
This document is issued within the frame and for the purpose of the SEDIMARK project. This project has

received funding from the European Union’s Horizon Europe Framework Programme under Grant Agreement

No. 101070074. The opinions expressed and arguments employed herein do not necessarily reflect the

official views of the European Commission.

The dissemination of this document reflects only the author’s view, and the European Commission is not responsible for any

use that may be made of the information it contains. This deliverable is subject to final acceptance by the European

Commission.

This document and its content are the property of the SEDIMARK Consortium. The content of all or parts of this document can

be used and distributed provided that the SEDIMARK project and the document are properly referenced.

Each SEDIMARK Partner may use this document in conformity with the SEDIMARK Consortium Grant Agreement provisions.

SEcure Decentralised Intelligent Data

MARKetplace

D3.1 Energy efficient AI-based toolset for

improving data quality. First version

Keywords:

Data marketplace, machine learning, data quality, data curation, data processing pipeline,

energy efficiency, model optimisation, trade-offs, communication cost

Document Identification
Contractual delivery date: 31/12/2023

Actual delivery date: 19/12/2023

Responsible beneficiary: NUID UCD

Contributing beneficiaries: NUID UCD, ATOS, EGM, INRIA, MYT, SIE, SURREY, UC

WINGS

Dissemination level: PU

Version: 1.0

Status: Final

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 2 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors

Name Partner

Elias Tragos

Diarmuid O’Reilly Morgan

Erika Duriakova

Honghui Du

Qinqin Wang

Aonghus Lawlor

Neil Hurley

NUID-UCD

César Caramazana

Maxime Costalonga

Jairo Rojas-Delgado

ATOS

Luc Gasser

Léa Robert

Romain Magnani

Franck Le Gall

Philippe Cousin

Gilles Orazi

EGM

Maroua Bahri

Nikolaos Georgantas

INRIA

Ioannis Tsogias

Nikos Babis

MYT

Gabriel Danciu

Stefan Jarcau

SIE

Tarek Elsaleh

Adrian Hilton

SURREY

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 3 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

List of Contributors

Pablo Sotres

Laura Martín

Juan Ramón Santana

Jorge Lanza

Luis Sánchez

UC

Panagiotis Vlacheas

Panagiotis Demestichas

Grigoris Koutantos

Loizos Koutsantonis

Konstantinos Almpanakis

Dimitrios Triantafyllou

WINGS

Document History

Version Date Change editors Change

0.1 13/02/2023 NUID-UCD First draft of ToC

0.11 04/10/2023 SURREY Contribution to Section 3.3

0.12 08/10/2023 WINGS Contribution to Section 3.7.1

0.13 15/10/2023 WINGS Contribution to Sections 3.6, 3.8, 4.4

0.2 07/11/2023 ATOS Contribution to Section 4.3.1

0.31 08/11/2023 INRIA Contribution to Section 3.2

0.32 08/11/2023 SIE Contribution to Sections 3.3, 3.4

0.33 08/11/2023 EGM Contribution to Section 3.7.2

0.34 09/11/2023 INRIA Contribution to Sections 3.9, 3.10

0.4 16/11/2023 NUID-UCD
Contribution to Sections 3.5, 3.6, 3.7.1,

3.7.3, 3.7.4. 3.8, 4.2, 4.3.2, 4.3.3, 4.3.4

0.41 17/11/2023 SURREY Contribution to Section 4.5

0.42 17/11/2023 SIE Updates to Sections 3.2, 3.3, 3.4

0.43 17/11/2023 UC Contribution to Sections 3.5, 3.7.4

0.5 21/11/2023 EGM Contribution to Sections 4.6, 4.7

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 4 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

Document History

0.51 21/11/2023 NUID-UCD
Updates to Sections 3.5, 3.6, 3.7.1, 3.7.3,

3.7.4, 4.2

0.52 23/11/2023 NUID-UCD
Updates to Section 3.5, contribution to

Section 5

0.53 23/22/2023 MYT Review of Sections 3.5, 3.6, 3.7

0.6 27/11/2023 SURREY Updates to Section 4.5

0.7 28/11/2023 SIE Updates to section 3.3, 3.4

0.71 28/11/2023 WINGS Updates to Section 3.8

0.72 28/11/2023 UC Updates to section 3.2

0.73 28/11/2023 INRIA Updates to Section 3.10

0.74 28/11/2023 MYT Review of Sections 3.8. 3.9

0.8 29/11/2023 SURREY Updates to section 4.5

0.81 29/11/2023 NUID-UCD Contribution to Sections 1, 6.

0.82 29/11/2023 NUID-UCD
Overall editing and formatting of the

deliverable.

0.9 30/11/2023 NUID-UCD
Final editing and preparing version for

internal review

0.91
06/12/2023 NUID-UCD

Addressing the comments of the first

internal review

0.92 11/12/2023 NUID-UCD

Addressing the comments of the second

internal review and preparing version for

quality review.

0.93 15/12/2023 NUID-UCD Pre-final version addressing the quality

review comments.

0.95 18/12/2923 ATOS Quality Format Review

1.0 19/12/2023 ATOS FINAL VERSION TO BE SUBMITTED

Quality Control

Role Who (Partner short name) Approval date

Reviewer 2 Juan Ramón Santana, Pablo Sotres (UC) 07.12.2023

Reviewer 1 Arturo Medela, César Caramazana (ATOS) 05.12.2023

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 5 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

Quality Control

Role Who (Partner short name) Approval date

Quality manager María Guadalupe Rodríguez (ATOS) 18.12.2023

Project Coordinator Arturo Medela (ATOS) 19.12.2023

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 6 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

1 Introduction ... 14

1.1 Purpose of the document .. 14

1.2 Relation to another project work .. 14

1.3 Structure of the document ... 15

1.4 Glossary adopted in this document ... 16

2 Position within the project ... 17

3 Data Processing Pipeline .. 20

3.1 Overview ... 20

3.2 Offline dataset processing vs data streaming .. 21

3.3 Data Processing Orchestration .. 23

3.4 Data Processing Dashboard .. 26

3.5 Data quality metrics ... 28

3.5.1 Generic data quality metrics ..29

3.5.2 ML-based data quality metrics ...31

3.5.3 Future contributions ...33

3.6 Data Profiling and Data Quality Evaluation .. 34

3.7 Data Curation .. 37

3.7.1 Outlier Detection ..37

3.7.2 Noise removal ..41

3.7.3 Deduplication ...43

3.7.4 Missing Value Imputation ...45

3.8 Data Augmentation.. 46

3.8.1 Overview ...46

3.8.2 Synthetic Data ...47

3.8.3 Augmentation for balancing and debiasing datasets48

3.8.4 Data Augmentation for Time series ..48

3.9 Feature Engineering .. 49

3.10 Auto-ML in the data processing pipeline ... 50

4 Techniques for reducing energy consumption of data technologies 52

4.1 Overview ... 52

4.2 Reducing energy consumption during ML training ... 52

4.2.1 Optimising Data Efficiency in ML Training ..52

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 7 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

4.2.2 Balancing the model training cost and the communication overhead54

4.3 AI Model Optimisation ... 55

4.3.1 Quantisation in federated learning ...56

4.3.2 Pruning ..65

4.3.3 Knowledge distillation ..66

4.3.4 Low-rank Factorisation ..66

4.4 Reducing energy on data sharing .. 67

4.5 Reducing energy on data storage .. 67

4.5.1 Compression for Data Processing Pipeline Artefacts68

4.5.2 Broker Storage Configuration ..68

4.6 Pushing data processing to the edge .. 68

4.7 Grey energy / embodied energy .. 69

5 Trade-offs between performance, communication cost and energy efficiency 70

5.1 Overview ... 70

5.2 Communication cost analysis for distributed learning .. 70

5.2.1 Federated Learning ...70

5.2.2 Gossip Learning ..72

5.3 Analysis of trade-offs in performance vs computational cost 73

5.3.1 CO2 consumption of Federated Learning in Shamrock.73

5.3.2 Performance of data deduplication module as the indexing method is varied.

 75

5.3.3 Performance of Anomaly Detection module on ground truth, employing different

models. 77

6 Conclusions .. 79

7 References ... 80

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 8 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1: Relationship between SEDIMARK_D3.1 and other deliverables, tasks, and

workpackages. ...15

Figure 2: Mapping of SEDIMARK_D3.1 components to the SEDIMARK architecture.18

Figure 3: Overview of the data processing pipeline of SEDIMARK21

Figure 4: Architecture diagram of a Multi-Stage Data Processing and Analysis pipeline with

Brokers, Object store and SEDIMARK toolkit integration. ...24

Figure 5: Mage.ai interface with sample demo flow for processing SEDIMARK data.25

Figure 6: Mage.ai orchestration for a simple training flow using SEDIMARK data.26

Figure 7: Figma mock for the Data Processing Dashboard. ..27

Figure 8: Figma mock for the dataset visualisation. ..28

Figure 9: DQ Dimensions Module for streaming environments ...37

Figure 10: A generic SEDIMARK data cleaning module. ..37

Figure 11: SEDIMARK outlier detection module. ..39

Figure 12: Comparison of full and block indexing methods. ..44

Figure 13: Module for imputing missing values. ..45

Figure 14: Iterative imputation (HyperImpute). ..46

Figure 15: Synthetic data generation in SEDIMARK ...47

Figure 16: Feature extraction vs. feature selection ...49

Figure 17: General federated learning protocol, taken from the Fleviden platform

documentation. ...57

Figure 18: An illustration of QSGD encoding schema. A real number between 0.5 and 0.75

represented in red is quantized in the discrete level 0.5 or 0.75 depending on the stochastic

quantisation schema defined by QSGD. ...59

Figure 19: The class diagram for the Fleviden quantisation solution.63

Figure 20: Diagram illustrating how the qsgd and elias pods are to be integrated in a

federated learning server. ...65

Figure 21: Accuracy for different percentages of selected nodes for communication in

federated learning. ...71

Figure 22: Communication cost (in bits) for different percentages of selected nodes for

communication in federated learning. ...71

Figure 23: Accuracy for different percentages of selected nodes for communication in gossip

learning. ...72

Figure 24: Communication cost (in bits) for different percentages of selected nodes for

communication in gossip learning. ..72

Figure 25: CO2 cost per 100 iterations of FL given communication percentage.73

Figure 26: Final accuracy for 100 iterations of FL given communication percentage.74

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 9 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 27: Comparison of CO2 cost to reach given accuracy levels for different

communication percentage in FL. ...74

Figure 28: Comparison of CO2 cost of different indexing methods for deduplication.75

Figure 29: Comparison of precision of different indexing methods for deduplication.76

Figure 30: Comparison of recall of different indexing methods for deduplication...................76

Figure 31: CO2 cost for the various anomaly detection methods available in the SEDIMARK

pipeline. ..77

Figure 32: ROC AUC score for the various anomaly detection method available in the

SEDIMARK pipeline. ..78

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 10 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation / acronym Description

ABOD Angle Based Outlier Detection

AI Artificial Intelligence

API Application Programming Interface

ARIMA Autoregressive Integrated moving averaged

AUC Area Under Curve

AUCP AUC Percentage

DAG Directed Acyclic Graph

DQ Data Quality

EMA Exponential Moving Average

ESD Extreme Studentized Deviation

EU European Union

FFT Fast Fourier Transform

FL Federated Learning

GAN Generative Adversarial Networks

GESD Generalised ESD

GMM Gaussian Mixture Models

GRU Gates Recurrent Unit

GUI Graphical User Interface

HBOS Histogram Based Outlier Selection

HST Half Space Trees

HTTP Hypertext Transfer Protocol

ICA Independent Component Analysis

IID Independent and Identically Distributed

IoT Internet of Things

IR Imbalance Ratio

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 11 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

Abbreviation / acronym Description

KF Kalman Filter

KNN K-Nearest Neighbours

LD Linked Data

LMS Least Mean Squares

LOF Local Outlier Factor

LRID Likelihood Ratio Imbalance Degree

LSTM Long Short-Term Memory

LSTMOD Long Short-Term Memory Outlier Detection

MCD Minimum Covariance Distance

MCU Microcontroller Unit

ML Machine Learning

MNIST Modified National Institute of Standards and Technology

database

NGSI-LD Next Generation Service Interfaces - Linked Data

NLMS Normalised LMS

NN Neural Network

OCSVM One-Class Support Vector Machine

OD Outlier Detection

PCA Principal Component Analysis

PPS Predictive Power Score

QSGD Quantized Stochastic Gradient Descent

RLS Recursive Least Squares

ROC Receiver Operating Characteristic

SARIMA Seasonal Autoregressive Integrated moving averaged

SCL Strongly coordinated learning

SGD Stochastic Gradient Descent

SMA Simple Moving Average

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 12 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

Abbreviation / acronym Description

SMOTE Synthetic Minority Over-sampling Technique

SNE Stochastic Neighbour Embedding

SNR Signal to Noise Ratio

SSA Singular Spectrum Analysis

STL Seasonal and Trend decomposition using Loess

SVD Singular Vector Decomposition

SVDD Support Vector Data Description

SVM Support Vector Machine

UI User Interface

VIF Variance Inflation Factor

WCL Weekly Coordinated Learning

WMA Weighted Moving Averages

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 13 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

Data quality is considered to be of the highest importance for companies to improve their

decision-making systems and the efficiency of their products. In this current data-driven era, it

is important to understand the effect that “dirty” or low-quality data can have on a business.

