data. This capability facilitates collaboration, integration, and synergy 

among organizations and technologies, breaking down silos and promoting a more 

interconnected digital ecosystem. 

This introduction explores the significance of data interoperability in overcoming the challenges 

posed by data heterogeneity, promoting standardization, and ultimately unlocking the full 

potential of interconnected data landscapes. Embracing data interoperability not only 

enhances operational efficiency but also lays the groundwork for advanced analytics, artificial 

intelligence, and the seamless flow of information in our interconnected, data-driven world. 

Before initiating any data processing pipeline within the SEDIMARK platform, data thus need 

to be formatted so to be usable by the pipeline. In its initial version, it has been agreed that the 

data processing pipeline would consumes and produces data organised along the NGSI-LD 

information model [1].  

2.2 Assets information models  

2.2.1 NGSI-LD as base format 

NGSI-LD is represented in JSON-LD and thus should have a grounding in RDF. It is mainly 

based on RDF standards to capture high-level relations between entities (representing or not 

a real-world asset) and properties of entities, as shown below. The core concept in the NGSI-

LD data model is the “Entity” which can have properties and relationships to other entities. An 

entity is equivalent to an OWL class. The assumption is that the world consists of entities, 

which can be physical entities like a car or a building, but also more abstract entities like a 

company or the coverage area of WLAN access points. Entity instances are identified by a 

unique URI and a type, e.g., a sensor with identifier urn:ngsi-ld:Sensor:01 and of type Sensor. 

Different from rdf:Properties, NGSI-LD properties (and relationship) are also considered as 

OWL classes also. Properties and relationships can be annotated by properties and 

relationships themselves, e.g., a timestamp, the provenance of the information or the quality 

of the information can be provided. The hasObject and hasValuein the NGSI-LD metamodel 

are defined to enable RDF reification, based on the blank node pattern, to leverage the 

property graph model.  

The NGSI-LD cross domain ontology extends the NGSI-LD metamodel to cover several 

general contexts presented below [2]: 

• Mobility defines the stationary, movable or mobile characteristics of an entity; 

• Location differentiates and provides concepts to model the coordination based, set based 

or graph-based location; 

• Temporal specification includes property and values for temporal property definitions; 
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• Behavioural system includes properties and values to describe system state, 

measurement and reliability; 

• System composition and grouping provides a way to model system of systems in which 

small systems are composed together to form a complex system following specific 

patterns. 

The NGSI-LD cross domain ontology is presented in Figure 2. 

 

Figure 2: RDF standards to capture high-level relations between entities in NGSI-LD 

Below we present a use case example for modelling data and context using the NGSI-LD. The 

example consists of a station that returns the measure of the level and flow of a river. This 

station has an id which is urn:ngsi-ld:Hydrometric-Station:X061000201.This station is located 

in a river identified by urn:ngsi-ld:River:La_Durance. This is defined by the relationship 

(isLocatedOn). 

To model this example, Figure 3 presents the main symbols signification used in the 

medialisation task. 

 

Figure 3: Main Symbols Definition 

The Entity river (since it is a subclass of NGSI-LD Entity) is instantiated with the identifier 

urn:ngsi-ld:River:La_Durance. Several relationships are defined in this example: the first 

(isAffluentOf) describes the hierarchy between the rivers, to be used later on for graph-based 

data processing. The relationship hasWeatherInformation provides weather related 

information for the river. 
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Figure 4: Illustration of NGDI-LD usage (extracted from water use case) 

2.2.2 NGSI-LD Smart Data Models 

The Smart Data Models (SDM) initiative, aims to offer a standardized approach to data 

representation across different domains. It aims to enhance interoperability between diverse 

systems and applications, thus enabling seamless communication. Although initiated by 

FIWARE, the Smart Data Models are open source and are developed through constant efforts 

from the community. The community contributes to creating or updating the existing data 

models.  

Within SEDIMARK, implementing Smart Data Models for data assets aims to establish a 

homogeneous approach for participants to utilize the reusable common tools proposed by 

SEDIMARK, including AI modelling and data processing. Therefore, it complements the like 

NGSI-LD semantic-enabled APIs with NGSI-LD data models. The implementation of Smart 

Data Models ensures that providers reveal a consistent taxonomy and ontology. This enables 

SEDIMARK participants to both sell enhanced data and expand the pool of potential customers 

and data providers within the Marketplace for service providers.   

Smart Data Models offer a customisable framework suitable for diverse domains, allowing for 

the creation of multiple domain-specific data models that cater to applications or datasets.  

SEDIMARK advocates for the Practical use of Smart Data Models in data assets, despite the 

possibility of needing to adjust proposed models with new attributes and properties. Several 

data models have been identified from the domains supported by the initiative, including Smart 

Mobility, Smart Cities and Smart Energy. Additionally, Smart Data Models, such as the Data 

Quality model, can be used to enrich the content of existing datasets with the output of the 

data processing pipeline. 

2.2.3 NGSI-LD API 

2.2.3.1 Introduction 

The NGSI-LD API supports several operations, with messages expressed in JSON-LD. The 

API is the standard for management of context information (which can be summarised as being 

any piece of information associated with a context such as time-location information). The 

Overall NGSI-LD API operations include: 

 

https://smartdatamodels.org/
https://github.com/smart-data-models/dataModel.DataQuality/blob/master/DataQualityAssessment/doc/spec.md
https://github.com/smart-data-models/dataModel.DataQuality/blob/master/DataQualityAssessment/doc/spec.md
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Table 1: NGSI-LD operations 

General Operations 

Entity create 

Entity update 

Entity partial update 

Entity delete 

Entity retrieval 

Queries 

Subscriptions 

  

Registry Operations 

CSRegistryEntry create 

CSRegistryEntry update 

CSRegistryEntry partial update 

CSRegistryEntry delete 

CSRegistryEntry retrieval 

CSRegistryEntry query 

CSRegistryEntry subscription 

Batch Operations 

Batch Entity Creation 

Batch Entity Create/Update (Upsert) 

Batch Entity Update 

Batch Entity Delete 

  

Temporal Operations 

Create/Update Temporal Entity Representation 

Add Attributes to Temporal Entity Rep. 

Delete Attribute from Temporal Entity Rep. 

Modify Attribute Instance in Temporal Entity Rep. 

Delete Attribute Instance from Temporal Entity Rep. 

Delete Temporal Entity Representation 

Retrieve Temporal Entity Evolution 

Query Temporal Entity Evolution 

 

 

This API relies on the NGSI-LD data model introduced earlier. In short, this model makes use 

of the JSON-LD serialisation format which adds linked data capabilities to the JSON format. 

The core of the model builds upon the concept of Entity, where an entity can have Properties 

and Relationships with other entities, building a property graph model.  

The JSON-LD format allows to create a network of standards-based machine interpretable 

data across different sources. The JSON-LD format includes an @Context clause used to map 

short terms used in the serialization to URIs uniquely identifying concepts and mapping to 

specific types (e.g., Date Time). 

In the following, we present the modelling process of the previous example using the NGSI-

LD API based on JSON-LD messages for creating and querying instances of Sensor and 

Station. 

2.2.3.2 Creating an instance of entity 

An entity can be created using the following endpoint (among others): 

POST {gatewayServer}/ngsi-ld/v1/entities 

The payload must contain at least an id and a type for the entity. Any other attribute can also 

be added to the entity when creating it. 

An example of payload used for the creation of a hydrometric station entity for the water use 

case is given below: 
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Figure 5: example of NGSI-LD payload 

2.2.3.3 Creating an instance of an attribute in an entity 

An instance of an attribute can be added to an entity using the following endpoint (among 

others): 

PATCH {gatewayServer}/ngsi-ld/v1/entities/urn:ngsi-ld:HydrometricStation:X031001001 

The payload can contain an instance for any attribute (already existing or not), if an attribute 

does not exist, it will be created with the new instance. 

An example of payload used to add some flow and water level measurements to a hydrometric 

station for the water use case is given below: 

{ 

"id": "urn:ngsi-ld:HydrometricStation:X031001001”, 

"type": "HydrometricStation”, 

"location": { 

            "type": "GeoProperty", 

            "value": { 

                "type": "Point", 

                "coordinates": [ 

                6.2727640, 

                44.4709131 

            ] 

        } 

    } 

} 
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Figure 6: payload to add instance of attributes to an entity. 

2.2.3.4 Retrieving an Entity by Id query 

An entity can be retrieved using the following endpoint (among others): 

GET {{gatewayServer}}/ngsi-ld/v1/entities/{{entity_id}} 

An example of the response given for the entity used in the previous example is given below: 

{ 

"flow": { 

    “value" : 138000.0, 

    "observedAt" : "2023-12-04T10:15:00Z", 

    "type" : "Property", 

    "unitCode" : "G51" 

}, 

"waterLevel": { 

    "value" : 1237.0, 

    "observedAt" : "2023-12-04T10:15:00Z", 

    "type" : "Property", 

    "unitCode" : "MMT" 

} 

} 
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Figure 7: response given for an entity request. 

Figure 7 show the current state of the entity (i.e., only the last instances for each attribute are 

displayed). 

The history of the entity can be retrieved using this endpoint (among others): 

{{gatewayServer}}/ngsi-

ld/v1/temporal/entities/{{entity_id}}?timerel=after&timeAt={{datetime}}&options=temporalValu

es 

An example of the response given for the entity used in the previous example is given below: 

 

 

{ 

    "id": "urn:ngsi-ld:HydrometricStation:X031001001", 

    "type": "HydrometricStation", 

    "flow": { 

        "type": "Property", 

        "value": 139000.0, 

        "observedAt": "2023-12-04T07:45:00Z", 

        "unitCode": "G51" 

    }, 

    "waterLevel": { 

        "type": "Property", 

        "value": 1238.0, 

        "observedAt": "2023-12-04T07:45:00Z", 

        "unitCode": "MMT" 

    }, 

    "location": { 

        "type": "GeoProperty", 

        "value": { 

            "type": "Point", 

            "coordinates": [ 

                6.49800996, 

                44.55535641 

            ] 

        } 

    } 

} 
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Figure 8: getting history (timeseries) of an entity attribute. 

2.3 Marketplace information models 

The Marketplace Information Model is an RDFS/OWL-ontology covering the fundamental 

concepts of SEDIMARK needed for the registration of participants and the discovery and 

exchange of offerings and assets. This model establishes a common framework to ensure 

interoperability within a SEDIMARK-based Marketplace and includes the terms defined in 

Deliverable SEDIMARK_D2.2 [3] to enable participants to discover and exchange assets in 

the form of offerings. This common ontology is meant to serve as a shared language, fostering 

seamless communication and interoperability among the users of SEDIMARK. Therefore, the 

use of this information model is enforced for any participant or component that wants to join 

the Marketplace based on SEDIMARK guidelines. The main goal of this model is to ease the 

search and discovery of Participants and their offers, describing accurately their information. 

The creation of this model is supported by existing proposals by similar initiatives and is built 

upon well-known ontologies such as Open Digital Rights Language (ODRL) [4], Data Catalog 

vocabulary (DCAT) [5], Friend Of A Friend (FOAF) [6] or the Dublin Core Terms (DCT) [7]. In 

particular, the model has its foundations in the proposal shared by the International Data 

Spaces Protocol [8], to try to be compatible as much compatible as possible with such an 

{ 

    "id": "urn:ngsi-ld:HydrometricStation:X031001001", 

    "type": "HydrometricStation", 

    "flow": { 

        "type": "Property", 

        "values": [ 

            [ 

                80500.0, 

                "2023-12-01T00:15:00Z" 

            ], 

            [ 

                82800.0, 

                "2023-12-01T00:30:00Z" 

            ], 

            [ 

                85100.0, 

                "2023-12-01T00:45:00Z" 

            ], … 

      }, … 

} 
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initiative, although including new terms introduced by SEDIMARK (e.g., the concept of 

Offering; the additional type of assets that can be part of the marketplace; or the data quality 

information that is part of SEDIMARK).  

 

Figure 9: High-level view of the Marketplace Information Model 

The current version of the Marketplace Information Model is depicted in  Figure 9. The ontology 

is being built using Protégé version 5.6.3 [9] and will be updated in the forthcoming releases 

of the whole platform. There are three main concepts that can be highlighted in this information 

model: Self-Description, Offering and Asset, which are described below. 

2.3.1 Self-Description 

As defined in Deliverable SEDIMARK_D2.2 [3], Self-Description is a machine-interpretable 

document providing all the information about a Participant. In this case, it can be considered 

the main class within the Marketplace Information Model. This concept is also a core part of 

other information models, such as the ones from Gaia-X and IDS. Any Participant in a 

Marketplace must provide a Self-Description. 

There are several concepts that are part of the Self-Description, including the information about 

the Participant (name, description, and the timestamps where this information was updated or 

created). Besides, the Self-Description can also link to a Self-Listing concept, which lists the 

set of Offerings from a Participant acting as a Provider. 
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{ 

    "@id": "https://connector.eu/", 

    "@type": "sedimark:self-description", 

    "dct:issued": { 

        "@type": "xsd:dateTime", 

        "@value": "2023-11-06T16:54:48.577964" 

    }, 

    "dct:modified": { 

        "@type": "xsd:dateTime", 

        "@value": "2023-11-06T16:54:48.577964" 

    }, 

    "foaf:name": "SEDIMARK Participant A", 

    "dct:description": "Participant located in Europe...", 

    "dct:language": { 

        "@id": 

"http://publications.europa.eu/resource/authority/language/ENG" 

    }, 

    "sedimark:hasSelf-listing": { 

        "@id": "https://connector.eu/self-listing" 

    }, 

    "@context": { 

        "dct": "https://purl.org/dc/terms/", 

        "dcat": "https://www.w3.org/ns/dcat/", 

        "odrl": "http://www.w3.org/ns/odrl/2/", 

        "dspace": "https://w3id.org/dspace/v0.8/", 

        "sedimark": "https://sedimark.eu/marketplace-information-

model/0.1/" 

    } 

}  

Figure 10: Self-Description JSON-LD example 

2.3.2 Offering 

Offering is a concept introduced by SEDIMARK and describes the set of assets that are part 

of an offer, along with their terms and conditions. This concept is conceived essentially as a 

subclass of a DCAT Catalog (as well as the Self-Listing concept) with additional properties to 

link to other SEDIMARK concepts such as Assets and Offering Contracts. As mentioned, only 

Participants acting as a Provider has a Self-Listing along with a set of Offerings. 

The Offering concept is also a key difference between the SEDIMARK Marketplace Information 

Model and the IDS Protocol. In the IDS protocol, every offer is composed of a single Asset, 

while in SEDIMARK they can be grouped in an Offering, thus containing multiple assets per 

transaction.  

Finally, one important aspect of Offerings is contracting. Each Offering contains a mandatory 

Contract object and, possibly, an Agreement. Both concepts, Contract and Agreement, are 

subclasses of ODRL Offer and Agreement concepts, respectively. While a single Contract 

object is mandatory (even if there are no particular restrictions) in each Offering, Agreement 
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objects are only required per transaction. Agreements are similar to contracts but add specific 

properties (i.e., assigner and assignee), which specify the Participants tied to the policies that 

are part of the Offering Agreement. 

{ 

    "@type": "sedimark:self-listing", 

    "@id": "https://connector.eu/self-listing", 

    "sedimark:belongsTo": { 

        "@id": "https://connector.eu/" 

    }, 

    "sedimark:hasOffering": [ 

        { 

            "@id": "https://connector.eu/offering/offeringID" 

        } 

    ], 

    "@context": { 

        "dct": "https://purl.org/dc/terms/", 

        "dcat": "https://www.w3.org/ns/dcat/", 

        "odrl": "http://www.w3.org/ns/odrl/2/", 

        "dspace": "https://w3id.org/dspace/v0.8/", 

        "sedimark": "https://sedimark.eu/marketplace-information-

model/0.1/" 

    } 

}  

Figure 11: Self-Listing JSON-LD example 
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{ 

    "@id": "https://connector.eu/offering/offeringID", 

    "@type": "sedimark:offering", 

    "sedimark:participantId": "https://connector.com/", 

    "dct:title": "offeringName", 

    "dct:description": "University from the North of Spain...", 

    "dct:issued": { 

        "@type": "xsd:dateTime", 

        "@value": "2023-11-06T16:54:48.577964" 

    }, 

    "dct:modified": { 

        "@type": "xsd:dateTime", 

        "@value": "2023-11-06T16:54:48.577964" 

    }, 

    "dcat:keyword": [ 

        "keyword 1", 

        "keyword 2" 

    ], 

    "odrl:hasPolicy": { 

        "@id": "https://connector.eu/policy/policyID", 

        "@type": "sedimark:Contract",  

        "odrl:permission": [], 

        "odrl:prohibition": [], 

        "odrl:obligation": [] 

    }, 

    "sedimark:hasAsset": [ 

        { 

            "@id": "https://connector.eu/asset/assetID" 

        } 

    ], 

    "@context": { 

        "dct": "https://purl.org/dc/terms/", 

        "dcat": "https://www.w3.org/ns/dcat/", 

        "odrl": "http://www.w3.org/ns/odrl/2/", 

        "dspace": "https://w3id.org/dspace/v0.8/", 

        "sedimark": "https://sedimark.eu/marketplace-information-

model/0.1/" 

    } 

}  

Figure 12: Offering JSON-LD example 

2.3.3 Asset 

Assets are the resources being offered in each of the Offerings. There have been three 

different asset concepts considered in SEDIMARK depending on the type of the resource they 

are representing. In this sense, the assets defined are datasets (either static or streaming 

data), AI Models, Services (e.g., IT infrastructure) and other assets, such as containers or 



 
 

 

Document name: 
D3.3 Enabling tools for data interoperability, distributed data storage 

and training distributed AI models. First version 
Page:  26 of 63 

Reference: SEDIMARK_D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

virtual machines. This is also another difference with the IDS Protocol proposal, as assets are 

only related to data, either streaming or static datasets. 

Besides, a new concept has been defined within the Marketplace Information Model to 

represent the quality of the asset, thus giving an idea of the asset composing an Offering, to 

foster the exchange and represent what SEDIMARK tools through the Data Processing 

Pipeline can provide as an added value to providers which enhance their data through 

SEDIMARK. 