Manual data cleaning is the common way to process data, accounting for more than 50% of

the time of knowledge workers. SEDIMARK acknowledges the importance of data quality for

both sharing and using/analysing data to extract knowledge and information for decision-

making processes. Thus, one of the main work items of SEDIMARK is to develop a usable

data processing pipeline that assesses and improves the quality of data generated and shared

by the SEDIMARK data providers.

This deliverable presents the first version of the methods and techniques developed within

SEDIMARK for processing data and improving their quality. The focus is at first to identify the

key techniques that can be used for quality improvement of datasets and then to improve the

techniques and adapt them to the requirements of the SEDIMARK platform so that they can

all work together smoothly.

SEDIMARK considers two main types of data generated and shared within the marketplace:

(i) static/offline datasets and (ii) online/streaming datasets. The project acknowledges that it is

important to cater to both types of datasets equally, thus in most scenarios, separate and

customised versions of the tools are developed for static and streaming datasets. In this

respect, techniques about outlier detection, noise removal, deduplication and imputation of

missing values are considered important for improving the quality of datasets. These

techniques aim to remove abnormal values or noise from the dataset, remove duplicate values

or fill out gaps in some entries or add complete entries. Techniques for feature engineering

such as feature extraction and selection are also developed in order to enrich the datasets.

Synthetic dataset creation is considered important in scenarios where data providers don’t

want to share their real datasets (i.e. for privacy reasons) but want to share synthetic versions

that mimic the real ones.

This deliverable also presents the framework that has been developed in order to orchestrate

the whole functionality of the data processing pipeline using a Data Processing Orchestration

component, which the users are using via a dashboard. The deliverable also presents the

quality metrics that SEDIMARK has defined for assessing the quality of datasets, both per data

point and as a whole.

Another important part of the deliverable is the description of techniques towards reducing the

energy consumption of the components of the data processing pipeline and optimizing data

efficiency, i.e. using techniques for data distillation, coreset selection and dimension reduction.

Minimising the communication cost in distributed machine learning scenarios is also important

for SEDIMARK, because communication can increase energy consumption. Techniques to

optimise the Artificial Intelligence (AI) models both during training and inference are also

discussed, focusing on quantisation, pruning, low rank factorisation and knowledge distillation.

Finally, considering that minimising energy consumption can have an effect on performance

or communication, the deliverable presents a first analysis on these trade-offs, aiming to

provide insights to data providers on how to better configure the pipeline or what models they

should select in order to achieve their targets (energy efficiency/performance/communication).

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 14 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

This document is the first deliverable from WP3, aiming to provide a first draft of the

SEDIMARK data quality pipeline. This document details how the pipeline aims to improve the

quality of datasets shared through the marketplace while also addressing the problem of

energy efficiency in the data value chain. This document is actually the first version of the

deliverable, showing the initial ideas and initial implementation of the respective tools and

techniques. An updated version of the deliverable with the final version of the data quality

pipeline will be delivered in M34 (July 2025). This means that the document should be

considered a “live” document that will be continuously updated and improved as the technical

development of the data quality tools evolves.

The main goal of this document is to discuss how data quality is seen in SEDIMARK, what are

the metrics defined in order to assess the quality of data that are generated by data providers,

and what techniques will be provided to them for improving the quality of their data before

sharing on the data marketplace. This will help the data providers to both optimise their

decision-making systems for the Machine Learning (ML) models they train using their datasets,

and to increase their revenues by selling datasets of higher quality and thus higher value.

Regarding the first argument, it is well documented that low-quality data has a significant

impact on business, with reports showing a yearly cost of around 3 Trillion USD, and that

knowledge workers waste 50% of their time searching for and correcting dirty data [1]. It is

evident that data providers will hugely benefit from automated tools to help them improve their

data quality, either without any human involvement or with minimum human intervention and

configuration.

This document presents high-level descriptions of the concepts and tools developed for the

data quality pipeline and the energy efficiency methods for reducing its environmental cost, as

well as concrete technical details about the implementation of those tools. Thus, it can be

considered that this is both a high-level and a technical document, thus targeting a wide

audience. Primarily, the document targets the SEDIMARK consortium, discussing the technical

implementations and the initial ideas about them, so that the rest of the technical tasks can

draw ideas about the integration of all the components into a single SEDIMARK platform. Apart

from that, this document also targets the scientific and research community, since it presents

new ideas about data quality and how the developed tools can help researchers and scientists

improve the quality of the data they use in their research or applications. Similarly, the industrial

community can leverage the project tools to improve the quality of their datasets or also assess

how they can exploit the results about energy efficiency to reduce the energy consumption of

their data processing pipelines. Moreover, EU initiatives and other research projects should

consider the contents of the deliverable in order to derive common concepts about data quality

and reducing energy consumption in data pipelines.

1.2 Relation to another project work

Figure 1 shows the interaction of the activities within WP3 and the relation with the rest of the

work packages. This deliverable is the output of work done in the first 15 months of the project

in Task 3.1 (AI based tools for data quality management) and Task 3.5 (energy optimisation of

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 15 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

data management techniques). Additionally, this deliverable is also based on the work done in

WP2, especially in Task 2.2 related to the definition of the functional and non-functional

requirements for the areas of interest of this deliverable (presented in deliverable

SEDIMARK_D2.1 [2]), in Task 2.3 regarding the system functional architecture and the

functional components related with data quality and energy efficiency, as well as in Task 2.4

regarding the initial draft of the interfaces between the system components (presented in

SEDIMARK_D2.2 [3]). The architecture and interfaces are of major importance for the work

presented in this deliverable, as they lay the foundations for the work in the tasks that provide

their output to this deliverable. The output of the work presented in this deliverable will also be

used for the next version of this deliverable (SEDIMARK_D3.2, to be delivered July 2025), the

refinement of the architecture in SEDIMARK_D2.3 (WP2), as well as for the integration of the

overall system (integrating the components of T3.1 and T3.5) and the overall system testing

and validation (in WP5).

Figure 1: Relationship between SEDIMARK_D3.1 and other deliverables, tasks, and work

packages.

1.3 Structure of the document

This document is structured into 6 major chapters:

Chapter 1 is the current chapter and presents the introduction to the overall document.

Chapter 2 presents the positioning of the deliverable within the overall project.

Chapter 3 presents the main work done within Task 3.1 and is related to tools and techniques

for assessing and improving the quality of data assets.

Chapter 4 presents work done within Task 3.5 and is related to the design and development

of techniques to reduce energy consumption and improve energy efficiency of tools used within

the data quality pipeline or the AI pipeline of SEDIMARK.

Chapter 5 presents work done within Task 3.5 and is related to the assessment of trade-offs

between energy consumption, ML model accuracy and efficiency, and communication cost.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 16 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

The included results aim to help data providers and researchers understand the gains/losses

when choosing to optimise for energy consumption or accuracy.

Chapter 6 presents the conclusions of the document, discussing the major outcomes and the

future steps.

1.4 Glossary adopted in this document

The readers are referred to SEDIMARK_D2.2 which provides a complete list of the terminology

used within SEDIMARK.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 17 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

2 Position within the project
This deliverable presents the first draft of the work in Tasks 3.1 and 3.5. The work in these

tasks concerns two of the main pillars of the SEDIMARK project, since these tasks work on

developing tools that will enhance the quality of the datasets to be shared within the project,

whilst also ensuring that the SEDIMARK tools will be energy efficient, giving also options to

data providers to understand how they can tune the models and the tools in order to optimise

either for energy efficiency or for accuracy and performance.

Figure 2 presents the SEDIMARK functional architecture that was described in deliverable

SEDIMARK_D2.2 in detail. The functional components that are part of this deliverable are

highlighted in orange. As is evident, these are part of the Data and Intelligence layers of

SEDIMARK. More details about these components and their mapping to deliverable sections

are given below:

• Data Processing Orchestration: this is described in section 3.3, where the framework

for orchestrating the whole data quality pipeline is presented.

• Data Processing Dashboard: this is described in section 3.4, where the dashboard that

will be provided to the users for managing their datasets and accessing the various data

processing tools is presented.

• Data Visualisation: this is described in section 3.4, where the roadmap for the design of

his module and its integration with Data Processing Orchestration and Data Processing

Dashboard is described.

• Data Quality Evaluation: this component handles the assessment of the data quality and

is described in section 3.5, including the metrics that were defined within SEDIMARK for

assessing the quality of datasets.

• Data Profiling: this is described in section 3.6 and provides general information and

statistics about a dataset that is managed by the data processing pipeline.

• Data Curation: this is a suite of components that process the datasets and aim to improve

their quality. It is described in section 3.7, where more details about the mechanisms for

outlier detection, deduplication, missing value imputation, etc. are provided.

• Data Augmentation: this is described in section 3.8, discussing what tools SEDIMARK

provides currently for generating synthetic data and how these can be used in the next

versions for removing bias and improving fairness in datasets.

• Feature Engineering: this is described in section 3.9, where the methods for extracting

valuable features from datasets are discussed, aiming to improve the usefulness of

datasets when used for training AI models.

• Frugal AI: this component is described in sections 4.2 and 4.3, discussing various

techniques to reduce energy consumption of ML models both during training.

• Model Optimisation: this component is described in section 4.3, discussing techniques

to optimise the ML models after they are trained, aiming to reduce energy consumption.

• Energy Efficiency: this component is actually a suite of techniques that help improve the

energy efficiency of the tools and models of the SEDIMARK toolbox. The components

and methods included in this suite are described in Section 4, while in Section 5 there is

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 18 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

an initial assessment of the trade-offs between energy efficiency and performance

providing insights on how the methods can be tuned for either criterion.

Figure 2: Mapping of SEDIMARK_D3.1 components to the SEDIMARK architecture.

As discussed in the introduction section, this is the first version of the deliverable describing

the methods and tools developed within SEDIMARK related to data processing and energy

efficiency. As discussed in deliverable SEDIAMRK_D2.2 in Figure 48 [3], these tools are part

of the Data Processing Pipeline, which is part of the SEDIMARK toolbox. The developed tools

will become public in the future, considering that most of them will be open sourced. In detail,

currently there are Python implementations of:

• Data Processing Orchestration, Dashboard and Visualisation, implemented using

mage.ai and Figma.

• Data Profiling and Data Quality Evaluation, implemented using Python.

• Outlier detection, implemented using python and building on libraries such as PyOD,

tods, pythresh, pandas, scikit-learn, and river.

• Deduplication, implemented using python and building on libraries such as recordlinkage

and dedupe.

• Missing Value Imputation, implemented using python and building on libraries such as

hyperimpute, river and scikit-learn.

• Feature Engineering, implemented using python and building on libraries such as

pandas, scipy, pymmh3 and numpy,

• Data augmentation, implemented using python and libraries such as ydata-synthetic.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 19 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

• Model Optimisation, implemented using python and building on techniques for

quantisation.

• Frugal AI, not implemented as a standalone component, but currently being an analysis

of techniques that can be used to maximise the energy efficiency of AI model training and

inference.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 20 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

3 Data Processing Pipeline

3.1 Overview

A key objective in the development of SEDIMARK is to promote the sharing of high quality,

curated data within its marketplace. The huge quantities of data made available by the spread

of commercial internet technologies are widely acknowledged to be at the root of the explosion

of interest in machine learning. At the same time, effectively dealing with this data presents a

huge challenge, especially when much of it is of low or only medium quality. A growing trend

in both industry and research has sought to give data collection and curation a central role

within the development of AI systems, with many championing Data-centric rather than Model-

centric AI [11]. This originates not only with observations that improving raw data quality can

often be more effective than iterating on model architectures but also that the data itself can

often be the root cause of many ethical concerns in the development of AI models [10]. As

such, emerging approaches to ML and data science support putting the curation of high-quality

datasets first and foremost within the data science workflow. Although a vast number of tools

and methodologies exist for improving data quality, the notion of data quality is itself quite

qualitative, and domain dependent, and often little can be done without the involvement of a

large amount of expert human labour. In the work of data scientists alone, tasks such as outlier

detection (OD), data deduplication and missing value imputation are widely acknowledged to

take up to 50% of their time [1],[7],[8].

A key aim of SEDIMARK is to minimise the human effort needed to improve the quality of data

within its marketplace, thus increasing the data’s intrinsic value, and attracting a wider base of

both data consumers and providers. As such, it includes a wide array of data cleaning tools

that can be integrated as part of the data publishing workflow. In its current iteration,

SEDIMARK includes tools for outlier detection, deduplication, missing value imputation, and

noise removal from time series. SEDIMARK however recognises that the use of these tools

could effectively prove a barrier to adoption by data providers, if they require excessive human

effort to adapt them to new datasets. As such, a key challenge in the future development of

SEDIMARK will concern reducing the amount of human involvement required by the data

cleaning process. As such, SEDIMARK will explore applying Automated Machine Learning

(AutoML) techniques to the individual components of the pipeline. In two of the key data

cleaning components, there are emerging technologies for automating the process of model

selection and repair, which are discussed below. In addition, some AutoML or meta-learning

techniques could in principle be used as a method for optimising the overall data pipeline as a

whole, though this may not be feasible within the scope of the project. This is discussed in

section 3.10.

Figure 3 shows the overview of the data processing pipeline within SEDIMARK and the

interactions between the different components. As is shown, the user interacts with the pipeline

through the Data Processing Dashboard, choosing the data to be analysed/curated, the

processing steps and the functions that will be run, as well as the configuration of the various

functions, i.e. with respect to the models that will run and the hyperparameters for each model.