 

Figure 13: Types of Assets in the Marketplace Information Model 

Data Assets 

Datasets are represented in the Marketplace Information Model as a subclass of the dcat: 

dataset class, a well-known class from the DCAT ontology. DatasAsset includes object 

properties such as dcat: distribution and dcat:dataService to represent how these kind of asset 

can be accessed. 
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{ 

    "@id": "https://connector.eu/asset/assetID", 

    "@type": "sedimark:Dataset", 

    "dct:description": "data asset description", 

    "dct:language": { 

        "@id": "http://publications.europa.eu/resource/authority/language/ENG" 

    }, 

    "sedimark:hasDataQuality": { 

        "@type": "sedimark:dataQuality", 

        "@id": "https://connector.eu/dataquality/dataQualityID" 

    }, 

    "dcat:distribution": [{ 

        "@id": "https://connector.eu/dataquality/distributionID", 

        "@type": "dcat:Distribution", 

        "dct:format": { 

            "@id": "HttpProxy"  

        }, 

        "dct:issued": { 

            "@type": "xsd:dateTime", 

            "@value": "2023-11-06T16:54:48.577964" 

        }, 

        "dct:modified": { 

            "@type": "xsd:dateTime", 

            "@value": "2023-11-06T16:54:48.577964" 

        }, 

        "dcat:mediaType": { 

            "@id": "https://www.iana.org/assignments/media-types/application/ld+json" 

        }, 

        "dcat:accessService": { 

            "@id": "https://connector.eu/serviceID", 

            "@type": "dcat:DataService", 

            "dcat:endpointDescription": "NGSI-LD API",  

            "dcat:endpointURL": { 

                "@id": "https://connector.eu/assetID/protocol" 

            } 

        } 

    }], 

    "@context": { 

        "dct": "https://purl.org/dc/terms/", 

        "dcat": "https://www.w3.org/ns/dcat/", 

        "odrl": "http://www.w3.org/ns/odrl/2/", 

        "dspace": "https://w3id.org/dspace/v0.8/", 

        "sedimark": "https://sedimark.eu/marketplace-information-model/0.1/" 

    } 

}  
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Figure 14: DataAsset JSON-LD example 

AI Model Assets 

AI model assets are meant to represent exchangeable AI Models for both, distributed AI 

learning techniques and existing AI Models. Therefore, AI Model Asset reflects a number of 

aspects of AI models which will be exploited by search and discovery mechanisms to retrieve 

relevant offerings for Consumers. The following properties have been identified to become part 

of this class: 

• ID (Model ID, as opposed to artifice ID. Model ID can be shared among multiple artifacts 

which have different serializations) 

• Description 

• Category 

• Method 

• Serialization (model serving format) 

• Input (parameters) 

• Output (parameters) 

• Version 

• Architecture 

• Size 

• Parameters 

• Compute (resources) 

• Execution (centralised, federated etc,) 

ServiceAssets 

ServiceAsset class is expected to cover service assets, such as the provision of data storage 

or computation resources. Each of these assets will represent the information describing the 

particularities of each service (e.g., number and type of processor cores, storage type, etc.). 

OtherAssets 

Other type of assets, such as Virtual Machines or Containers are included here, which will 

include additional properties to define their characteristics (e.g., computation requirements, 

operating system, etc.). 



 
 

 

Document name: 
D3.3 Enabling tools for data interoperability, distributed data storage 

and training distributed AI models. First version 
Page:  29 of 63 

Reference: SEDIMARK_D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

3 The Interoperability enabler 

3.1 Data Annotations 

In the realm of data processing and analytics, the utilization of smart data models within the 

NGSI-LD data format has emerged as an approach for data annotation and enrichment. This 

section explores the dual facets of data annotations: global annotations, applied at the dataset 

level, and local annotations, which focus on individual data points. Leveraging NGSI-LD's 

semantic capabilities and the richness of smart data models, this methodology ensures 

meaningful and interoperable annotations for improved comprehension and utilization of data. 

 

 

Figure 15: flow of local and global annotations 

Annotations, whether at the global level, providing global information regarding datasets, or at 

the local level, enhancing individual data points with context-specific information, contribute to 

a more meaningful and interoperable SEDIMARK ecosystem. 

3.1.1  Local annotations: enhancing individual data points metadata 

Local annotations play a crucial role in enriching the metadata of individual data points with, 

inter alia, specific labels derived from data processing outcomes, and specifically incorporating 

data quality models. This includes categorizing data points based on predefined criteria, 

enabling users to identify patterns, missing values, or anomalies. For instance, in SEDIMARK, 

we will use the anomaly scores and other data quality measures to support local annotations 

by adding metadata to mark data points that deviate significantly from the expected patterns. 

These annotations are crucial for identifying potential errors, anomalies, or noteworthy events 

that may require special attention. This information will be obtained from the Data processing 

and AI pipelines. 

Local annotations also consider temporal aspects, capturing changes in individual data points 

over time. This temporal context enhances the understanding of the dataset dynamics, 

supporting applications that require historical analysis or real-time monitoring. In addition to 
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standardized metadata, local annotations enable the inclusion of custom metadata tailored to 

specific SEDIMARK use cases. This flexibility allows users to embed domain-specific 

information, enhancing the richness of annotations for individual data points.  

The integration of a data quality model to enrich the data within SEDIMARK refines this process 

by emphasizing the accuracy and completeness of individual data points and including 

information about outliers, missing data, and other anomalies. As shown in Figure 15, this 

metadata will be mainly generated from the Data deduplication, Outlier detection, and Missing 

value imputation components. For this to happen, the Smart data model “Data Quality” will be 

used to enrich the content of data points by matching the output of the data processing and AI 

pipelines to the properties of the Data Quality model. The existing specific properties for the 

different quality aspects that will be considered within SEDIMARK are provided in 

SEDIMARK_D3.1 [10]. For example:  

• Accuracy 

• Completeness (considering the missing values: isMissing, whatAttribute) 

• Outlier (isOutlier, outlier score) 

• Duplication (isDuplicate, whatInstance) 

3.1.2 Global annotations: enhancing datasets/data streams metadata 

Global annotations involve enriching the metadata associated with an entire dataset or data 

stream, providing a holistic view of the underlying information. This process is important for 

establishing a contextual foundation that facilitates a comprehensive understanding and 

utilization of the data as a whole. Smart data models with their domain-specific ontologies offer 

a structured semantic context for datasets, encapsulating the essential characteristics of the 

data. 

Global annotations contribute contextual information to the dataset, offering insights into the 

overall purpose, source, and relevance that illuminate the overall data quality. Metrics such as 

completeness, accuracy, precision, and timeliness are essential components of global 

annotations, enabling users to assess the reliability of the dataset as a whole. This metadata 

enrichment facilitates efficient data discovery, sharing, and utilization in applications and 

analytics.  Global annotations encompass general properties related to datasets or data 

streams and are presented in Sections 3.5 and 3.6 in the deliverable D3.1. For instance, we 

cite: 

• Accuracy 

• Precision 

• Completeness 

• Statistics extracted from data (data format, number of attributes, number of instances) 

• Information regarding the dataset usage (e.g., with which ML task this data can be used, 

isLabeled) 

• If data is curated (information on how outliers are identified and handled, how missing 

values are handled) 

In this context of global metadata, DCAT is used within SEDIMARK as an integral element of 
the Offering description. Its role is to augment information about the Offerings, providing 
descriptions of datasets and any pertinent information required for enhanced data 

https://github.com/smart-data-models/dataModel.DataQuality/blob/master/DataQualityAssessment/doc/spec.md
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discoverability. Consequently, global annotations will be integrated within the Offering 
description component. 

3.2 Formatting 

Data formatting defines the process of converting diverse data into a standard, widely 

recognised, and easily manageable data format like NGSI-LD. This element takes the data 

obtained in prior stages (e.g., Data Annotation) as its input, and presents NGSI-LD data as its 

output. Due to its diverse nature, the input can be presented in several data formatting 

standards like CSV, JSON, or XML. Moreover, the names of properties and their respective 

values can be highly variable. This is due to the presence of heterogeneous data sources, 

language policies, internal rules, units, and other contributing factors. The primary purpose of 

this component is to consolidate diverse data types into a singular format, namely NGSI-LD. 

Subsequently, this format can be further processed by other pipeline components. 

We have identified several methods that achieve this objective. These methods grow in 

complexity as their flexibility and scalability increase. 

• The first method is manual formatting, which involves a module that maps a specific type 

of input data directly to NGSI-LD. This module requires a full understanding of the input 

data since its mechanism is dependent on factors such as the input format or the specific 

words used in the data. The main disadvantage of this method is that it requires a separate 

formatter for each information source and type. As a result, the number of parallel modules 

required can quickly become unmanageable. However, its benefits include a more 

straightforward implementation, as well as high accuracy and minimal data loss due to the 

availability of a dedicated formatter for each input. 

• The template-based formatting utilises a set of pre-designed templates that vary based 

on the data type and format used by the data sources. These templates extract and 

compile information from various sources to generate NGSI-LD compliant output. As with 

the manual formatting approach, the limitations include the prerequisite knowledge of the 

data source and the need for a distinct template for each output data type. However, this 

methodology offers multiple benefits, including improved reusability and more efficient 

implementation. The program which executes the formatting is generic, and templates are 

generated solely when a new source is handled. This eliminates the need for source code 

modification, making the process more user-friendly and automated compared to manual 

formatting. 

• AI-based formatting employs Machine Learning methods to automate the formatting 

process. It consists of three stages: type identification, template selection, and 

transformation. During the type of identification stage, a previously trained AI model 

categorises the input data text into multiple classifications that match various output data 

models. Once identified, the corresponding template is selected from the pool of existing 

templates (which can be reused from the previous approach). In the third and final phase, 

the input data is automatically matched with the template, resulting in the NGSI-LD output 

data. This approach offers significant advantages in terms of scalability because once 

trained, the formatting process to NGSI-LD is almost fully automatic. The main 

disadvantage is that, while AI-trained models can handle the syntactic aspect of Data 

Formatting, we are uncertain whether this approach can achieve the semantic side. For 

instance, two data sources may include a particular property name (e.g., dataset), and 

while the first source is referring to a dataset name, the second may be using it to 
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represent a dataset identifier. This would result in different properties in the output data 

model (e.g., name and id) which the AI model may not be able to learn how to choose 

from. In addition, it is essential to ensure the appropriate training and retraining of AI 

models is performed when new types of input data are introduced into the pipeline. 

Two options based on manual (based on the use of an ETL – Extract Transform Load – tool) 

and on template--based methods are described hereunder in the following subsections.  