Then, the Data Processing Dashboard forwards all of this information to the Data Processing

Orchestration component, which is the main component that manages the operation of the

whole pipeline. The orchestration component takes the configuration file (set by the user) as

an input and creates the flow of modules that need to be executed (sequentially or in parallel)

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 21 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

in order to process the data, i.e. to format the data, to do the profiling and extract statistics, to

curate and assess the quality of the data, to validate the data, extract features and annotate

them to convert them to the external data format. More details about these steps (apart from

data validation and annotation which are part of SEDIMARK_D3.3 [4]) are given in the below

subsections.

Figure 3: Overview of the data processing pipeline of SEDIMARK

The rest of Section 3 is structured mostly according to the order of the steps of the data

processing pipeline, shown in Figure 3: section 3.2 discusses in general how SEDIMARK deals

with both static and streaming datasets; sections 3.3 and 3.4 present the overlay data

processing orchestrator and the dashboard; section 3.5 is an entry section discussing the

metrics defined within SEDIMARK for evaluating the data quality; section 3.6 presents the tool

developed for data profiling and data quality evaluation; section 3.7 presents the data curation

techniques; section 3.8 presents the data augmentation techniques; section 3.9 presents the

techniques for extracting meaningful features from the datasets; section 3.10 presents a high

level view on how SEDIMARK wants to exploit automatic ML (AutoML) techniques for the data

processing pipeline.

3.2 Offline dataset processing vs data streaming

Data provided by providers or artificially generated within SEDIMARK could be either static

(dataset) or dynamic (data stream). A dataset is defined as a finite set of data instances that

can be stored in memory and analysed while accessing the data several times. Static datasets

are typically well-defined and can be accessed, queried, and analysed as many times as

needed. Offline processing involves working with static datasets that have already been

collected and stored. These datasets typically do not change during the analysis. They are

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 22 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

ideal for scenarios where one does not need real-time insights. Examples include historical

data analysis, comprehensive reports, and machine learning model training.

On the other hand, a data stream is defined as an unbounded sequence of multidimensional,

sporadic, and transient instances that are generated over time. Data streams are characterised

by their dynamic and evolving nature. They are crucial for scenarios requiring immediate action

or analysis, such as fraud detection, real-time analytics, and monitoring systems that treat

critical tasks.

So, one major difference between these data types is that a dataset can be stored in its entirety

in memory to serve for analytics at any time while for a data stream, data points arrive one by

one incrementally and are not available at once which requires adapted analytics methods for

such a setting.

If the data are generated continuously and require immediate action, streaming is the preferred

option, while for batched, historical, or less time-sensitive data, offline processing is more

suitable. For businesses that require real-time insights (e.g., stock trading platforms),

streaming is essential. In contrast, businesses focusing on mid and long-term strategies might

rely more on offline processing. From the technical point of view, data streaming demands a

more sophisticated infrastructure and real-time data processing capabilities, whereas offline

processing can be more manageable with conventional data analysis tools and a more

affordable budget.

For batch dataset processing, traditional machine learning algorithms are needed, and several

ones have been proposed in the state-of-the-art that can be easily added to the SEDIMARK

AI pipeline. On the other hand, the infinite nature of data streams presents certain technical

and practical constraints that render conventional static algorithms ineffective due to, among

other things, their high consumption of resources, including time and memory. Therefore, to

process data streams, data stream mining algorithms adapted to handle such data generated

in real time need to be used.

Processing data streams presents some specific challenges that are presented as follows:

• Single-pass: Unlike processing static datasets, it is no longer possible to analyse data

using several passes during the course of computation because of its unbounded nature.

Taking into account this constraint, algorithms work by processing each instance from the

stream only once (or a couple of times) and use it to update the model – or the statistical

information about data – incrementally (instance-incremental algorithms). In the case of

batch-incremental algorithms, a batch (chunk or window) of instances is processed at

once instead of only one instance.

• Running time: An online algorithm must process the incoming data points as rapidly as

possible. Otherwise, the algorithm will not be efficient enough for applications where rapid

processing is required.

• Memory usage: Because of the massive amounts of data streams that require a limitless

memory to be processed and stored, it is difficult and sometimes even impossible to store

the entire stream in memory. So, any stream algorithm must be able to operate under

restricted memory constraints by storing a few synopses of the processed data and the

current model(s).

• High dimensionality: In some scenarios, streaming data may be high-dimensional, for

example, text documents, where distances between instances grow exponentially due to

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 23 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

the curse of dimensionality. The latter can potentially impact any algorithm’s performance,

mainly, in terms of time and memory.

• Concept drift: Concept drift is a common challenge in data streams, as the data

distribution can change over time. Data stream mining algorithms must adapt to these

changes dynamically.

The aforementioned challenges frequently arise in different data stream mining tasks. In this

context, incremental data stream approaches have been developed and will be extended and

used within SEDIMARK to address these requirements. To cope with the single-pass

requirement, incremental data stream mining algorithms that potentially handle concept drift

by being coupled with drift detection mechanisms need to be used. The SEDIMARK AI pipeline

features a dimension reduction component as a pre-processing step which will address the

curse of dimensionality and thus contribute to the reduction of the resource usage (e.g.,

memory and time) of the adopted ML algorithms.

SEDIMARK focuses on ensuring high-quality data through tools for cleaning and curation,

catering to both offline and streaming datasets. Considering the requirements defined in

SEDIMARK_D2.1, SEDIMARK needs to identify and manage problematic records, balancing

data integrity with its size. The SEDIMARK data processing pipeline has the flexibility to

process both static and real-time streaming data with attention to latency and efficiency. For

that, a modular and user-customizable data curation pipeline has been developed, balancing

expert needs with simplicity for non-technical users. More information is given in the sections

below.

3.3 Data Processing Orchestration

Figure 4 represents a multi-stage data processing architecture involving various components

that coordinate to handle, process, and store data. The flow begins with a Data

Producer/Provider that interacts with a UI/API Server. This server forwards the data to a

Pipeline Scheduler, which orchestrates the data flow through multiple processing stages.

Brokers facilitate the queuing of data between the scheduler, an Object Store, and a set of

processes that execute data transformation or analysis tasks using the SEDIMARK Toolkit.

The Object Store manages the storage of processed or intermediate data, while additional

data sources can provide supplementary input as needed. This proposed architecture supports

parallel processing and is likely designed for real-time data handling, as indicated by the

presence of brokers and a pipeline scheduler. The output of the entire pipeline is represented

by a Directed Acyclic Graph (DAG) depicting the workflow and the Results from the data

processing.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 24 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 4: Architecture diagram of a Multi-Stage Data Processing and Analysis pipeline with

Brokers, Object store and SEDIMARK toolkit integration.

The detailed orchestration process involves the following steps after the orchestrator is started:

1. The data provider defines the pipeline for data processing using the UI or

programmatically through the corresponding API. The pipeline configuration is then

submitted to the orchestrator engine.

2. Based on the pipeline triggering method, whether instant, periodic or based on an

event, such as a minimal amount of new data within the original data asset, the pipeline

is started.

3. The first step of the pipeline involves retrieving the original data asset from the data

source. This will be provided by a data broker in the first instance.

4. The next process involves extracting the data from the original format and applying a

data processing technique on the raw data. The result could involve the creation of

intermediate artefacts that would be needed for the next process.

5. The next process takes the output of the first process and applies the next (valid) data

processing technique according to the pipeline DAG.

6. The final data asset output is then pushed to the NGSI-LD Broker and the Offering

Sharing component that will exchange the asset with Data Consumers.

The above-described steps are presented mainly for streaming datasets, but a similar process

can be adapted for static datasets as well.

Mage.ai [66] is a platform that helps at streamlining data preparation, automating key tasks

such as cleaning, transforming, and feature engineering with machine learning algorithms. It

offers a user-friendly interface that caters to both technical and non-technical users, simplifying

data handling without the need for extensive coding. The platform also encourages team

collaboration, enabling multiple users to work together seamlessly on data projects.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 25 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

Additionally, Mage.ai’s flexible integration capabilities allow it to connect with various data

sources and machine learning tools. This flexibility is embodied in its modular approach to data

processing, which divides tasks into separate, customizable modules, enhancing the efficiency

and adaptability of the data preparation process.

The overall orchestration follows these steps:

• Define and submit the data processing pipeline.

• Trigger the pipeline based on specified conditions (instant, periodic, event-based).

• Retrieve the original data asset and process it through various stages (anomaly

detection, etc.).

• Export the final processed data for sharing with data consumers.

Figure 5: Mage.ai interface with sample demo flow for processing SEDIMARK data.

The pipeline presented in Figure 5 facilitates the loading, processing, and prediction of

SEDIMARK data, using different loaders based on the format of the input (raw) data and

converting them to the internal SEDIMARK format. The figure currently shows two loaders,

one using csv and the other one using NGSI-LD.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 26 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 6: Mage.ai orchestration for a simple training flow using SEDIMARK data.

Figure 6 shows how a simple flow for analysing a dataset can be configured, leveraging

Mage.ai’s capabilities for streamlined data handling. Starting with the data loading phase, the

pipeline retrieves the data (i.e. weather information, such as temperature forecasts), from an

NGSI-LD Context Broker, i.e. the Stellio context broker [12]. This data is then processed and

formatted, preparing it for the subsequent stages of the pipeline, which can be either data

prediction or any of the modules of the data processing pipeline, i.e. anomaly detection,

deduplication or value imputation. Mage.ai uses a common way to launch all underlying

components.

Finally, the pipeline concludes with the data export stage. Here, the results are integrated back

into the original dataset (depending on the user preferences). There’s also an option to export

this enriched dataset back to the NGSI-LD context broker, closing the loop in the data

processing cycle.

3.4 Data Processing Dashboard

Creating a Data Visualization dashboard that simplifies the complex data flows of the AI

training and prediction pipelines involves several key steps. The goal is to make the interface

intuitive and informative for users, regardless of their technical background.

The key, when designing this GUI is to highlight crucial information such as data sources,

model performance metrics, or transaction flows in an intuitive manner. This involves

integrating charts and graphs for visual representation of data like transactions, service results

like forecasts, alongside real-time updates to reflect the most current predictions.

The dashboard’s design prioritizes user-friendliness, with a clean layout that groups related

information together and employs colour coding and icons for quick recognition. Interactive

elements like filters and drill-down capabilities are essential for enhancing user engagement,

allowing users to delve deeper into specific data points or adjust views according to their

needs.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 27 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

Responsiveness is another crucial aspect of the dashboard design, ensuring accessibility

across various devices and screen sizes. Additionally, incorporating a feedback mechanism

allows for gathering user insights, which is vital for continuous improvement of the interface.

Behind the scenes, the dashboard is powered by web technologies and visualization libraries,

all integrated through APIs that fetch data dynamically from the pipeline. This technical setup

ensures that the dashboard is not only informative but also interactive and up to date.

Overall, the dashboard stands as a user-centric interface that distils intricate data processes

into a format that is accessible and actionable for a wide range of users, fostering better

understanding and decision-making based on the AI pipeline’s outputs. Figure 7 presents the

view of the wrappers over Mage.ai functionalities using Figma, which is a web application for

interface design [13].

Figure 7: Figma mock for the Data Processing Dashboard.

This is the initial view of how the user will be able to customize the data processing pipelines

by:

• The possibility to select the file/source of the data set. This would be a loader control

custom designed so that the user can view a preview of the data before continuing with

the process. The visualization is in Figure 8.

• The possibility to clean incomplete or redundant columns. This is depicted in Figure 7

with the magenta coloured block. Of course, many other actions can be implemented in

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 28 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

the data processing pipeline like outlier removal, redundant columns removal or any

other data cleaning algorithms.

• The yellow coloured block signifies the exporter of the data pipeline processing results

and this can be customized to either export the data to a Broker or another source or a

further pipeline.

Figure 8: Figma mock for the dataset visualisation.

Figure 8 shows what the user will see when clicking on the “preview” button of the Loader block.

Other such visualizations can be created to help the user understand the changes caused by

each of the intermediate step of the data pipeline. More details about the visualizations of the

data processing or other service visualizations, will be described in the deliverable

SEDIMARK_D4.5.

3.5 Data quality metrics

As previously stated, improved data quality is of the utmost importance to SEDIMARK, allowing

both for data providers to increase their revenue, and for the training of improved ML models

There has been a lot of research into data quality metrics and tools, which has resulted in four

main data quality “dimensions” that basically look at the structure of the dataset, without going

into much detail on the usability of the dataset for some specific purpose. SEDIMARK

acknowledges that most of the datasets that will be generated, processed and shared will be

mostly used for machine learning purposes. Data providers can use their datasets to gain

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 29 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

knowledge from them, extract predictions or use them to guide their decision-making

processes, while consumers can use the datasets i.e. for research purposes.

The four main data quality dimensions considered in the literature [9],[14] are accuracy,

completeness, consistency and timeliness. However, SEDIMARK extends the data quality

dimensions and defines more detailed and ML-related data quality metrics, to give (i) data

providers more insights into their datasets and (ii) researchers and data consumers more in-

depth information regarding how useful the datasets might be for them. Considering the fact

that SEDIMARK assumes two different types of datasets, data quality metrics can be split into

two categories: (i) metrics per data point, useful for data streaming datasets and (ii) overall

dataset metrics, useful mainly for static datasets. However, some overall dataset metrics are

computed based on calculations using the metrics per data point.

3.5.1 Generic data quality metrics

The following are the considered generic metrics for data quality within SEDIMARK:

3.5.1.1 Accuracy

This is considered as the most important metric for the quality of a whole dataset, but usually

it is the most difficult to measure, since it assumes that there is some knowledge about the

“correct” points or the model of the “real world” entity that the dataset represents, so that it is

possible to measure the distance of the dataset points from the “real-world”. Usually, this

requires external input to measure. Inspired by [9], SEDIMARK defines the following metrics:

• Datapoint Accuracy: This indicates how close the measurement value is to the ground

truth. The equation below shows the distance between the observed value and the

reference value, taking the units of the observation value:

𝐷𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = |𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑉𝑎𝑙𝑢𝑒 − 𝑟𝑒𝑓𝑉𝑎𝑙𝑢𝑒|

• Dataset Accuracy: There have been many different proposals about ways to measure

data accuracy for an entire dataset, but, considering the metric about the datapoint

accuracy defined above, usually the equation used is:

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 "𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒" 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

However, this assumes that there will be a way to assess the “accuracy” of the

observations in the dataset, probably using the “Datapoint Accuracy” metric, if the

reference value is known.

3.5.1.2 Completeness

The Completeness metric can be split into two separate metrics, based on if it is a static or a

streaming dataset.

• Streaming completeness: Streaming completeness represents the number of missed

measurements within a given time window. The equation below incorporates three key

parameters: rate, inter-arrival time value; n, number of missed measurements

observed; and window, time window of observation. This completeness parameter can

be expressed either as a part per unit or as a percentage:

𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =
𝑤𝑖𝑛𝑑𝑜𝑤 − 𝑛 ∙ 𝑟𝑎𝑡𝑒

𝑤𝑖𝑛𝑑𝑜𝑤

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 30 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

• Static Dataset Completeness: This is a metric inspired by [9] that measures if a

dataset is complete or if there are some records or observations that are missing either

as a whole or parts of the entries. Considering that a dataset might comprise entries

that have different fields (columns), missing values can be either complete rows of

entries or some specific fields in a row. A measure of completeness is given in the

following equations:

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠_1 = 1 −
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑓𝑖𝑒𝑙𝑑𝑠 𝑝𝑒𝑟 𝑒𝑛𝑡𝑟𝑦

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑒𝑙𝑑𝑠

which sums the number of missing cells in a table over the total number of cells

or

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠_2 = 1 −
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑒𝑛𝑡𝑟𝑖𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑒𝑛𝑡𝑟𝑖𝑒𝑠

which sums the number of missing rows in a table over the number of expected rows.

or

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠_3 = 1 −
𝑛𝑢𝑚 𝑜𝑓 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑓𝑖𝑒𝑙𝑑 𝑚𝑖𝑠𝑠𝑖𝑛𝑔

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑡𝑟𝑖𝑒𝑠

which sums the number of rows with at least one cell missing over the total number of

rows.

The usage of the respective metric depends on the target usage of the dataset.

3.5.1.3 Precision

Precision refers to the dispersion of values within a dataset, typically assessed through the

dataset's standard deviation. The equation below shows the standard deviation formula used,

where the variables involved are: µ, mean of the values in the dataset; n, number of samples

in the set; and 𝑥𝑖, the i-th element of the dataset. The precision outcome aligns with the units

of the dataset’s values:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = √
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1

𝑛

3.5.1.4 Consistency

Normally consistency is measured for datasets that are stored on different systems and is used

to measure the number of records that match across the different systems. However,

SEDIMARK inspired by [9] adopts a different interpretation of consistency, which measures

how well the data points relate to their semantic rules or constraints. In this respect, the

consistency metric uses the following equation:

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑟𝑢𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑡𝑟𝑖𝑒𝑠

3.5.1.5 Timeliness (Recency)

This metric normally measures how “current” or “recent” is a data entry for a specific task at

hand. For example, when dealing with measurements from sensors, the timeliness of the data

point can be measured on the difference between the current time and the timestamp when

the measurement was taken. Within SEDIMARK, timeliness is measured via the following

equation inspired by [9]:

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 31 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒𝑠𝑠 = 𝑚𝑎𝑥(0, 1 −
𝑅𝑒𝑐𝑒𝑛𝑐𝑦

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦
)

where

𝑅𝑒𝑐𝑒𝑛𝑐𝑦 = (𝑡𝑖𝑚𝑒 𝑜𝑓 𝑠𝑡𝑜𝑟𝑎𝑔𝑒) − (𝑡𝑖𝑚𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑤𝑎𝑠 𝑙𝑎𝑠𝑡 𝑢𝑝𝑑𝑎𝑡𝑒𝑑)

and Volatility is the time length for which data remain valid.

Timeliness can also be calculated in data streaming scenarios in a recursive way by calculating

a weighted average between the previous and the newly calculated mean update time. This

allows consumers to appreciate the age or punctuality of data items. The equation below

involves several parameters: α, correction factor belonging to the range [0,1]; rawTimeliness,

raw value of the newly calculated update time; meanTimelinesi-1, mean value of the update

time of the previous iteration; and meanTimelinessi, mean value of the update time calculated

in the current iteration.

𝑚𝑒𝑎𝑛𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒𝑠𝑠𝑖 = 𝛼 ∙ 𝑚𝑒𝑎𝑛𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒𝑠𝑠𝑖−1 + (1 − 𝛼) ∙ 𝑟𝑎𝑤𝑇𝑖𝑚𝑒𝑙𝑖𝑛𝑒𝑠𝑠

3.5.2 ML-based data quality metrics

Apart from the above mentioned “generic” data quality metrics, SEDIMARK defines and uses

quality metrics that are more oriented towards the machine learning usage of the datasets.

3.5.2.1 Uniqueness

This metric shows how many unique records or labels (categories) exist in each of the features

of the dataset.

3.5.2.2 Consistency

This metric is computed as presented above, comparing the values against a predefined range

of values, which is assumed to be defined by the data provider.

3.5.2.3 Class parity

This metric is used for measuring the imbalance between the different classes/labels for each

feature of the dataset. Within SEDIMARK, class imbalance is measured using three metrics:

• Imbalance ratio, which is the most commonly used metric in the literature and simply

calculates the ratio of the sample size of the majority class over the sample size of the

minority class, using the following formula when there are only two classes in the sample

set:

𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠

When there are multiple classes, the calculation of the imbalance ratio becomes more

complicated and there have been multiple approaches to doing it, (i) by just using the

majority and the minority class, (ii) by summing the minority classes or (iii) by using

entirely different metrics specifically designed for multiclass problems, such as the

“imbalance degree” [15].

• Normalised cross entropy [22],[23], which measures the imbalance of the classes in a

feature of a data set by computing the normalised entropy of the class sizes, measured

by:

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 32 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐶𝑙𝑎𝑠𝑠 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑁𝐶𝐸) = −
1

𝑙𝑜𝑔(𝑐)
∑

𝑛𝑘

𝑛
𝑙𝑜𝑔

𝑛𝑘

𝑛

𝑐

𝑘=1

• Likelihood ratio imbalance degree (LRID) [24], which was proposed to handle multi-

class imbalance based on the likelihood ratio test, computed by:

𝐿𝑅𝐼𝐷 = −2 ∑ 𝑛𝑘𝑙𝑛
𝑁

𝑐𝑛𝑘

𝑐

𝑘=1

3.5.2.4 Regularity

This is measured for time-series datasets as the mean difference between consecutive entries

of timestamps in the dataset. This can show i.e. if the dataset has entries taken at regular

intervals or not and can be used also as metric of time consistency and of time completeness.

3.5.2.5 Time Completeness

This metric is basically used for time-series datasets that are gathering measurements at fixed

intervals. The regularity of the dataset can be used to compute if the dataset is complete in the

given time period of the measurements by comparing the number of observations against the

number of expected observations. For example, if there’s a sensor that measures temperature

every 10 minutes, the expected number of observations within 1 day is 6*24=144 observations.

If the dataset for that day consists of 110 observations, it means that the completeness is

110/144=76.39%. So, the formula to compute time completeness in SEDIMARK is the

following:

𝑇𝑖𝑚𝑒 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

where the “number of missing observations” is calculated using the regularity and finding out

gaps between consecutive measurements that are bigger than the median difference between

consecutive measurements.

3.5.2.6 Feature Correlation

This is measured by comparing couples of features of the dataset and measuring how

well/badly they correlate with each other. Taking the average of all couples gives the average

feature correlation of the dataset. High correlation between features shows a linear

dependency, so this metric can be exploited by users to remove highly correlated features from

input to ML model training processes, since they will have very similar effect. To measure that

the “corr()” function of pandas data frames is used.

3.5.2.7 Collinearity

This metric measures the dependency of couples of features on a regression model. To

measure that, inspired by [18] SEDIMARK built a function that aims to predict each feature by

using the other “N-1” features and predict the Pearson correlation between the prediction

results.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 33 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

3.5.2.8 Class Overlap

This metric measures the overlap of classes/labels within a feature and how they can be

differentiated (or not) using the other features. Class overlap occurs when instances of some

of the labels of a feature are mapped on the same area of a feature space, showing that they

have many similarities. Although there are many metrics used to measure class overlap,

currently SEDIMARK uses Fisher's discriminant ratio as defined in [25],[26] due to its simplicity.

More advanced metrics will be considered for the next version of the tool.

3.5.2.9 Unalikeability

This metric measures how similar or different are the values within a feature column.

SEDIMARK adopts the unalikeability coefficient as described in [28] using the following

equation:

𝑈𝑛𝑎𝑙𝑖𝑘𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − ∑ (
𝑘𝑖

𝑛
)2𝑐

𝑘=1 ,

where 𝑘𝑖 is the number of samples of class “i”, “n” is the total number of observations in the

feature column and “c” is the number of classes of the feature column.

3.5.2.10 Number of outliers

This metric uses the output of the outlier detection models of SEDIMARK’s data curation

pipeline and measures the number of values detected by the model to be outliers or noise.

3.5.2.11 Artificiality

As it is critical to improve the quality of data assets, it is also important to keep track of the

proportion to which a data asset being produced is by artificial (synthetic) processes rather

than occurring naturally. This is especially the case in relation to handling original data assets

with missing data points. Inspired by [16], a measure for this can be as follows:

𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙𝑖𝑡𝑦 =
𝐴𝑠𝑦𝑛

𝐴𝑠𝑦𝑛 + 𝐴𝑜𝑟𝑔

Whereby Aorg is the number of the original data in the dataset, and the Asyn is the amount of

artificial data that have been generated through a synthetic process.

3.5.3 Future contributions

In future versions of the SEDIMARK Data Quality Evaluation modules, more metrics will be

considered and developed, i.e.:

• Stationarity: Using the Augmented Dickey-Fuller Test [17], this metric tests the

hypothesis that a unit root is present in the data. A lower metric score suggests that the

series is more likely to be stationary.

• Decomposition: For univariate time series, the function decomposes data into its trend,

seasonal, and residual components, offering deeper insights into its underlying patterns

[19].

• Entropy: Represents the randomness or unpredictability in the series. A higher entropy

value suggests more unpredictability [20].

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 34 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

• Variance Inflation Factor (VIF): Relevant for multivariate time series, VIF [21]

measures multicollinearity, indicating how much the variance of an estimated regression

coefficient increases when the predictors are correlated. A high VIF signifies that the

feature can be linearly predicted from others.

This assortment of metrics gives a thorough profile of time series data, aiding in understanding

its behaviour, patterns, and characteristics. For unidimensional signals a frequency analysis

can be used. This is useful particularly for categorical data and involves counting the number

of occurrences of each category or class. It helps in understanding the distribution of categories

within the data. Another technique well fitted to understanding the underlying structure is

Principal Component Analysis (PCA). This is used to reduce the dimensionality of large

datasets, increase interpretability, and minimize information loss. Metrics like algorithmic

complexity can also provide insights into the structural complexity of the dataset. Beyond basic

decomposition, more complex methods like STL (Seasonal and Trend decomposition using

Loess) provide a more robust understanding of time series data. An alternative to correlation,

PPS (Predictive Power Score) can capture non-linear relationships between variables and is

useful in understanding the predictive capability of each feature.

Additionally, future versions of the Data Quality Evaluation modules will also include

visualisations for these metrics, i.e.:

• Heatmap to visualize the correlation matrix between variables.

• Bar chart, ideal for categorical data, showing the frequency of each category.

• Scatter plot for visualizing potential outliers in a continuous dataset.

• Histogram or line plot to visualize algorithmic complexity or other complexity metrics.

• Violin plot that combines aspects of box plots and density plots, ideal for visualizing the

distribution and its quantiles.

3.6 Data Profiling and Data Quality Evaluation

Data Profiling is a functional component of the SEDIMARK architecture that provides a single

solution for users of the data processing pipeline to gather insights about the quality of their

data. Data Profiling is usually the process of examining, analysing and presenting useful

summaries to the users so that they can identify problems with their data and find out ways to

improve them. There has been a lot of work done to build data profilers in the past, but most

of the existing tools are either dedicated to specific types of data or are focused on general

descriptions of datasets, without going into too much detail about the usability of the datasets

for machine learning purposes.

Example of tools for data profiling are the following:

pandas describe(): Pandas is one of the most used libraries in Python for handling data

frames and performing data analytics tasks. Pandas offers the “describe()” function to provide

descriptive statistics about the data frames, analysing both numerical and categorical data

series. The SEDIMARK Data Profiling component exploits the pandas “describe” function to

get a quick overview of some statistics of the dataset, including number of rows, unique rows,

mean values, etc.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 35 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

ydata-profiling [29]: This is a python library that provides simple ways to get statistics about

datasets, featuring an easy to use interface and graphs, together with a large number of

metrics, including both general statistics and more data-analysis oriented statistics.