3.2.1 NiFi opensource ETL 

The interface between a NGSI-LD broker and eternal data sources and data consumers can 

be achieved by the use of ETL (Extract Transform Load) tools which provide a bidirectional 

connectivity with several different protocols. The main used connectors in the context of data 

platforms targeting supervision are HTTP, MQTT, FTP and .CSV connectors. In the context of 

the water use case, the Apache NiFi open-source component has been used. This collection 

and validation module provides tools and an environment for: 

• The creation and visual management of a directed graph of processes, generally by 

composing a set of processes that already exist in the catalogue (which contains nearly 

400 connectors to data sources). 

• A complete existing catalogue of processing allowing native integration of a REST API 

(with or without authentication), processing of CSV, Excel, JSON, or XML files, or even 

access to files stored on FTP servers. 

• The versioning of the processing graphs with the traceability of the modifications made to 

each graph, as well as the author of each modification. 

• The possibility of importing and exporting processing graphs. 

• The possibility of automatically executing, at predefined regular intervals, processing 

flows. 

• The development of coherent and loosely coupled components that can simply be reused 

by different processing tools. 

• Management of errors during processing, with the possibility of configuring specific 

actions when they occur (subsequent test, sending a notification, etc.). 

• The possibility, during processing, of querying a database for the detection of duplicates 

and of applying specific processing depending on the case. 

• Automatic and detailed monitoring of all actions performed during processing. 

• Securing exchanges and the possibility of defining detailed authorizations. 

• The possibility of applying validations to the data processed, in particular via the definition 

of JSON or CSV schemas. 

• Monitoring of all processing via a dashboard. 

• Sending alerts triggered on the lack or invalidity of data. 

Moreover, it is a tool designed natively for extensibility and therefore offers all the functionalities 

necessary for the development and integration of specific processing components. 

Via the processing chain administration interface made available by NiFi (Figure 16), the 

customer also retains autonomy in their daily adaptation and in the addition of new file 

processing.  

https://nifi.apache.org/
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Figure 16: Example of the definition of a complete processing chain in Apache NiFi to collect 

data from Hubeau API (rivers flow and heights) (Water SEDIMARK use case) 

3.2.2 Data Model Mapper  

One of the options under consideration is the Data Model Mapper, which follows the template-

based formatting approach. This module relies on a semi-automatic mechanism that only 

requires the Data Provider to fill in a configuration file (i.e., a template) at the time of providing 

a new Data Asset to the Marketplace. The result is a high-accuracy NGSI-LD output that is a 

lossless transformation of the input, provided that the template is complete. A fully functional 

first version of the module can be found in the SEDIMARK GitHub repository, along with an 

example of its usage. Figure 17 depicts an example of an input to this module on the left side 

and its output on the right side. 

https://github.com/Sedimark/UC_modules/tree/main/UC_formatter
https://github.com/Sedimark/UC_modules/blob/main/UC_formatter/jmespath_example/ngsild_mapper.py
https://github.com/Sedimark/UC_modules/blob/main/UC_formatter/jmespath_example/ngsild_mapper.py
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Figure 17: Data Model Mapper input and output example 

3.3 Data validation / certification 

Validation is required to ensure that the formatting applied to data assets and Marketplace self-

descriptions is valid and complies with their respective information models (Table 2)  

For both types of artefacts, validation is done through a set of stages. 

• Format: the format that is used for representation complies with an acceptable 

serialization format and variant within that format. 

• Syntax: the syntax applied to the annotation of the artefact complies with the classes and 

properties defined in the corresponding information model.  

• Semantic: the axioms defined in relation to the relationships between instantiations of the 

concepts defined in the corresponding information model are compliant. This would 

include relationships regarding properties, class hierarchies, cardinalities etc.  

• Domain-specific: the literal values that represent qualitative and quantifiable properties 

are valid in terms of ranges and states.  
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Table 2: Validation approach of platform assets 

Artefact Information 

model 

Format 

Validation 

Syntax 

Validation 

Semantic 

Validation 

Domain 

Validation 

Self-

Description  

Marketplace 

Information 

model 

JSON-LD/RDF 

schema 

validator  

RDF model 

validator 

Ontology 

compliance 

checker 

Not 

applicable 

Data Asset  NGSI-LD,  

Smart Data 

Models  

JSON-LD 

schema 

validator  

JSON-

schema 

based 

validator, 

NGSI-LD 

model 

validator 

SHACL 

validator (for 

graph-

based 

validation) 

Domain 

ontology + 

taxonomy 

validator 
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4 The AI enabler 

4.1 Interoperable Federated Learning for SEDIMARK 

4.1.1 Introduction 

SEDIMARK is a complex data marketplace with several distinct pieces. Recent standardization 

efforts increase the need for interoperability and the importance of creating components that 

can be mixed and matched without affecting the entire offering pipeline. According to the 

Institute of Electrical and Electronics Engineers (IEEE) [11], interoperability is a characteristic 

of a product or system to work with other products or systems. 

SEDIMARK distributed artificial intelligence pipeline includes several components, such as 

local model inference, local and distributed model training, and so on, englobed in what has 

been called the Artificial Intelligence Enabler. Due to the complexities of such systems, we 

need an approach for syntactical interoperability among those different components with a 

focus on model formats and service interoperability. SEDIMARK makes special emphasis on 

providing and using machine learning models and services throughout the entire marketplace 

and other marketplaces, hence, the interoperability requirement for model and artificial 

intelligence services is not only constrained to the Artificial Intelligence Enabler.  

Syntactical interoperability at the model and service level can be achieved, to the extent of our 

knOWLedge, in two ways, namely, 1) providing support for the heterogeneity of formats that 

can come from other systems, and 2) providing common standard syntactical constructs and 

enforcing all components to support that standard. In SEDIMARK we propose to follow these 

approaches for model interoperability and service interoperability respectively.  

SEDIMARK aims to provide interoperability capabilities to the SEDIMARK Federated Learning 

(FL) offering. Furthermore, we also provide tools for interoperability at the service level. 

Regarding the first, we exploit the ONNX open standard for ML interoperability, and additionally 

provide support for handling Keras and PyTorch models, so that they can work in a variety of 

frameworks, and compilers. We follow the first approach to interoperability considering that 

third-party services can use a myriad of different formats to define machine learning models.  

4.2 Local model training 

The AI SEDIMARK pipeline will first allow the building and training of classical models. This is 

illustrated here with a model defined for energy consumption prediction. 

In the electricity consumption prediction endeavour, we harness a week's worth of time-series 

energy consumption data, preceding our decision-making juncture, to forecast subsequent 

daily consumption in hourly intervals (Figure 18). Utilizing the advanced DeepAR model, we 

aim to construct a universal framework capable of accurately predicting consumption patterns 

across facilities and buildings of diverse magnitudes (Figure 19). 

 

https://onnx.ai/index.html
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Figure 18: general principals of the locally trained predictive module 

 

 

Figure 19: comparing deepAR based predictions with observations  

Another example of a locally trained model relates to customer segmentation and churn 

prediction. In this initiative, we meticulously pre-process and sanitize datasets encompassing 

electricity consumption patterns, payment histories, geographical metrics, and behavioural 

indicators like complaints. Employing state-of-the-art ensemble decision tree algorithms such 

as LightGBM, Catboost, or XGBoost, our objective is to segment our customer base and 

forecast churn propensity, culminating in a calculated churn probability for each individual 

customer (Figure 20). 
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Figure 20: customer segmentation and churn prediction. 

4.3 Distributed model training 

Distributed model training within SEDIMARK can be divided into two main concepts: 

1. Federated learning (FL): this concept employs a server and a set of worker nodes. The 

role of the server is to orchestrate the overall training process through model aggregation 

and model parameter redistribution approaches. The role of the worker nodes is to train 

a local model based on the local data and the updated parameters received from the 

server. Here the server has a complete view of the worker nodes, while the individual 

worker nodes are only aware of the server. 

2. Gossip learning: this concept only contains worker nodes. Here the worker nodes are 

connected with a subset of other worker nodes, where they share the model parameters. 

Through gossiping of model parameters between worker nodes all worker nodes in the 

network will eventually agree on a global model. Differently from the previous setting, here 

workers are aware of a subset of other workers, but generally, no worker has a full view 

of the complete network of workers. 

The differences between federated and gossip learning are illustrated in Figure 21. The clear 

advantage of the Gossip approach is that it can avoid the single point of failure by eliminating 

the server from the computation. However, this comes at the expense of the gossip approach 

taking longer to converge as it takes longer for the model updates to propagate through the 

communication network.  
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a) Federated Learning    b) Gossip Learning  

Figure 21: the difference between the architecture of a) federated and b) gossip learning. 

Within SEDIMARK, two frameworks for distributed learning have been proposed and 

developed to cater for different scenarios and different user preferences. 

1. Shamrock: this is a dynamic framework that is used for scenarios when data providers 

share through the marketplace either a model for training or a training process. This 

scenario is dynamic with participants being able to join or leave the training process at 

any given time.  

2. Fleviden: is an extensible tool to define computational graphs representing the FL agents 

and the operations therein. We put special emphasis on tools that improve interoperability 

at the AI/ML models level, acknOWLedging that not all data providers/sources will use the 

exact same software to train/run the models from a federated learning point of view. 

 

Figure 22: works for distributed learning developed within SEDIMARK. 

As shown in Figure 22, the two frameworks are both designed to be modular and adaptive so 

that any project modules (i.e. models, aggregation mechanisms, privacy modules, etc.) can be 

developed in a framework agnostic way so that they can be used within both networks by 

exploiting their pods/wrappers. 
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When developing a FL solution, we need to consider the security requirements as a two-step 

process: 

• The solution developer must develop the details of a federated algorithm by combining 

several techniques. 

• The data provider must run a script representing the FL algorithm. This script must provide 

guarantees that it will follow the federated learning protocol strictly, e.g., keep the data 

and inference artifacts inside the provider infrastructure. This is what we call the minimum 

compliance requirement for any federated learning deployment. 

There are several ways in which compliance can be accomplished. One alternative is that the 

data provider trusts the solution developer, which is not interesting from our perspective as in 

such a case we can fall back to more traditional machine learning solutions. Another approach 

is for the data provider to come up with their trusted review protocol to ensure the federated 

script provided by the solution developer is compliant. However, this is a difficult and expensive 

task that requires expertise and the capabilities to read through code and its dependency tree. 

A proposal to be considered in future evolutions is the introduction of a third agent in the 

development process: the platform provider. The platform provider would create tools for the 

solution developer, such as automatic compliance checks, and demands the data provider to 

trust the platform provider but not the solution developer. This way, three-sided marketplace 

on top of federated learning: 

• The data provider side, with private data and infrastructure offerings. 

• The solution developer side, with novel algorithmic offerings and advanced 

implementations. 

• The platform provider side, with their tooling offerings. 

4.3.1 Shamrock 

SEDIMARK will provide a flexible, fully decentralised model training framework. Titled 

“Shamrock”, this component offers a modular fully decentralised, asynchronous machine 

learning training solution. This component is based upon an extension of the popular open-

source federated learning framework Flower [12]. Flower is a novel framework specifically 

developed for Federated learning research, allowing heterogeneous workloads at scale. 

Shamrock extends Flower, removing the need for always having a server coordinating the 

distributed learning process and enabling also completely serverless learning scenarios. 

Additionally, Shamrock is a dynamic framework does not require the set of training participants 

to be known ahead of time. 

Shamrock moves beyond a client/server model, and instead makes nodes the first-class 

citizens within the distributed learning environment. While Shamrock primarily targets fully 

decentralised model training, an FL paradigm can be easily recovered by arranging the nodes 

within a star topology. As an extension of Flower, Shamrock inherits all the benefits of Flower, 

namely being scalable, allowing participation of heterogeneous clients running on different 

platforms, being framework agnostic (the group of clients can use TensorFlow, PyTorch, etc. 

according to their group decision), etc. 

Within SEDIMARK, a node can be instantiated by any participant wishing to collaboratively 

train a machine learning model and can discover participants with similar compatible datasets. 

A training process, specifying a model architecture, a dataset specification, and a number of 

hyperparameters will then be advertised within the wider SEDIMARK trust infrastructure. New 
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participants with compatible datasets can discover this advertised training process, and then 

launch their own Shamrock nodes. Nodes follow a broader Gossip Learning (GL) protocol 

whereby they train locally their own version of the ML model and then send updates to other 

nodes that they select via a chosen sampling protocol. Shamrock is developed in a modular 

approach, such that tools developed within the SEDIMARK project in other tasks, i.e., model 

types, sampling strategies, quantization, etc. can be easily deployed within Shamrock, without 

the need of rebuilding those tools from scratch, but only with the use of simple wrappers. 

4.3.1.1 Shamrock node implementation 

In Flower, there are two types of nodes that participate in the federated learning training 

process: (i) a client and (ii) as server. The client is the node that does the local training process, 

running the ML model on top of the local data, periodically sending the model parameters to 

the server and receiving the updated parameters for the next round. The server is the node 

that at each round samples the clients to run the local training, receives the parameters from 

the clients, runs the process for aggregating the parameters and sends the aggregated 

parameters back to the clients for the next round. 

In Shamrock, the two types of Flower nodes have been merged into a single Shamrock node, 

whose internal structure is depicted in Figure 23 below. Inspired by the Gossip Learning 

approach where all clients are of a similar type, Shamrock generalises the notion of a Flower 

node in a way that it can cover multiple distributed learning scenarios (as discussed below). 

As depicted in Figure 23, a Shamrock node consists of four main threads of operation:  

• Receive thread, which handles the reception of weights from the rest of the nodes 

participating in the learning process. As discussed above, Shamrock inherits from Flower 

the “communication-agnostic” feature, allowing multiple communication protocols 

between the nodes. However, currently, only gRPC (Remote Procedure Calls) is 

tested/supported, while in the future other protocols (i.e., REST) will be fully supported. 

• Aggregation thread, which is the main thread that runs the sampling of the fellow nodes 

with which the node will communicate in the current round, and the runs rounds of 

aggregation of the parameter received from the fellow nodes. 

• Training thread, which is the main thread that runs the local training process of the model 

based on the local data.  

• Send thread, which takes the output weights from the training process and forwards them 

to the fellow nodes that participate in the current round. 
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Figure 23: the internal structure of a Shamrock node. 

In its current state of development, Shamrock is using Flower’s gRPC as the communication 

protocol for sending and receiving model parameters defined within the Flower framework. The 

communication “receive” component hosts a gRPC server that continuously listens for 

incoming connections from other nodes, receives weights, and places them within a 

multiprocessing queue to be later aggregated. The use of a multiprocessing queue is critical 

to ensure that no weights are lost due to congestion, when receiving weights from many other 

nodes. 

The main operational thread runs a local training process using Keras-Core for interoperability, 

such that the user can choose from either Pytorch, TensorFlow or Jax as their backend deep 

learning framework (more detail on model interoperability is given in Deliverable 

SEDIMARK_D4.3).  

Execution alternates between rounds of aggregating any model updates that have been 

collected in the aggregation queue, running the local training procedure, and then launching 

connections to communicate model updates to other nodes, selected via a sampling strategy. 

The dynamic nature of the Shamrock training process allows nodes to enter or leave the 

process at any given moment, without any special requirements, apart from following the 

SEDIMARK procedures for participating in the training as a service process. 

4.3.1.2 Interaction of Shamrock framework with the rest of the SEDIMARK components 

To implement the distributed learning process, Shamrock interacts with several other layers 

and components within the SEDIMARK architecture. These interactions are provided in the 

figures below. 
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Figure 24: Shamrock-based Federated Learning process. 

Figure 24 shows the interactions between Shamrock and the rest of the SEDIMARK 

components during the initiation and the execution of a Federated Learning process. It is clear 

that Shamrock basically interacts with the AI Orchestrator, which is the main component that 

handles the training process. In this scenario, the assumption is that an “Initiator”, which is a 

SEDIMARK user (i.e., a provider) wants to start training a ML model on their data and then 

start a Federated Learning process, so that more participants join and help to train a better 

model. In this respect, the AI Orchestrator provides Shamrock with the user preferences and 

settings, i.e., the framework to use, the model to train, etc. Shamrock then initiates the training 

process, by initialising the model structure and its weights and forwards them to the Offering 

registration (through the AI Orchestrator) so that the training process is registered to the 

marketplace.  

An Interesting participant in the process can discover the training process in the marketplace, 

finding the respective offering and receiving it from the “Initiator” via the Offering sharing 

component. The details of the distributed process are forwarded to Shamrock through the AI 

Orchestrator. The Shamrock module on the Participant contacts the respective module of the 

Initiator to register as a client and receive the latest version of the model weights. Then 

Shamrock initialises the local model and starts the local training process, updating the model 

and sharing the model updates to with the “Initiator”.  
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Figure 25: Shamrock-based Gossip Learning process. 

Figure 25 shows the interactions between Shamrock and the rest of the SEDIMARK 

components during the initiation and the execution of a Gossip Learning process. The 

initialisation of the process is similar to that of Federated Learning (discussed above). The 

difference here is that there is not a server that holds a registry of the connected clients. To 

allow nodes to know the participants in the process, we exploit the distributed storage 

component of SEDIMARK, storing a “network graph”, which is updated any time a node enters 

or leaves the training process. This is done by the “Peer discovery” component, which gets 

information from Shamrock regarding the training process id, etc. When a “participant” 

discovers and wants to join the training process, the Shamrock component initialises the 

received model and contacts the Peer discovery module to find out the fellow nodes 

participating in the current round. Then, Shamrock executes the next round, training the local 

model, updating the weights, and sending the weights to the fellow participants, while at the 

same time received the updates from its neighbours, performs the weight aggregation and 

continues to the next iteration of the training process. 

In the current implementation, the communication between the Shamrock nodes takes place 

directly through the Shamrock component. In future versions, Shamrock will be extended to 

use the interaction and communication protocol of SEDIMARK. 

In a future version of SEDIMARK, we will continue to iterate on the development of Shamrock. 

We intend to test its robustness when run across a greater number of machines, with larger 

datasets and larger models. We intend to further modularise Shamrock, to allow for the simple 

composition of the modules for aggregation, sampling and quantization that will be developed 

elsewhere within SEDIMARK. Initial evaluation results are given in SEDIMARK_D3.1, where 

the trade-offs between communication and performance are provided. 
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4.3.2 The Fleviden tool 

The Fleviden library is an alternative and extensible tool to define computational graphs 

representing the FL agents and the operations therein. The main architectural pattern of 

Fleviden is pipes and filters. Federated learning is, at its very core, the distributed optimization 

of the parameters of a neural network. 

The parameters being optimized are sent back and forward in different ways as messages 

between federated actors (clients, servers, etc.). This situation can be naturally modelled as 

pipes, as the connections among actors, and filters, as the actors themselves or, even more 

specifically, the operations they perform on the parameters being optimized, e.g., optimization, 

secure-sum, differential privacy, etc. 

The core component of the Fleviden library is the Pod, with input and output wires that must 

be connected to define a federated computational graph. The minimal set of abstract 

operations for a Fleviden graph is: 

• create new pods, i.e., nodes in the graph, 

• link different pods, 

• wait in a given input interface for a message not coming from a pod, e.g., from a web 

server. 

• bridge through an output interface a message not sent to another pod, e.g., to a web 

server or the standard output. 