IBM data quality [30]: IBM provides an API for assessing the quality of data, including data

profiling. It provides insights about class parity, class overlap, data homogeneity,

completeness, outlier detection, etc. However, the API and the backbone code for computing

these statistics are not open source.

The Data Profiling component of SEDIMARK is part of the Data Curation Enabler as discussed

in SEDIMARK_D2.2 [3] and shown in Figure 3. The Data Profiling component is considered

as the first step in data curation, taking as input the dataset formatted in the internal

SEDIMARK format (which is a new data source class as a wrapper above a pandas data

frame). The Data Profiling component is tightly integrated with the Data Quality Evaluation

component which assesses the quality of the incoming data. In the current implementation,

both components are integrated into a single python module that does both the profiling and

the quality assessment using the metrics described in the previous section.

Within SEDIMARK, the Data Profiling module is split into two parts:

• Providing generic statistics about the dataset (which corresponds to the Data Profiling

component):

o Number of features.

o Number of entries (observations).

o Total number and percentage of missing cells.

o Total size of the dataset and size per feature column.

• Providing feature-specific statistics based on the data type of the feature column (which

corresponds to the Data Quality Evaluation component).

The feature-specific statistics of the dataset are based on the data type:

• Numerical columns:

o Percentage of missing, duplicate, unique cells.

o Min/max/average/std/median values.

o 25%, 50%, 75% percentiles, which shows the value point below which lie the 25%, 50%

or 75% of the data values.

o Histogram, which shows the frequency of the distribution of the data points across the

range of the values.

o Consistency (data within ranges that are pre-defined).

o Skewness, which measures the shape of the distribution of the feature, and basically

shows if the distribution is symmetric or asymmetric. It can be negative (showing that

the tail of the distribution is on the left side), zero (symmetric distribution) or positive

(showing that the tails is on the right side).

o Kurtosis, shows the shape of the distribution, with a normal distribution having a value

of 3. Values less than 3 mean that the distribution is platykurtic, while a value greater

than 3 means that the distribution is leptokurtic.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 36 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

o Mean absolute deviation, which is the mean absolute distance of each data point from

the mean of the distribution.

• Boolean columns:

o Name, type, missing, duplicates, unique.

o Label frequency.

o Imbalance statistics.

• Object (string) columns:

o Name, type, missing, duplicates, unique.

o Min/max/average/median length of string and the histogram.

o Label frequency per label (assuming it's a label/class columns).

o Imbalance statistics (imbalance ratio (IR), imbalance degree, log likelihood index,

tangential imbalance index, normalised entropy).

o Class overlap, measured by Fisher's discriminant ratio: higher values == higher

complexity - classes can't be differentiated by the features.

o Unalikeability, as a measure of how similar/different the values in the column are (0 ==

all the same, 1==all different).

• Datetime columns:

o Name, datatype, missing, duplicates, unique.

o Minimum/maximum data difference between consecutive values.

o Mean, median, interquartile range (iqr), standard deviation (std), regularity

(mean/median difference between consecutive dates) for the column values.

o Histogram of date differences.

o Regularity.

o Number of missing values based on regularity.

o Completeness based on regularity.

Streaming data profiling

For streaming data, the profiling of the data and the evaluation of their quality within the

SEDIMARK streaming pipeline, relies on a trusted external source for accuracy (AEMET [27]

in the case of temperature in the city of Santander), and on an NGSI-LD Context Broker with

support for storing temporal values for the rest of the dimensions. The output of the streaming

data quality module is based on an aggregation of the values of the assessed dimensions,

selected upon the user's request. This way, a data point quality characterisation is obtained,

allowing the user or the consuming application to have all the necessary knowledge to decide

which pieces of data to use or not, i.e., whether they meet their quality requirements or not.

Figure 9 shows a representative scheme of the module depicting the input needed and the

outputs expected.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 37 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 9: DQ Dimensions Module for streaming environments

3.7 Data Curation

As shown in Figure 3, data cleaning within SEDIMARK consists of four main modules: (i) outlier

detection, (ii) noise removal, (iii) deduplication and (iv) missing value imputation. Aiming to

have a consistent and homogeneous way to execute the functions in these modules, so that it

is easier to be launched by the Data Processing Orchestration, all modules have been

developed in a similar way, as it is depicted in the next Figure 10. All modules have the same

predefined way to get the data as input and these are being managed by a “pre-processing”

function, which transforms the data to the format required by the internal cleaning module.

Then, the processed data are forwarded to the cleaning algorithm, which does the cleaning

job and forwards the results to the “post processing” module that creates the output data in a

predefined format to be handled by the Data Processing Orchestration. Depending on the user

configuration, the output data can be either the “cleaned” data (i.e. with the outliers or the

duplicates removed) or the original input dataset with annotations, flagging the entries that

were found to be outliers, noise or duplicates or the entries that were imputed.

Figure 10: A generic SEDIMARK data cleaning module.

3.7.1 Outlier Detection

An AI-Based Outlier Detection (OD) tool harnesses the power of machine learning to identify

anomalies in multi-dimensional data. Utilizing advanced algorithms like the Isolation Forest

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 38 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

and One-Class SVM, outlier detection scans through datasets to differentiate regular data

points from outliers. Combining several approaches in a common module provides a robust

mechanism for outlier detection, allowing data scientists and analysts to clean their datasets

effectively and ensuring the integrity of any subsequent data analysis or machine learning

model training.

SEDIMARK considers outlier detection as a key mechanism to improve the quality of datasets,

reducing the amount of low-quality data, while contributing to reducing the size of datasets and

in the end improving the machine learning models built on top of these cleaned datasets.

Considering the type of dataset, SEDIMARK has developed components for outlier detection

on both offline and streaming datasets, as discussed in the next paragraphs.

3.7.1.1 Outlier detection for offline datasets

The goal of Outlier Detection (OD) in a data pipeline is to identify and potentially remove data

points that are highly anomalous and appear to be generated by a data generation process

differing from the one that the data scientist wants to model. The presence of anomalies in

data can cause severe problems for downstream ML models, and can also indicate that the

data has been corrupted or even maliciously poisoned [44] SEDIMARK will aim to either

remove or clearly flag as many anomalies as possible within the datasets published to its

marketplace, based on the configuration or preferences set by the data provider.

There are numerous algorithms for tabular anomaly detection, with popular approaches

including Local Outlier Factor (LOF), One class Support Vector Machine, and recently deep

learning based approaches such as Deep Support Vector Data Description (SVDD) [40] or

classifying anomalies per their autoencoder reconstruction error [37]. These algorithms can be

classified broadly as based on a) a statistical model, b) density c) distance d) clustering e)

isolation f) ensembles and g) subspaces [31]. However, the same outlier detection methods

cannot be naively applied in the case of time series data, where the sequential dependency

between data points introduces an extra dimension that can be key for recognising outliers

[42]. As such, while tabular anomaly detection algorithms will most often work on the raw data

points, in the case of time series data the algorithms generally process chunks or trajectories

of the data, classifying these as anomalous.

An additional problem in anomaly detection is that the OD algorithms themselves generally

output only raw outlier scores and probabilities, with classification determined by the

application of a threshold. While it is customary to set this according to an a priori assumption

about the dataset (e.g., that 1% will be outliers) the number of outliers in a dataset is not

generally known by the data scientist cleaning the data. As such a number of techniques such

as AUC Percentage (AUCP) [41], gamma Gaussian Mixture Models (gammaGMM) [39] and

Generalised Extreme Studentized Deviation ESD (GESD) [32] exist to automatically determine

this threshold automatically by processing the raw anomaly scores.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 39 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 11: SEDIMARK outlier detection module.

The SEDIMARK outlier detection module is built in a generic way so that it can easily

incorporate a number of existing libraries, avoiding the effort of re-implementing well-known

outlier detection algorithms from scratch. The SEDIMARK outlier detection module currently

makes use of two key libraries for outlier detection, namely PYOD [49] for the case of tabular

data, and TODS [38] for time series data. Both PYOD and TODS include a large number of

unsupervised OD approaches, such as traditional machine learning methods like KNN based

methods [33], one class Support Vector Machines (SVMs) [34], or simple autoregression

models [35] in the case of time series, as well as modern deep learning algorithms such as

autoencoders, or in the case of time-series data, Long Short Term Memory (LSTM) based

methods [36]. In addition, SEDIMARK makes use of the PyThresh library [48] to automatically

set anomaly thresholds, with included methods such as AUCP, gammaGMM and GESD.

As such, the Anomaly detection module follows the flow shown in Figure 11 where input data

first undergo pre-processing to be PYOD/TODS compatible, and then pass through outlier

detection and thresholding algorithms. After that, the data are post processed, where they are

either annotated with outlier descriptors (a boolean indicating threshold result, and the raw

outlier score), or the outliers are discarded.

At present, SEDIMARK includes the following algorithms from PYOD:

• ABOD: Angle based outlier detection, classifying anomalies based on the variance of

their cosine scores to their neighbours.

• AutoEncoder: Neural anomaly model, classifying data points according to their

reconstruction error when passed through an autoencoder.

• Feature Bagging: Takes the average of several base detectors, trained on subsets of

the data features.

• HBOS: Histogram Based Outlier Selection, assumes feature independence and then

constructs histograms to infer the extent to which data points are outliers.

• IForest: Isolation Forest, which classifies outliers based on their average path length in

a forest of partition trees.

• KNN: A K-Nearest-Neighbours based approach which takes a data points distance to its

kth neighbour as an estimate of its outlierness.

• LOF: Local Outlier Factor, which compares the densities of data points with respect to

their neighbours.

• MCD: Takes the Minimum covariance distance in a gaussian distributed dataset as the

degree of outlierness.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 40 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

• OCSVM: One-class Support Vector Machine, which fits a decision boundary around the

assumed normal training data.

• PCA: Projects the data using Principal Component Analysis, taking the projected

distance of a data point as its degree of outlierness.

• DeepSVDD: Deep One Class classification for outlier detection, which encloses learned

representations of the data within a hypersphere, with the distance from the centroid

then used as the degree of outlierness.

At present, SEDIMARK includes the following algorithms from TODS:

• MultiAutoRegOD: A simple autoregressive model, classifying data points according to

their error.

• LSTMOD: A recurrent neural network outlier detection model.

A drawback of the traditional approach to outlier detection is that it requires either domain

expertise, or a number of labelled outliers, in order to be able to properly assess and thus

finetune an outlier detection pipeline component to a new dataset. Outliers can themselves

often be highly domain dependent, and thus without expert involvement it is difficult to assess

whether retrieved data points are in fact outliers or not.

To this end, SEDIMARK aims to build upon a number of recently emerging techniques for

automating the model selection process in unsupervised outlier detection. On the one hand, a

small number of papers [43],[45] have investigated the possibility of applying meta-learning to

the model selection process. In these approaches, generally a large number of differently

parameterised models are trained and evaluated on a large number of publicly available

datasets that themselves have ground truth anomaly labels available. Then datasets are mined

for statistical characteristics that can be utilised as descriptive features. A meta-learner, such

as a decision tree or neural net is then trained to predict the performance of each model class,

given these features as input.

On the other hand, another line of work investigates extracting features that can better serve

as proxies for anomaly performance. Putina et. al. [47] employ three loose proxies for anomaly

performance and use these to guide the AutoML process. Goswami et. al. [46] employ a more

advanced approach, whereby they identify a broader class of surrogate anomaly performance

metrics and combine them with a rank aggregation approach to specifically target anomaly

detection for time series data. Going forward, SEDIMARK will seek to integrate these

approaches into the OD component of the data pipeline, thus progressively automating the

need for human involvement in OD model selection.

3.7.1.2 Outlier detection for data streams

In the realm of data cleaning, streaming data processing presents unique challenges

compared to offline (batch) data processing. Streaming data cleaning involves the continuous

and real-time cleansing of data as they are generated, necessitating immediate actions to

ensure data quality and reliability. This is in stark contrast to offline data cleaning, where data

are accumulated over time and cleaned in bulk. The critical difference lies in the immediacy

and ongoing nature of streaming data cleaning: it requires rapid and continuous cleaning

mechanisms, which are crucial for applications demanding quick and accurate decision-

making, such as real-time monitoring systems, fraud detection, and live financial trading. On

the other hand, offline data cleaning is more suitable for scenarios where immediate data

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 41 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

quality is not as critical, allowing for more thorough and comprehensive cleaning processes for

large datasets, albeit with some delay in data readiness. Streaming data cleaning demands

high scalability, performance, and robust error handling due to its dynamic nature, while offline

cleaning allows for more extensive and deep cleaning processes, suitable for large-scale data

analyses where time is not a pressing factor.

River [50], a specialised Python library for online machine learning, is particularly adept at

handling the complexities of streaming data. It provides a range of tools and algorithms for

real-time analysis and processing, making it an ideal choice for applications that require

immediate, continuous data handling, such as in Internet of Things (IoT) devices, financial

market analysis, or web activity monitoring. In the context of SEDIMARK, River plays a crucial

role in the data cleaning process for streaming data. Recognizing the inherent challenges in

managing and maintaining the quality of streaming data, SEDIMARK leverages River's

advanced functionalities for effective data cleaning. This includes a comprehensive suite of

outlier detection methods, each tailored to specific types of data and anomalies.