The internal logic of a pod is to receive messages from input wires, process them and trigger 

the corresponding output wires. This logic and the pod itself can be implemented in various 

languages and using different technologies, as long as the wires interface logic and abstract 

operations are kept.  

4.3.3 Handling of model interoperability in Fleviden 

The Fleviden model interoperability strategy is to offer support for the most widely used 

frameworks for machine learning neural network models, that is, Keras with TensorFlow 

backend and Torch. In addition, we also provide support for ONNX models as a possible future 

standard for neural network exchange.  Figure 26 shows a general overview of the Fleviden 

library's main components and packages. It shows the core Pod class which all the Fleviden 

pods inherit from. The arch package contains the available federated learning communication 

protocols, including a peer-to-peer communication approach that complies with the 

decentralized spirit of SEDIMARK. However, Fleviden flexibility allows us to also use 

centralized, hierarchical, asynchronous and swarm protocols. Special attention is deserved by 

the package trainers, which contains several pods that allow us to choose the framework with 

which to train the models, namely, Keras, Torch and ONNX. 
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Figure 26: General overview of the Fleviden packages and classes. 

 The high-level functionalities defined at a trainer level are: 

• Loading a model from a serialized file. One of the most important features of our trainer 

pods is the capacity to load a model specification from a file. In the case of a Keras model, 

we are making use of the Keras v5 model serialization format, in the case of Torch we are 

using TorchScript. The importance of loading serialized versions of the models instead of 

binary executables is to provide compliance guarantees and to prevent running arbitrary 

and potentially malicious code on the agent’s infrastructure. 

• Initializing a model that has been loaded at random. 

• Given a parameter vector, performing a specified number of training iterations, and output 

the optimized / trained parameters to be shared with the other federated learning agents. 

• Given a parameter vector and a dataset, evaluate the performance of the model.  

4.3.4 Handling of service interoperability in Fleviden 

For service interoperability we introduce a new scripting language and interpreter called 

Fleviscript, a simplifying tool to define Fleviden graphs by creating, linking, waiting and bridging 

pods. First, users do not need to get involved with the complexities of Python and Fleviden to 

develop federated algorithms. Secondly, it answers a business need: how can we run a script 

on a client site that is safe to execute without breaking compliance? 

This script must guarantee that it will follow the federated learning protocol strictly, e.g., 

keeping the data and inference artifacts inside the client infrastructure. This is what we call the 

minimum compliance requirement for any federated learning deployment. 

As Fleviscript (see annex) is not a general-purpose language, it can only do a limited number 

of operations, say create, link, wait and bridge pods. Though control statements can be added 

in the future, such statements are to support the previous actions required to build Fleviden 

graphs. 

https://keras.io/guides/serialization_and_saving/
https://pytorch.org/docs/stable/notes/serialization.html
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4.3.5 Asynchronous Federated Learning in Fleviden 

Federated Learning is an increasingly broad topic and has been presented as a fundamental 

framework in which a set of agents can jointly train machine learning models without sharing 

their sensitive data. In SEDIMARK, we propose an asynchronous federated learning approach 

in which agents only need to perform a single communication round with the central server. 

This is useful in a variety of scenarios, but especially in the case of heterogeneous agents with 

different computing and connectivity capabilities. We conduct a thorough Bayesian 

performance analysis of the empirical results on a benchmark set of classification problems 

showing the strong performance of our approach when compared with several state-of-the-art 

alternative algorithms. 

Motivating examples 

We are particularly interested in situations in which the communication with the agents is 1) 

unpredictable or 2) sporadic up to the point where data transfers only happen once: 

• Sensors network example: unpredictable communication. If we cannot predict when an 

agent goes offline (e.g., network communication failure or power irregularities, as in 

sensor networks), the computation performed in that agent is wasted without the 

possibility of reusing it. The reason why the computation cannot be leveraged is explained 

by synchronous nature of Federated Learning: after a certain time, the global model is 

updated with the currently available local models. Having to wait indefinitely for every 

model to be shared would prevent healthy clients from continuing their training. However, 

being able to reuse these partial computations is an appealing solution in this kind of 

situations because they represent valuable power and time.   

• Video surveillance networks example: sporadic transfers. If an agent can only be reached 

once, we should be able to get its local model information in a single data transfer. The 

complexity of this situation in the general federated learning framework becomes evident 

again considering the synchronous federated learning rounds. Scenarios like this one are 

common in video surveillance systems, that operate with extremely sensitive data 

deployed in fully isolated networks that are not reachable from the outside world. Hence, 

getting data from these agents is a manual and carefully audited operation. 

The bottom-line idea is that, either by sending small batches of information scattered over time 

(synchronous FL) or by relying on sharing large batches in a single round (asynchronous FL), 

eventually enough data would have become available to aggregate and to train the global 

model.  

In our work, we present a novel federated learning algorithm that only needs to synchronize 

the different agents at the beginning of the optimization process, thus minimizing the number 

of federated rounds to only one. Our algorithm allows different agents to collect their private 

data and train their local models asynchronously, reducing the drawbacks of heterogeneity in 

computing capabilities and connectivity. As stated in the examples above, this is of particular 

importance for applications in which the data is behind an isolated network or behind a network 

of devices that are eventually available but not always. 

The way we achieve asynchronous FL is by allowing each agent to fully train several local 

models before collecting them securely in a central server. Then, we aggregate a global model 

taking just one local model from each agent, provided that the distance between the models in 

the aggregated subset is minimum. As a downside effect, the amount of data synchronized in 
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the single communication round is considerably larger than the typical federated learning 

approach.  

4.3.5.1 Asynchronous federated algorithm 

In this section, we describe in depth our asynchronous federated learning algorithm. We give 

additional details on the way the global model aggregation is performed, and finally, we discuss 

some needed security mechanisms to ensure privacy preservation. 

The way we achieve asynchronous FL is simply by fully training many local models using the 

agent's private data without any intermediate aggregation step. Algorithm 1 (Figure 27) 

describes in detail the steps of the proposed algorithm. It takes as input the number of 

federated agents n and the number of local models m trained by each of them. First, we 

initialize a global model from which every agent starts optimizing their m local models 

asynchronously. Each agent creates a list where the local models are stored after being trained 

in steps 6 to 8. The agent's local models are shared with the central server in step 11 in a 

secure way. Secure means that the central server does not have access to the agent's local 

models’ parameters directly, but it can yet calculate the Euclidean distance between them (step 

12) and then aggregate them (step 13). 

 

Figure 27: steps for asynchronous federated learning algorithm 
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Private distance and model aggregation 

The model's aggregation step of our algorithm (Algorithm 1, step 12) requires that we compute 

the Euclidean distance between model parameters in the central server. Considering that the 

model parameters are private to the agents, we need an approach to obtain such distance 

privately. To achieve this, we 1) transform the Euclidean distance into a scalar product between 

vectors, 2) estimate the scalar product from the size of the intersection of two sets and, 3) 

compute the intersection using a private set intersection cardinality protocol (PSI-CA). 

Secure sum protocol 

The secure sum protocol employed in this work is partially based on the work by [13]. The 

problem in hand is to obtain 𝜃∗ =  𝜃1 +  ⋯+  𝜃𝑛 in the central server without sharing the values 

of the local model parameters 𝜃𝑖. First, assume there is a total ordering between the agents 

such that each pair of agents (𝑖,  𝑗),  𝑖  <  𝑗 agrees on some random mask 𝑠{𝑖,𝑗}. The observation 

made by [3] is that if agent i adds this mask to 𝜃𝑖 and agent j subtracts it from 𝜃𝑗, then, the 

mask will be cancelled out and the actual model parameters will not be revealed. This way, 

each agent computes: 

 

and sends the result to the central server. The central server then computes: 

 

without never having access to the actual values of the model parameters. 

Sharing the common masks 𝑠{𝑖,𝑗} between agents naively would require a quadratic 

communication overhead. Instead, [3] proposes to share random seeds, by using Diffie-

Hellman public keys, such that each agent can generate the random masks from these seeds 

using a pseudorandom number generator. Algorithm 2 summarises the steps required by the 

employed secure sum protocol (Figure 28). 

The input of Algorithm 2 is the number of agents n, the number of models trained by each 

agent m, and the trained model's parameters 𝜃{𝑖,𝑗}. Step 1 of the algorithm represents the 

processing that each node performs asynchronously. First, in steps 2 to 4, each agent i 

initializes a random seed that is shared with agents j > i. Afterwards, in step 6, each agent 

loops through all its local models. For each model, in steps 8 to 12, in node i we receive the 

random seeds shared by all agents j < i, generate the corresponding masks and subtract that 

mask from the local model parameters. Afterwards, in steps 13 to 16, in agent i we add the 

masks that all nodes j > i will subtract at a later stage. 
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Figure 28: Secure sum protocol 

• Classic federated learning in multi-party computation scheme 

In our pioneering endeavour, we intend to architect a framework dedicated to distributed 

learning leveraging classic federated learning methodologies. Central to our strategy is the 

deployment of a multi-party computation scheme, specifically designed to eschew the need for 

a central server, ensuring secure computation of the requisite updates for model parameters. 

Federated learning in a multi-party computation (MPC) scheme offers a decentralized 

approach to model training. Each participating entity retains its data locally, ensuring data 

privacy and reducing centralization risks. Through MPC, parties collaboratively compute model 

updates without explicitly sharing their raw data. The aggregated model updates are then 

securely integrated, allowing for global model enhancement without compromising individual 

data integrity. This synergy of federated learning with MPC safeguards both privacy and 

efficiency in distributed learning scenarios. 

• Meta-learning of ensemble model weights 

Our aim is to design a sophisticated framework enabling the aggregation of an ensemble model 

from a diverse set of individual models present in a distributed network. Each node within this 

network retains its distinct model; however, through the application of meta-heuristic methods, 

these are harmoniously combined into a cohesive global ensemble model. A salient feature of 

this approach is the ability to integrate varying model architectures from different nodes, 

obviating the need for uniformity in their design, and thus enhancing the versatility and 

robustness of the resulting ensemble. 
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5 The DLT Infrastructure 
This section describes the functionality of the DLT Infrastructure employed as the underlying 

foundation for the SEDIMARK Marketplace. The distributed ledger is able to provide 

trustworthy, non-repudiable and immutable information about Participants and Offerings. 

Moreover, this infrastructure is interconnected to other enablers and mechanisms allowing: 

• identity management of the participants; 

• offering metadata management for catalogue; 

• storage of Trust Metadata; 

• tokenization of assets; 

• interactions with user’s wallet; 

• trading of assets among participants. 

From an architectural point of view, the DLT Enabler is composed of two overlapped and 

interacting levels, namely: 

• the Layer 1 (L1) which is the IOTA Tangle, and 

• the Layer 2 (L2) which is the IOTA Smart Contract (ISC) chain. 

These two layers are analysed in the SEDIMARK_D4.1. The following subsections analyse 

instead the implementation of the underlying infrastructure from the hardware and software 

point of view. 

5.1 Software stack 

The L1 layer provides the distributed ledger which is the underlying structure for storing 

transactions. The adoption of IOTA as DLT dictates the software to implement the network of 

nodes composing the Tangle. The HORNET software is a lightweight and powerful IOTA full-

node software written in Go that allows to use IOTA DLT in an efficient way. This node software 

is the backbone of the distributed network. The node software allows to be flexibly configured. 

This aspect allows to tailor an instance of the node according to specific deployment 

requirements. 

The architecture of a HORNET node supports an additional layer of flexibility with IOTA Node 

Extension (INX) interface. The functionality of a node can be extended with plugins based on 

INX. An example is the dashboard of the HORNET module which allows to graphically interact 

with the service and monitor the transactions received in real-time on a specific node. 

IOTA Wasp software serves the smart contract functionality of Layer 2. Wasp is a software, 

written in Go, able to build, test, deploy and interact with smart contracts. 

As specified before, the ISC VM is, in general, language-agnostic. Nevertheless, the most 

updated release of ISC currently supports Ethereum Virtual Machine (EVM)/Solidity smart 

contracts, as well as WebAssembly (Wasm) smart contracts. A Wasp node can deploy multiple 

chains of smart contracts. Every deployed ISC chain automatically includes a core contract 

(called evm). This core contract is responsible for running EVM code and storing the EVM state 

without additional software. 

Given the necessity to anchor the state of a chain onto the Tangle (L1), an instance of Wasp 

requires at least a Tangle to connect to. 

https://wiki.iota.org/hornet/inx-plugins
https://wiki.iota.org/hornet/inx-plugins
https://github.com/iotaledger/inx-dashboard
https://github.com/iotaledger/wasp
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The Wasp node also provides a standard JSON-RPC service, which allows to interact with the 

EVM layer using existing wallet, like Metamask or tools (e.g., Remix or Hardhat). Deploying 

EVM contracts is as easy as pointing your tools to the JSON-RPC endpoint. 

5.2 Current architecture instance 

The direct installation of the software stack prepares a node able to interface and connect with 

the public network (i.e., the mainnet) of the IOTA Foundation. As a consequence, an instance 

of a HORNET node would be consistent with the content of the ledger public network, holding 

data and transactions not related to SEDIMARK Marketplace. Also, the hardware running the 

nodes software would be employed to become a peer of the decentralized public network. 

For the scope of the SEDIMARK project, the architecture differs. In particular, the underlying 

structure needs to be reserved and adapted for the project target. Thus, the SEDIMARK 

Marketplace requires a private instance of the entire DLT, as well as the necessary smart 

contracts engine. 

As previously described, the DLT Enabler is composed of multiple components. While 

maintaining the two levels necessary for the implementation of the other functionalities of the 

marketplace, the internal interconnections among the various services differ. These two layers 

of this enabler are mapped onto the physical hardware, as shown in Figure 29. 

 

Figure 29: Layered architecture for DLT infrastructure 

The initial decentralised network for L1 is composed of four instances of HORNET. The L1 

services are deployed on different physical nodes. These nodes are interconnected to provide 

improved network resiliency. Each node contains a copy of the distributed ledger database.  

Each instance of HORNET is complemented with a set of INX plugins. The following 

extensions are enabled: coordinator, indexer, spammer, dashboard, MQTT, faucet, 

participation and POI. 

• The INX-coordinator performs the core functionalities of a node. It generates and issues 

the Milestones transactions, which are a special kind of transactions employed as markers 

of the progress and for providing timestamps for different points in the Tangle. Any 

transaction points, directly or indirectly, to at least one Milestone. The coordinator decides 

which transactions to approve. Moreover, it prevents double-spending issues and ensures 

that transactions cannot be reversed. The coordinator helps new nodes join the 

decentralized network by providing checkpoints for history, promoting faster 

synchronization. This ensures that new nodes have a starting point for validating the 

Tangle. 

ttps://metamask.io/
https://remix.ethereum.org/
https://hardhat.org/
https://explorer.iota.org/mainnet
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• The INX-spammer is a client application, running locally, which sends dummy transactions 

to the Tangle to provide a constant flow of transactions. This happens for performance 

reasons: a new transaction must be indeed referenced by at least three blocks. The 

spammer transactions increase the reference and confirmation rates of the DLT. 

• INX-Indexer is an indexing tool to provide structured data that can be searched and 

utilised by wallets and other applications. The indexer maintains its own database 

separate from that of the node. 

• INX-Participation is an extension for nodes to enable on-tangle voting. The extensions 

maintain its own database separate from that of the node and provides means to track 

events and votes. 

• INX-MQTT provides an event-based real-time streaming node API. The built-in MQTT 

broker offers a list of topics clients can subscribe to, to receive the latest blocks and 

outputs attached to the tangle. 

• INX-POI enables you to generate and verify Proof-of-Inclusion of blocks in the Tangle. 

Given a piece of data or transaction and the proof, it is possible to verify whether it was 

included in the Tangle at any given time. 

• Finally, the faucet is employed for dispensing native tokens. For development purposes, 

two faucets are deployed respectively in L1 and L2. 

For any instance of HORNET, a corresponding set of instances of Wasp are instantiated. 

These instances communicate directly only with the specific HORNET node. Multiple Wasp 

services are instantiated. 

Three physical servers host the software stack for both L1 and L2. Each Server contains an 

instance of HORNET and one instance of Wasp. The three Wasp nodes are interconnected to 

each other for the purpose of validation of incoming Requests. In such a way, a consensus 

must be reached with an agreement of this whole set of validators. The current architecture is 

shown in Figure 30. 
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Figure 30: instantiation of DLT Layers onto physical hardware machines 

The servers are interconnected to each other in a local network. These three machines are the 

peers composing the DLT and the Smart Contract chains for the SEDIMARK Marketplace. 

Incoming connections related to the digital identity are managed at L1 level, where the 

transactions store (partially) the elements of the SSI. Smart contract applications are deployed 

at L2 with the ISC allowing the trading of assets between SEDIMARK users and implementing 

the Marketplace business logic. 

The infrastructure exposes a public interface that allows the interactions with remote users. 

SEDIMARK users are able to connect and interact with the services detailed resorting to the 

toolbox and the applications developed during the other WPs. The partners who want to 

enforce the capability of the SEDIMARK Marketplace can provide their own computational 

capabilities and storage facilities by deploying their own instances. The software stack is 

containerised for the ease of deployment on an external physical infrastructure. A newly 

deployed infrastructure can be linked to the existing one, thereby extending the capability of 

the whole system. In such a way, the partners’ infrastructures become members of the ledger 

by acting as peers of the decentralized network and/or of network of validators. 
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6 The Storage enabler 
In the digital age, data stands as one of most important components of any modern business 

ecosystem. Its value is especially magnified in the realm of distributed marketplaces, which 

serve as hubs of vast and diverse data exchanges across various regions. 

These systems go beyond traditional storage paradigms by spreading data across multiple 

physical locations, be it within a single data centre location or across countries. Such an 

approach is not just a matter of scalability, but a pivotal strategy to ensure data availability, 

fault tolerance, and efficient distribution. 

As these platforms deal with heterogeneous data – from city traffic information and user profiles 

to transaction records and user-generated content – the need for a robust, scalable, and 

interoperable storage mechanism becomes implicit. 

Furthermore, as AI and machine learning continue to play a more significant role in data 

analysis and decision-making processes within these marketplaces, the integration between 

storage and computational resources gains even more prominence. 

6.1 Significance of data storage 

There are three pivotal attributes one must consider when choosing the data storage solution 

for these systems: scalability, fault tolerance and data interoperability. 

• Scalability refers to the system's ability to handle increased load or demand by adding 

more resources or nodes, without affecting the system's performance or architecture. 

Distributed storage systems, unlike traditional systems, don't require massive fine-tuning 

or downtime to scale. As the need arises, new storage nodes can be incorporated 

seamlessly. 

• Fault tolerance is the property that enables a system to continue operating seamlessly 

in the event of the failure of some of its components. Distributed storage systems typically 

replicate data across multiple nodes. This means if one node encounters a failure, the 

system can retrieve the data from another node. This redundancy always ensures data 

availability. 

• Data interoperability is the ability of systems and services that create, store, and 

exchange data to have clear, shared expectations for the contents, context, and meaning 

of that data. In a distributed marketplace, data might originate from various sources - 

different vendors, platforms, or services. Distributed storage solutions can store diverse 

data types and structures, offering a unified access point irrespective of the data's origin. 