For outlier detection, SEDIMARK includes several robust methods inherited from River:

• GaussianScorer: This method utilises a Gaussian distribution to score anomalies,

identifying data points that significantly deviate from the expected distribution.

• Half-Space Trees (HST): Ideal for high-dimensional data, HST uses space-partitioning

trees to detect regions with lower data point density, indicating potential anomalies.

• LocalOutlierFactor (LOF): LOF measures the local density deviation of a data point

compared to its neighbours, making it effective for identifying local outliers within the

data.

• OneClassSVM: This method employs a one-class support vector machine to isolate

outliers, particularly useful in datasets where outliers and normal data points are

distinctly separable.

• QuantileFilter: It filters out data points that lie beyond defined quantile ranges, based

on a scoring function, effectively identifying extreme values (values that are above a

specific percentage).

• StandardAbsoluteDeviation: This technique scores outliers based on their absolute

deviation from the mean, relative to the standard deviation, ideal for datasets where such

deviations are indicative of anomalies.

• ThresholdFilter: It applies a predefined threshold to identify anomalies, suitable for

situations where the threshold for anomalous behaviour is known.

The streaming outlier detection module of SEDIMARK follows the same concepts as discussed

in the main data cleaning section, namely it is generically built as a wrapper on top of River to

allow the easy execution of the cleaning models from the Data Processing Orchestration. In

the end, the output of the module includes the processed data point (or batch) with the detected

outliers flagged as such.

3.7.2 Noise removal

The IoT process generates an enormous amount of data. When the data collected from IoT

sensors is of poor quality, due to measurement error or environmental factors such as

atmospheric or electromagnetic disturbances, it will create noisy data (random undesired

fluctuations or errors) and low signal-to-noise ratios (SNRs). This leads to distortion of the

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 42 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

original signal, difficult analyses and interpretations of the base patterns, reduction in the

quality of predictions, and in fine misdirection of Smart Services. Beyond the IoT domain, noisy

data exists in many application domains, such as communications, acoustics, or biomedical

engineering [51].

Although the noisy values can be reduced using high precision sensors with inbuilt noise

reduction mechanisms, such sensors come at a cost and that limits their deployment. Hence,

noise reduction or cancellation is a crucial step in signal processing, to produce quality

diagnostics and forecasting results. Noise cancellation techniques enhance the signal in the

original form by removing unwanted elements from the measurements [52].

The complex and misunderstood causes of noise in measurements, and the time-varying

environment, result in multiple kinds of noise, to name a few: Gaussian noise, white noise,

periodic noise, impulse noise, coloured noise, and heteroscedastic noise. Noise prediction for

noise cancellation is hence a very arduous task and should ideally consist of a system that can

automatically adapt to the environmental changes [51]. The challenge is to detect the actual

useful signals within a strongly noisy background, particularly when the noise is non-stationary.

If the chosen processing method can effectively predict and eliminate the noise, then the result

is ideal. Otherwise, the noise will not be cancelled, and the original signal will be weakened

[51].

There are two categorical approaches to increase the SNR [53]: real-time (or online / streaming

/ incremental) and offline (bulk) processing. Concerning offline processing, by far the most

popular approach is Principal Component Analysis (PCA) or Independent Component Analysis

(ICA), however, offline methods require that the SNR be constant over time (stationarity),

suppose Gaussian systems, and demands high computational power. Real-time algorithms,

on the other hand, filter the signals as they stream but still require prior knowledge of the noise

to tune the filter parameters [53], and are poorly suited for non-stationary, non-Gaussian,

complex signal and noise systems; adapt poorly to abrupt changes in dynamics or outliers,

introduce a lag in the processed signal, and produce loss of fine details and high-frequency

information [53].

There exists a very broad range of methods and techniques that try to cancel or mitigate noise

in time series data. The choice of the method depends on the specific characteristics of the

noise and data system, the presence of trends, seasonality, the SNR level, the objectives of

noise reduction. Traditional noise removal methods include: (i) smoothing moving averages

(Simple Moving Average (SMA), Exponential Moving Averages (EMA), Weighted Moving

Averages (WMA)), (ii) filters (Kalman, Wiener, Total Variation Denoising), (iii) statistical

analysis models (PCA, ICA), (iv) spectral analysis models (Wavelet Transform, Fourier

Transform (FFT), Singular Spectrum Analysis (SSA)), (v) Autoregressive models

(Autoregressive Integrated moving averaged (ARIMA) or Seasonal Autoregressive Integrated

moving averaged (SARIMA)), and (vi) neural networks (NN) (Autoencoders such as Variational

Autoencoders (VAEs) and Denoising Autoencoders, Recurrent NN (RNNs) such as Long

Short-term Memory (LSTM) and Gates Recurrent Unit (GRU), Convolutional NN (CNNs),

Generative Adversarial Networks (GANs), Support Vector Machines (SVMs)).

In practice, several of these (base) models are combined using ensemble methods (ex.

Gradient Boosting, Adaptive Boosting, Random Forest) to reduce more effectively the noise in

time series. These combine predictions from several base models (also called weak learners)

to generate a stronger more accurate final model.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 43 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

An example of a combination of base models was shown by [54] who proposed to combine K-

Nearest Neighbours (KNN) algorithm, to classify the error/noise in data and compute the

transition matrix, and the Kalman Filter (KF) algorithm to predict the final value using the

transition matrix. This method was compared with state-of-the-art “base” algorithms and

outperformed by maximum 30% their accuracy.

Such offline batch methods have the disadvantage of being computationally intensive and built

on suppositions that parameters such as noise characteristics are constant [53]. To overcome

these limitations, the best way to effectively eliminate background noise from streaming real-

time data is to use adaptive noise cancellation technology [51],[54]. Adaptive noise

cancellation filters are widely used in communication and signal processing systems. They

offer reduced computation, robust implementation, and can automatically adapt to changes in

the external environment and the various noise profiles, without knowing the statistical

characteristics of the input signal to achieve the best filtering effect. They are particularly

effective in instances where the noise profiles are non-stationary or unknown in advance.

A comparison of three popular adaptive filtering algorithms used for real-time noise reduction

is given in [51]: (1) Least Mean Squares (LMS) filter: Minimizes the error between the clean

signal and the filter output. It is limited in the occurrence of outburst interferences.; (2)

Normalized LMS (NLMS) filter: Normalizes the filter coefficients depending on the input signal’s

energy. Useful when the amplitude varies significantly; (3) Recursive Least Squares (RLS)

filter: Minimizes the sum of errors with time. Outperforms LMS and NLMS techniques due to

its high convergence speed and efficiency.

In conclusion, the most efficient and precise results for noise removal of streaming data within

a dynamic and ever-changing environment is to perform online adaptive processing, with the

possibility of using combinations of base algorithms in ensemble learning methods. The best

choice depends on the specific characteristics of the time series data, the current noise profile,

the underlying signal patterns, the levels of quality and adaptability required.

Examples of Python libraries that perform adaptive noise cancellation or mitigation and that

will be tested are:

• padasip [96]: Performs filtering, predictive and reconstruction for adaptive real-time

signal processing.

• adaptfilt [97]: Adaptive filtering for LMS, NLMS, RLS and more.

• MetaAF: Control adaptive filters with neural networks [98]: Adaptive filtering for LMS,

NLMS, RLS, GRU and more.

• Noisereduce [99]: Adaptive filtering using spectral gating.

• PyWavelets [100]: Wavelet filtering of 1-D and 2-D signal.

3.7.3 Deduplication

Real world datasets can often include a large number of duplicate records, for instance due to

incorrect data entry or errors during the data collection process. This presents a pernicious

problem for data scientists seeking to model the underlying data distribution, as the duplicates

can often be hard to detect, and can often even require expert evaluation, while skewing

statistics and causing problems for the evaluation of downstream tasks. Broadly speaking, the

task of data deduplication aims to match pairs of records that are likely to be duplicates.

Generally, this is accomplished by introducing some notion of similarity between record pairs,

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 44 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

either by utilising a set of user specified rules, or with e.g. an ML classifier. The records can

then be clustered according to this similarity metric. Data deduplication is generally considered

to be a demanding computational problem, given the naive need to compare every pair of

records within the dataset with each other. Also, often there is only a very small amount of

labelled ‘training data’ to build an ML approach. More advanced recent approaches, such as

ActiveClean [55] seek to involve human input in guiding an ML process, by for instance having

an algorithm iteratively request labels for the samples about which it is least certain.

In its current state, SEDIMARK makes use of the record-linkage python library [56], which

relies upon user specified rules for data deduplication. These include e.g., setting specific

metrics for string similarity (e.g., Jaro-Winkler or Levenshtein distance) and allow the

computing of how similar two records are to one another across a number of fields, with a

threshold then used to determine whether the records are duplicates or not. A downside of this

process is that it requires at least some human assessment of the dataset, and the choice of

which fields are likely to be worth inspecting for duplicate comparisons.

At this stage, it is unclear how to progress towards an automated data pipeline, as for instance

many of the available machine learning data deduplication methods require either labelled

data, or in the case of dedupe [70] (Active Learning), a human evaluator must assist the

algorithm in classifying low certainty pairs. In line with the work on AutoML below, SEDIMARK

intends to work on further automating this process. This might be done in conjunction with

information available from the NGSI-LD data models used in the project - perhaps allowing it

to be inferred as to which fields would serve as the best candidates for deduplication matching.

Figure 12: Comparison of full and block indexing methods.

As mentioned previously, one factor that significantly affects the performance and efficiency of

a data deduplication algorithm is the indexing method used. In a naive ‘full’ implementation, all

records within the dataset/database are compared against one another, which makes the

complexity O(n2), but this can be greatly reduced by the choice of an appropriate heuristic and

method for retrieving likely pairs. The record_linkage library allows for the use of Block indexing

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 45 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

- only comparing blocks of records that share a certain attribute in common, and the additional

SortedNeighbourhood indexing method, which allows the blocks to also include records within

e.g. a short edit distance. As shown in section 5.3.2 indexing methods greatly increase the

speed of the procedure, but with a resulting loss in terms of recall, as less potential matches

are considered. A comparison of full and block indexing methods is given in Figure 12. The

raw data is shown on the left, with letter and number representing two features. In the middle,

n2 comparisons are made between the data points. On the right, as the data points are indexed

by letter, much less comparisons are made.

3.7.4 Missing Value Imputation

There are numerous reasons why missing values, or incomplete records, may appear in a

dataset, ranging from problems with the database that stores them, to network issues or faulty

data collection or entry. These missing values pose a severe problem to downstream ML

algorithms, which struggle to effectively handle NaN entries. While, in the case that the number

of missing values is small, the incomplete entries can simply be removed, above a certain

threshold this will impact the performance of any model trained on the resulting data [57]. Thus,

a popular area of research considers the correct method for imputing or replacing the missing

entries with their likely real values. Numerous methods exist for missing value imputation,

targeting multiple different types of data. They can generally be classified as either statistical

(e.g. Mean/Mode imputation, Linear/Logistic regression, or singular value decomposition) or

ML based techniques [57]. In general, ML based missing value imputation methods will treat

imputation as a classification or regression problem, attempting to predict the missing values

of a feature by modelling them based on other features in the dataset. A generic functionality

of a Value Imputation Module is shown in Figure 13, where the module fills the gaps that it

identifies in the dataset.

Figure 13: Module for imputing missing values.

3.7.4.1 Offline

When it comes to imputing values, methods such as interpolation of Artificial Intelligence

techniques can be employed. Interpolation involves fitting known data to a function that allows

the estimation of missing data. On the other hand, AI-based methods estimate missing values

by leveraging available information, often using supervised learning approaches. In particular,

the k-Nearest Neighbour (kNN) algorithm is widely used for this purpose. It involves classifying

data values into clusters or categories based on their proximity to their k nearest neighbours.

Another popular ML based approach to missing value imputation for tabular data is iterative

imputation, whereby features are imputed one at a time using the other features in the dataset

as regressors, with the process iterated upon until some stopping criteria (such as accuracy)

is met. However, in its naive implementation iterative imputing is limited to one class of

regressor model, which might not necessarily be optimal for all of the features in the dataset

[58]. Other approaches exploit regularities of their particular domain to infer missing values,

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 46 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

such as for instance in the case of time series data where filling gaps by interpolating between

their neighbouring timesteps can often be quite effective.

Figure 14: Iterative imputation (HyperImpute).

In SEDIMARK, the focus is on imputing missing values for both tabular and time series data.

SEDIMARK includes interpolation for imputing gaps in time series and leverages the impute

module of the scikit-learn python library to offer KNN and iterative imputation methods. At its

current stage of development, SEDIMARK also includes the HyperImpute algorithm [58]

(Figure 14), a method that efficiently iterates through rounds of model selection for each feature

column in a dataset. As such, it doesn’t require the user to go through the process of choosing

the appropriate regressor for each feature in their dataset, and this can in some sense be

considered an “AutoML” solution to the problem of model selection for missing value

imputation.

3.7.4.2 Streaming

Similar to streaming outlier detection, SEDIMARK utilises River's functionalities for effective

missing value imputation. The PreviousImputer replaces missing values with the last observed

value, suitable for time-series streaming data, while the StatImputer uses statistical measures

(mean, median, mode) for imputation, effective in datasets with randomly distributed missing

values. These methods collectively enhance SEDIMARK's ability to maintain high data quality

standards in its streaming data marketplace. By integrating River's capabilities, SEDIMARK

not only ensures the integrity and reliability of its data but also streamlines the data cleaning

process, significantly reducing the need for extensive manual intervention.

3.8 Data Augmentation

3.8.1 Overview

Data augmentation is a popular technique that can serve multiple purposes within a machine

learning pipeline. Techniques such as interpolation can be used in time series data to

upsample or fill in missing gaps in the series. If given sufficient prior domain knowledge, data

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 47 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

augmentation techniques can be used to increase the volume of the training data, resulting in

the training of more robust models, with heightened model accuracy. This is especially

effective in the image processing/computer vision domain, where it is relatively easy to produce

additional images that intuitively fit a given class label, using simple transformations like

rotations, or adding noise or colour to the raw image. More recently, the model-based

generation of synthetic data has been pursued as a method to solve certain data problems.

On the one hand, a data provider might not want to grant access to their raw dataset, and in

this instance, it might be preferable to instead release synthetic data, on which an equivalent

machine learning model can still be learned. In the other instance, synthetic data might be

used to rebalance a dataset, especially in the instance where it perhaps presents a harmful

bias against one particular class. SEDIMARK will include data augmentation tools to address

all of these distinct scenarios - augmentation/generation for increasing the performance of

downstream ML models, augmentation for debiasing and rebalancing datasets, and synthetic

data generation for replacing the underlying dataset completely.

3.8.2 Synthetic Data

Figure 15: Synthetic data generation in SEDIMARK

A data provider might not wish to release their underlying dataset, but instead opt to make

available a synthetic alternative. The rise of deep learning has ushered in huge advances in

the modelling and then generation of synthetic data. Both Variational AutoEncoders (VAEs)

and Generative Adversarial Networks (GANs) are deep learning based methods that aim to

learn and then sample from the underlying distribution of the data. In the case of VAEs, this is

accomplished by training an autoencoder model to encode and reconstruct data samples, with

the use of a ‘reparameterization’ trick [60] allowing for the drawing of samples from a learned

gaussian latent space. In the case of GANs [61], two model components, a generator and a

discriminator play an alternating min-max game, in which the discriminator learns to separate

generated samples from true ones, while the generator aims to fool the discriminator into

classifying its samples as coming from the real data distribution. While the true ‘likeness’

between true and generated data is hard to evaluate when the underlying distribution is not

known, for practical purposes the fidelity of the generated synthetic data can be evaluated

intuitively, through comparing the performance of downstream machine learning models

trained on either the original or the synthetic data, as shown in Figure 15.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 48 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

SEDIMARK will include tools allowing data providers to generate synthetic data. In its present

iteration, SEDIMARK makes use of methods present in the python library YData-Synthetic to

generate synthetic tabular data. This tool allows the user to select from a number of GAN

based models such as CTGAN [62] for tabular data generation. In addition, it includes a less

computationally demanding method (Gaussian Mixture Model) which represents the data

distribution as a mixture of gaussians from which new samples can be drawn, with the

implementation iteratively testing an increasing number of gaussian components to find the

best fit.

However, it is expected that much of the data processed by SEDIMARK will be of a time series

nature, where tabular methods will not work out of the box, as they generate Independent and

Identically Distributed (IID) samples without considering the time sequential dependency

between data points. In the case of time series generation, the user will be looking to sample

whole trajectories of data points. The process often suffers from the low number of distinct

trajectory examples that are actually available in the dataset to be modelled, compared to other

generative fields such as text or image generation, where there are huge public datasets

available allowing for the creation of general purpose generative models. Luckily, there has

been a significant amount of recent interest in the problem of time series generation, with

several methods published in high profile machine learning conferences. A future version of

the SEDIMARK toolbox will build upon existing tools such as SynthCity [63] and TimeGan [59]

in order to generate synthetic time series data.

3.8.3 Augmentation for balancing and debiasing datasets

It is widely acknowledged that issues with data collection can inject harmful biases into

downstream machine learning models, for instance when data points corresponding to at risk

minorities are underrepresented in the training data. Additionally, datasets may be generally

unbalanced, with some minority classes having few examples present in training data. A further

use of data augmentation considers the problem of debiasing or balancing these datasets. A

general method for this is to employ one of the synthetic data generation methods described

in the previous example, but to reweight its training data in favour of the minority classes one

wishes to remove bias against. In a future version of the tools, SEDIMARK will explore more

fairness specific approaches such as Tabfairgan [64] and Fairgan+ [65] for either generating

debiased, or balanced synthetic datasets from scratch, or using generated samples to

augment and thus reweight original datasets.

3.8.4 Data Augmentation for Time series

In a future version of SEDIMARK, a time-series tool for data augmentation will provide an

innovative approach to enhance the richness of time series datasets, catering to the need for

more diverse data in training machine learning models. With the power of two distinct

techniques – Jittering and Synthetic Minority Over-sampling Technique (SMOTE) [101] – it will

address various augmentation needs. The 'Jittering' method will infuse minor random

fluctuations or 'noise' into the original data, enhancing model robustness against natural

variances without distorting the inherent patterns. On the other hand, SMOTE, will generate

synthetic time series samples by interpolating between existing ones. This is particularly useful

in addressing class imbalance problems or when the dataset is sparse. By offering both

methods in one tool, users will be equipped with a versatile augmentation solution, enabling

them to train more resilient and generalized models.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 49 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

3.9 Feature Engineering

Feature Engineering is one of the principal components in the SEDIMARK AI pipeline. It refers

to the pre-processing steps that select and transform the most relevant features, aka attributes,

from raw data, into features to be used in machine learning algorithms, such as predictive

models. Whence the goal of simplifying and speeding up data transformations while enhancing

model accuracy by keeping the most relevant attributes. Dimension reduction tackles the curse

of dimensionality that occurs due to the use of high-dimensional data which may increase the

cost of any mining algorithm and consists of mapping high-dimensional instances onto a lower-

dimensional representation while conserving the distances between instances. Dimension

reduction within SEDIMARK could also be used in non-high-dimensional spaces to represent

the data more effectively by compacting them differently.

Two main different dimensionality reduction categories are considered within SEDIMARK (see

Figure 16 that depicts the difference between them):

• Feature selection is the process of selecting a subset of the input features, i.e., the

most relevant and non-redundant features, without operating any sort of data

transformation or extraction. To do so, feature selection techniques mainly analyse and

rank various features to determine which ones are irrelevant and should be removed,

which ones are redundant and/or correlated, and which ones are most relevant and

useful for the model and should be prioritized.

• Feature extraction that involves reducing the number of features to be processed using

dimensionality reduction techniques. It consists of extracting features from a dataset or

data stream to identify useful information. Without distorting the original feature space,

this compresses the set of features into manageable quantities for algorithms to process.

E.g., constructing from a set of input features in a high-dimensional space, a new set of

features in a lower-dimensional space.

Figure 16: Feature extraction vs. feature selection

Dimension reduction techniques are widely used in machine learning algorithms and operate

by transforming and using the most relevant feature combinations, handling thus the curse of

dimensionality, in turn reducing space and time demands; this can be crucial for applications

such as classification and visualization. For this to happen, SEDIMARK implements and uses

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 50 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

some common dimension reduction techniques from the state-of-art and available in python

libraries, such as PCA, feature hashing, correlation, and random projection. These techniques

require an input parameter specifying the size of the output space of data dimensionality.

Several dimension reduction techniques have been proposed and used for offline purposes,

namely for static datasets. Hence, they cannot be used with data streams and have to be

adapted. For this to happen, multiple static techniques have been extended to the stream

setting. For instance, SEDIMARK uses an incremental version of PCA, available in the scikit-

learn python library, called IncrementalPCA which uses a window to make PCA incremental,

hashing trick, and also random projection. Thanks to the fact that they are data-independent

techniques, the extension of the latter to the stream setting is easy. In the SEDIMARK data

processing and AI pipelines, dimension reduction is provided as a component and its

techniques will be extended and could be used with batch and stream data.

AutoML could be used within SEDIMARK to facilitate the task and serve the purpose of

automatic hyperparameter optimization without the need to precisely specify which technique

to use with what parameter.

3.10 Auto-ML in the data processing pipeline

Machine learning algorithms have multiple hyper-parameters that are set prior to the learning

process and can directly affect the performance of the models. However, this task requires

domain knowledge and human expertise to perform manual hyper-parameter tuning (manually

trying out different hyper-parameter sets by hand), which is a hard and tedious task both for

expert and non-expert users. Another major drawback of the manual search is the fact that the

process is not easily reproducible. The latter is definitely important, especially for the progress

and improvement of scientific research in the machine learning field and for non-experts who

intend to use ML. Moreover, it is difficult to manage the manual hyper-parameter tuning task

when the number of parameters and the range of values is high, i.e., if one aims to apply an

algorithm with five hyper-parameters, then these hyper-parameters need to be manually tuned

with different values on different datasets, and the best combination that achieves the highest

performance will be chosen.

To cope with the aforementioned issues, automatic search techniques have been proposed

under the emerging automated Machine Learning (AutoML) topic. AutoML supports

researchers and practitioners with the tedious work of manually designing ML and AI pipelines,

which include performing algorithm selection and tuning hyper-parameters.

For the second version of the SEDIMARK data processing pipeline, the aim is to use AutoML

to automate various tasks, mostly related with the configuration of the models that are being

used by the components of the pipeline. As discussed in the previous sections, users of the

data processing pipeline will be presented with many options for processing their data. One

can imagine that non-expert users will easily be confused regarding which component they

have to use, which model/algorithm of that component and which configuration of the

hyperparameters of that model/algorithm in order to best process their dataset. Manual testing

can take time, so SEDIMARK aims to provide the tools to automate the process of selecting

the best-performing model and identifying its corresponding optimal set of hyper-parameters

that best fit each dataset and each user preferences.

Users of the data processing pipeline will be provided with AutoML tools which will make the

use of the data processing components both easier and more accessible for SEDIMARK

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 51 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

participants. With the integration of AutoML into SEDIMARK, the next steps could involve

enhancing other aspects of the data processing pipeline to fully leverage the potential of

automated model selection and tuning relative to the data fed to the platform. This holistic

approach ensures that each stage of the pipeline is optimized for efficiency and effectiveness.

One of the key aspects is that data pre-processing and feature engineering to handle diverse

data types and structures, will be executed more effectively. Expanding the range of explored

models through AutoML and automating model validation is also an effect of choosing AutoML.

Creating intuitive interfaces for interacting with the AutoML system and providing educational

resources to assist users of varying expertise levels is also a benefit of this choice. Through

these efforts, SEDIMARK is set to offer a comprehensive, automated, and user-friendly Data

Processing Pipeline, enhancing the efficiency and applicability of machine learning models

across various user groups and applications.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 52 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

4 Techniques for reducing energy consumption of

data technologies

4.1 Overview

Recent years have seen a growing focus on the environmental impact caused by computing

technology. This is especially evident in the fields of big data and machine learning, where

computationally intensive processes can often consume large amounts of electricity, thus

producing high amounts of carbon emissions, while the amount of data that is recorded and

stored increases every year. As illustrated in [95], over the past five years, state of the art

machine learning models have grown exponentially in their parameter counts. As greater

computational resources become available, and machine learning models grow significantly in

size, the climate impact of machine learning increases concomitantly, while the storage and

transfer of the data needed to train them also creates a significant environmental effect. At the

same time, much research has looked at ways to efficiently scale deep learning models, and

to reduce their environmental impact, both during training and inference. This chapter briefly

looks at some of the ways in which SEDIMARK plans to address its environmental impact.

Section 4.2 discusses ways to decrease energy consumption during training ML models, via

the use of smart sampling, data distillation and dimension reduction. Section 4.3 looks at

further ways to optimise models for reduced energy consumption, via quantization, pruning,

model distillation and low rank factorization. Section 4.4 further looks at how dimension

reduction might be used to reduce the environmental cost incurred in sharing data. Section 4.5

discusses ways to reduce the cost of storing data. Finally, Section 4.6 discusses plans to

implement a light version of the SEDIMARK toolbox that will be operable on edge devices.

Section 4.7 discusses some first thoughts about addressing grey energy.

4.2 Reducing energy consumption during ML training

4.2.1 Optimising Data Efficiency in ML Training

As machine learning models become more complex and data-intensive, the computational

resources required for their training have increased significantly. Advanced algorithms often

involve processing vast datasets multiple times, leading to prolonged use of high-powered

computing systems.

This escalation in energy use has several impacts: it can lead to increased operational costs,

making ML less accessible to smaller organisations. Environmentally, it contributes to higher

carbon emissions, especially if the energy is sourced from fossil fuels. Additionally, it can strain

energy resources, challenging the sustainability of broader technological growth.

In SEDIMARK, improving data efficiency is a key strategy in managing the considerable energy

needs associated with machine learning training. The goal of optimising data efficiency is to

reduce the quantity of data needed to train models without compromising the performance,

thus saving on computational resources and energy, which are both critical factors in reducing

the environmental impact of ML training. This subsection explores three pivotal methods for

improving data efficiency: Coreset Selection, Data Distillation and Dimension Reduction.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 53 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

4.2.1.1 Coreset Selection

Coreset selection [72],[73] is a compression technique that selects a smaller representative

subset of data from a larger dataset while preserving its key properties. This enables machine

learning models to be trained more efficiently, using less data and computational resources,

while still aiming to preserve the quality and accuracy of the models trained on the complete

data. Coreset selection is particularly valuable in scenarios where computational efficiency is

crucial and when dealing with massive datasets that are costly or impractical to use in their

entirety for training purposes. In the context of SEDIMARK, coreset selection could be applied

in several innovative ways to enhance its functionality and efficiency:

• Distributed Training Efficiency: SEDIMARK can utilise coresets to facilitate efficient

distributed training across its decentralised network. By allowing each node to hold a

coreset instead of the full dataset, the network can minimise the data transmission

overhead and reduce training times, leading to significant energy savings.