For marketplaces that involve multiple stakeholders, from vendors to third-party service 

providers, data interoperability ensures that all parties can access and understand the 

shared data, facilitating smoother collaborations and transactions. 
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6.2 Storage Enabling software 

There are currently a few solutions that cover the above aspects, and we will analyse them in 

what follows. 

6.2.1 MinIO 

MinIO [14] is a high-performance, distributed object storage server, designed for large-scale 

data infrastructures. It is S3 compatible, built for the cloud-native world, supports object 

versioning, encryption, and event notifications. MinIO provides scalable storage for 

marketplace assets, supports multi-tenancy, and ensures high availability. MinIO is often used 

for storing unstructured data such as photos, videos, log files, backups, and container images. 

There are two main operations that MinIO exposes: Bucket and Object operations. From these, 

we will depict only a few of them which are of most importance: 

Bucket Operations: 

• make_bucket - Create a bucket with region and object lock. 

• list_buckets - List information of all accessible buckets. 

• bucket_exists(bucket_name) - Check if a bucket exists. 

• remove_bucket(bucket_name) - Remove an empty bucket. 

Object Operations: 

• get_object - Gets data from offset to length of an object. The returned response should 

be closed after use to release network resources. 

• put_object - Uploads data from a stream to an object in a bucket. 

• copy_object - Create an object by server-side copying data from another object. In this 

API maximum supported source object size is 5GiB. 

• stat_object - Get object information and metadata of an object. 

• select_object_content - Select content of an object by SQL expression. 

MinIO supports bucket event notifications to a variety of targets such as AMQP, Elasticsearch, 

Redis, Kafka, Webhooks, and more. One can set up event triggers on object creation, deletion, 

etc. 

MinIO supports S3-compatible server-side encryption with customer-provided keys (SSE-C). 

MinIO provides SDKs for a wide range of languages, including Go, Java, JavaScript, Python, 

and .NET. This allows developers to easily integrate MinIO into their applications. 

6.2.2 Triple Store 

Triple stores [15] are a type of database optimized for storing and querying RDF data, which 

is often used in semantic web and linked data projects. It offers support for SPARQL query, 

reasoning capabilities, and efficient storage mechanisms. It also facilitates semantic searches, 

data linkage, and offers rich querying capabilities. 

Apache Jena is an open-source Java programming framework for building applications using 

Semantic Web and Linked Data paradigms, through the provision of tools and libraries for 

storing models based on RDF and OWL graphs, and in turn provides a SPARQL query engine, 

ARQ2. 

https://min.io/
https://jena.apache.org/
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6.2.3 NGSI-LD brokers 

NGSI-LD brokers implementing the temporal API described in section 2.2 also act as a storage. 

As an example, the Stellio context broker embeds a PostgreSQL database empowered with 

TimescaleDB and PostGIS extensions to handle time series as well as geographic information. 

Data exchange within the Stellio broker are made over a high-speed exchange bus built on 

Apache Kafka which allows to scale while a spring boot-based API gateway ensures the 

conformity to the NGSI-LD specification. Such an implementation provides interoperability 

while allowing fast ingestion rates. As visible in Figure 31, ingestion rates of more than 20k 

events/s have been demonstrated on machine with 8 vcore, 32 Go RAM and 4 To disks. Based 

on NGSI-LD specification, deployment architecture includes centralised, distributed, and 

federated options.  

 

 

Figure 31: example of scaling capacity of Stellio context broker (number of inserted items per 

second over time) 

6.2.4 Integration with AI Models 

Distributed storage solutions are not just repositories for raw data; they play a vital role in AI 

ecosystems. With the ability to store vast amounts of data, they can be directly integrated with 

AI tools and platforms, enabling: 

• Cleaning, transformation, and normalization of data before training. 

• Using distributed data sources directly for training AI models. 

• Storing evaluation metrics, logs, and results for AI models. 

• Serving AI models directly from distributed storage solutions. 

6.2.5 Challenges and Solutions 

While distributed storage offers numerous benefits, it's not without challenges: 

• Ensuring data remains consistent across nodes. 

• Retrieving data from distributed nodes can introduce latency. 

• Protecting data in a distributed environment. 

• For each challenge, various strategies and tools can mitigate the risks and optimize 

performance. 

https://github.com/stellio-hub/stellio-context-broker
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7 Conclusions 
This report has been drafted based on long discussions involving the different project 

members. It thus reflects a consensus reached among different organisations with different 

profiles. The encountered heterogeneity increased difficulty to reach a consensus but 

ultimately end up with a technology proposal armed for wider acceptance.  

The different facets related to interoperability of the assets and services, have been described. 

While the internal of data pipelines models remain to be defined, it has been agreed that 

external interfaces would rely on the NGSI-LD interface and data model as defined by ETSI 

ISG CIM. With respect to marketplace offerings, ta RDFS/OWL ontology built by integrating 

well-known ontologies and models (ODRL, DCAT, FoaF, DCT) is proposed to allow for 

discovery and serving of the different marketplace assets. 

Discussion for annotations of dataset (global) and datapoints (local) have been discussed with 

the aim of augmenting the data with quality related metrics. These annotations as well as 

related certification mechanisms, will be further refined when variety of situations will have 

clarified from the use cases implementation. 

With respect to AI processing, emphasis has been placed on federated learning approaches 

with 2 frameworks proposed in the project (Fleviden and Shamrock). Both will be able to prove 

trained models under ONNX representation, to achieve interoperability at inference level. 

However, at training level, it is unclear yet if interoperability could be achieved across 2 

different frameworks or if they would remain to be selected as ‘black-boxes’ by the marketplace 

users. 

Finally, storage options considered for the different components are presented, including a 

DLT infrastructure used to provide trustworthy, non-repudiable and immutable information 

about Participants and Offerings. 
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Annexes 

Fleviscript details 

A Fleviscript program can be specified in plain text with the following structure: 

• Import pods: Any Fleviscript program starts with zero or more import statements and is 

the only part in which they are allowed in a program. An import statement is used to 

indicate what pods we want to use and create during the script execution. 

Its structure is given by the keyword import followed by the Fleviden package structure in 

which the pod is located, the reserved keyword as and the pod name itself. For example, 

to import the pod Server in package fleviden/arch/cen/server.py we would use the 

following import: 

 

import fleviden->arch->cen->server as Server 

 

• Registering wires: Any Fleviscript program runs encapsulated in a Fleviden pod. In other 

words, a Fleviscript program is a pod whose logic is defined by the computational graph 

of the pods created within. This conforms a clear modular system in which by default 

everything that is created inside a Fleviscript is private. Anything intended to be public has 

to be connected through an input or output wire. 

Input and output wires corresponding to the Fleviscript enclosing pod must be declared 

after the import statements and before any other statement. This is the only place where 

it is allowed to use registering statements. 

There are two types of wire registering instructions: the input statement and the output 

statement. To declare an input wire, we use the keyword input followed by an identifier 

representing the name of the wire. Output wires are registered in the same way but using 

the keyword output. This is an example of a registering wire block: 

  

input /update 

output /updated 

 

• Variables declaration and literals: The Fleviscript language allows us to define variables 

and to perform several manipulations on top of them. The variable declaration and 

assignation ops are done with the same instruction using the keyword |< followed by an 

identifier that represents the variable name and followed by the operator = and then the 

value to be set to that variable. For example: 

 

|< continent = Europe 

In addition to simple variables like the one above, we can define variables that contain 

lists and dictionaries whose syntactical constructs are similar to those we find in Python, 

for example: 

 

|< person = {name: john, lastname: doe} 

|< continents = [africa, europe, asia, america, australia]  
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A special feature of Fleviscript is that everything is an identifier, even variable names and 

values. That means that using a literal as a variable name will disable using that identifier 

in other parts of the program as a value. For instance: 

 

|< name = john 

|< person = {name: john, lastname: doe} 

 

will result in person variable value being {john: john, lastname: doe} as the name identifier 

used in the dictionary key was evaluated to its value. A recommended best practice to 

avoid this kind of confusion is to prefix every variable declaration with an uncommon 

symbol, for example: 

 

|< $name = john 

|< $person = {name: $name, lastname: doe} 

 

The only place in which this identifier evaluation process does not happen is in the variable 

declaration instruction itself, that is: 

 

|< $name = john 

|< $name = maria 

 

will result in overwriting the variable $name value instead of creating a variable named 

john. 

• Pod declaration: Pods can be declared by using the >| instruction followed by the pod 

identifier, the = symbol, the pod type previously imported and finally a dictionary containing 

the arguments required to instantiate the pod. For example: 

 

|> server = Server { 

     num_rounds: 4,  

    clients: [{id: client-one}, {id: client-two}] } 

 

• Wait instruction: A wait sentence is created by using the << instruction followed by an 

identifier representing the pod name, the symbol -> and an identifier representing the wire 

name. Optionally, a dictionary can be provided in case additional arguments are needed 

while waiting. For example: 

 

<< $http -> rest.updates 

 

• Bridge instruction: A bridge sentence is created by using the >> instruction followed by an 

identifier representing the pod name, the symbol -> and an identifier representing the wire 

name. Optionally, a dictionary can be provided in case additional arguments are needed 

while bridging. For example: 
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>> $http -> broadcasted {host: localhost, port: 9090} 

 

• Link instruction: A link sentence is created by using the -> instruction followed by an 

identifier representing the pod name, the symbol -> and an identifier representing the wire 

name. Optionally, a dictionary can be provided in case additional arguments are needed 

while linking. It follows an identifier representing the target wire name the symbol -> and 

an identifier representing a target pod name. For example: 

-> $http -> rest.update update -> $server  

-> $server -> updated aggregate -> $aggregator 
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