• Bandwidth Optimization: When nodes need to communicate or synchronize datasets,

transmitting coresets instead of full datasets can reduce the required bandwidth and

enable faster, more efficient data sharing.

• Resource-Constrained Environments: For nodes operating in environments with

limited computational resources, such as IoT devices or mobile phones, coresets can

enable these devices to participate in the ML training process without the need for high

computational power.

• Rapid Prototyping: When developing new models or experimenting with different

algorithms, SEDIMARK users could employ coresets for rapid prototyping, allowing for

quick iterations over model design with less computational cost.

4.2.1.2 Data Distillation

Different from coreset selection, data distillation [74],[75] in machine learning involves

significantly reducing the size of a dataset by creating synthetic data that captures the essential

information of the original data. This process allows the training and tuning of machine learning

algorithms efficiently, akin to using the complete dataset. In SEDIMARK, in addition to

achieving energy reductions akin to those from coreset selection, data distillation can also be

leveraged to enhance its privacy protection capabilities in several ways:

• Privacy-Preserving Data Sharing: By distilling data to only its essential features,

SEDIMARK can share insightful synthetic data across its network without exposing the

raw data, which might contain sensitive user information.

• Anonymization: Distilled datasets can be designed to exclude personally identifiable

information, allowing the platform to utilize and share data while adhering to privacy

regulations and user consent.

• Reduced Data Footprint: A smaller, distilled dataset minimizes the risk of data

breaches, as less real information is stored and transmitted, reducing the exposure of

user data.

4.2.1.3 Dimension Reduction

Dimension reduction techniques [76], [77], i.e., feature selection and extraction, play a pivotal

role in addressing the imperative need to reduce energy consumption in various applications.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 54 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

By identifying and retaining only the most relevant features from the dataset, these techniques

effectively trim down the data’s dimensionality. This process not only streamlines

computational complexity but also contributes significantly to minimizing energy

requirements. Through methods like PCA or correlation, redundant or less informative features

are identified and removed, ensuring that subsequent computations are more energy efficient.

Moreover, the reduction in data dimensionality facilitates the use of lighter models, which

inherently demand less energy during both training and inference phases. So, employing

dimension reduction techniques emerges as a strategic approach to reducing energy

consumption, providing a sustainable solution while maintaining or even enhancing predictive

performance.

Both coreset selection, data distillation and dimension reduction offer potent avenues for

SEDIMARK to enhance data efficiency, significantly reducing the energy consumption

associated with ML training. These techniques not only streamline the learning process but

also fortify the platform's commitment to privacy and scalability. By implementing these

methods, SEDIMARK stands to lower its environmental impact and operational costs, fostering

a sustainable and resilient infrastructure for data technologies.

4.2.2 Balancing the model training cost and the communication overhead

In decentralised ML three main costs are associated with the learning process: (i) the

communication cost, (ii) the cost of training time and (iii) the final model accuracy. Achieving

high accuracy while keeping the cost of training time low in decentralised ML often incurs high

communication costs. On the other hand, decreasing the communication costs while

maintaining high accuracy leads to high model training costs, since with sparse communication

between the working nodes it takes longer for the decentralised ML model to converge. The

goal of SEDIMARK is to develop energy-efficient ML solutions, therefore the ML models

implemented within the project aim to find a balance between high accuracy and low

communication and training time overhead. Inspired by [78], in decentralised ML settings, two

distinct contexts can be distinguished:

• Weakly coordinated learning (WCL), where the amount of coordination between

computing nodes is sparse. In this setting, some global coordination is still required.

Computing nodes must agree on the hyperparameters of the learning algorithm, such as

the number of latent factors, and must have commonly agreed identifiers for the items in

the product database.

• Strongly coordinated learning (SCL), where each computing node knows the number

of cooperating computing nodes and global synchronisation is possible, with any pair of

computing nodes able to send and receive parameters and coordination data between

each other.

One of the main advantages of SCL is that it is closely following the implementation of a

centralised ML algorithm and therefore, it generally follows the accuracy of the centralised

algorithm. However, this comes at the expense of a heavy communication overhead, requiring

n all-to-all synchronisations per epoch to ensure that computing nodes keep their model

parameters in sync. Note that originally this approach was developed to suit large

supercomputers, where it is possible to control the overall number of workers and balance the

data distribution in order to find the best trade-off between the level of parallelisation (i.e., the

overall number of computing nodes involved) and the communication overhead. However, in

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 55 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

SEDIMARK, the data is already pre-allocated, and the overall number of participating

computing nodes cannot be easily controlled. The high communication cost can have a

significant impact on the efficiency of the distributed computation.

In contrast, WCL provides a communication-efficient alternative. The main advantage of this

approach is that a computing node communicates only with a small subset of other computing

nodes during the exchange of the model data. However, this reduced communication can

mean that the global ML algorithm needs a substantial number of epochs to converge since

this approach is inherently slower at distributing the contribution of training data to the model

across the entire network of participating computing nodes. SEDIMARK aims to develop an

efficient decentralised ML interface, focusing on minimising the communication overhead and

minimising the training time of the global model. Therefore, SEDIMARK aims to develop a

hybrid approach combining weak and strong coordination. As demonstrated in [78], the

communication-intensive strongly coordinated algorithm can be used to boost the model

parameters into a part of the solution space in which the model can converge to a good

solution. The remaining convergence steps can then be computed by the weakly coordinated

approach, reducing the high communication overhead in the later stages of learning when it is

no longer necessary.

The goal of this hybrid approach is two-fold: (i) minimise the communication and model training

costs while simultaneously (ii) maximise the model accuracy. As discussed above, SCL will

address the model's training costs, while WCL will keep the communication overhead at a

minimum.

One of the main reasons for the slow training time of WCL is the fact that all computing nodes

start from random model parameters. This, together with sparse communication of the

algorithm, results in longer training times as the algorithm requires some time to distribute the

data across the entire network.

With this in mind, SEDIMARK will provide a hybrid ML approach, whose aim is to boost the

model initialisation process. SCL will be used to initialise the model which is then refined by

WCL. The result is a considerably decreased training time of the algorithm compared to

standard WCL approaches. Due to dense communication overhead, SCL has the ability to

distribute the model data across the network very early in the training process. This hybrid

approach starts with a SCL approach for a small number of epochs with a view to navigating

the latent space more efficiently at this critical stage of the algorithm. Then the model

parameters learned during this time are stored and input into the WCL algorithm. The algorithm

is then let to fine-tune the global model with minimal communication overhead.

The main challenge of this approach is to effectively balance the increased cost of

communication while at the same time improving the global training time of the model. As

demonstrated in [78], a good trade-off between communication cost and training time can be

well estimated during the parameter tuning process. Moreover, it was shown that the

communication overhead of such a hybrid algorithm is relatively small while at the same time

drastically improving the overall learning time of the global algorithm.

4.3 AI Model Optimisation

The accuracy of today’s machine learning models has significantly improved over the past

decade. However, this improvement comes with the price of massive, over-parametrised

models causing high energy consumption and unacceptable delays in inference which is often

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 56 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

performed in real-time. To address the above issues a large body of research has formed with

the main goal of improving the efficiency of machine learning models while also maintaining

optimal accuracy. Taking inspiration from [79], SEDIMARK focuses on reducing the memory

footprint and computational cost of the machine learning models and hence focuses on four

main approaches for model compression:

• Quantisation - the goal of this approach is to decrease the size of model weights. Broadly

speaking, this is achieved by reducing the precision of model weights from the high-

precision floating point representation to the low-precision floating point or integer

representation. This achieves a compact model representation.

• Pruning - the focus of this approach is to remove neurons with small saliency (sensitivity)

from the neural network. This achieves a sparse computational graph with a smaller

memory footprint. The approach can be further structured into:

o Unstructured pruning, which removes all salient neurons achieving aggressive pruning.

However, this leads to sparse matrix operations which can be hard to accelerate.

o Structured pruning focusing on removing groups of parameters. On the plus side,

aggressive unstructured pruning still allows for dense matrix representation but can

lead to a significant loss of model accuracy.

• Knowledge distillation - this approach uses the large model as an input in the AI

algorithm to produce a smaller, more compact model.

• Low-rank factorisation - these techniques use factorisation to represent the weight

matrix with a product of two smaller matrices.

Different model compression techniques can be applied to different ML models. For instance,

Deep neural networks can be compressed using all four compression methods listed above.

In contrast, more traditional machine learning models, such as decision trees or random

forests, can be compressed using pruning or quantisation techniques [80]. SEDIMARK aims

to develop a small number of approaches covering all four compression methods. This will

allow the potential user to choose the compression technique best suited to their model.

4.3.1 Quantisation in federated learning

4.3.1.1 Summary

Quantized federated learning is a method that combines federated learning with quantisation

techniques to reduce the communication overhead by transmitting compressed model updates

during distributed training across multiple devices or nodes. This work implements several

quantisation approaches for federated learning and evaluates them in terms of accuracy,

convergence speed and communication cost. The results provide quantitative details on the

trade-offs between the accuracy, convergence speed and communication between the agents

(used as a proxy of energy consumption) in a benchmark set of forecasting problems.

4.3.1.2 Introduction

Training machine learning models using private data from several agents is a problem of

pressing importance. Federated Learning (FL) is an increasingly broad topic that has been

presented as the fundamental framework in which a set of agents can jointly train machine

learning models without sharing their sensitive data.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 57 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

In the general FL protocol, as illustrated in Figure 17, an algorithm or model is trained across

multiple decentralized edge devices that hold local and sensitive data samples and exchange

only the local models with a global server that is in charge of aggregating the parameters and

sharing them back to the clients. There are, however, many variations of this protocol. For

example, the agents may collaborate with each other to aggregate the models without relying

on a global server (Gossip Learning), or they may opt to use some privacy preserving

technique before the aggregation, like Differential Privacy. In all cases, the need to share and

send through the network a local model (represented by the empty blocks with arrows in all

directions) remains.

Figure 17: General federated learning protocol, taken from the Fleviden platform

documentation.

The communication and exchange of local models through the network represents one of the

major bottlenecks and energy consumption issues in federated learning. This is especially true

in the case of the general FL protocol because the central server is responsible for single-

handedly aggregating the models received from all agents. This work explores the use of

quantisation approaches to address this problem while minimizing the impact on the accuracy

of the global model and the convergence speed of the entire training process.

The rest of this section is organized as follows. Section 4.3.1.3 reviews related work, and

several quantisation approaches available for federated learning training. In Section 4.3.1.4

the Quantized Stochastic Gradient Descent (QSGD) algorithm is described as a general

parametrizable lossy-compression scheme for federated learning. Section 4.3.1.5 provides

additional details about the implementation in the federated learning solution, specifying

logical, component and deployment views of the overall software architecture.

4.3.1.3 Related work

In this section some relevant quantisation approaches for Federated Learning are discussed.

As the complexity of the machine learning models has drastically increased over the past few

years, so has the need to find solutions that aim to reduce energy consumption and storage

space [80],[81],[82] .One of the most studied strategies, widely spread in the field of

telecommunications, is quantization, understood as the process of mapping a continuous

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 58 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

space of values into a discrete set. As such, its application in the field of machine learning has

also become matter of interest.

Alistarh et al. [83] introduce a general parametrizable lossy-compression scheme for multi-

processor training as a two-step algorithm that 1) first performs a quantisation of the gradients

given a certain number of levels, and 2) then employs an efficient encoding strategy using the

Elias-omega code [84] .In their experiments they demonstrate that the reduced communication

cost between processors comes at no significant accuracy loss after model convergence.

On the other hand, Reisizadeh et al. [85] propose an algorithm that aims to address the

communication bottleneck by spatially and temporally subsampling the number of nodes that

send their local updates at each iteration. On top of that, a low precision quantizer is used to

compress the difference between the received parameters and the updated ones.

Hönig et al. [86] show that, just as clients may have different degrees of contribution to the

aggregation of weights (federated weighted average), different levels of quantisation can be

applied to each of them independently, following a client-adaptive quantisation strategy.

Moreover, they have noticed that, at the beginning of the training, more coarse quantisation

can be applied without loss in accuracy. For this reason, they suggest adopting a dynamic

quantisation level approach, by which the aggressiveness of the quantisation is modulated

over time, namely, with lower number of levels at the beginning that are increased over the

rounds.

4.3.1.4 The Quantized Stochastic Gradient Descent algorithm

The Quantized Stochastic Gradient Descent (QSGD) algorithm is a family of compression

schemes with convergence guarantees and good practical performance for convex and

smooth functions [83]. The QSGD algorithm takes a vector of real numbers, such as the

weights of a neural network, and transforms each component into a quantized, fixed-sized

domain of values. Then, it generates a compressed encoding of such vector that is ready to

be sent through the network. This resulting encoding is not lossless, which means that it is not

possible to recover the original vector from its quantized version.

QSGD provides some guarantees of convergence for convex and non-convex objectives while

significantly reducing the total number of bytes when compared to the original vectors of real

numbers that are typically encoded as arrays of 32 bits floats.

The algorithm is defined by two complementary functional blocks, namely, the encoding and

decoding procedures. Algorithm 1 clarifies how these two functions are used in the context of

a general federated learning protocol.

Algorithm 1. QSGD algorithm encoding and decoding in a general federated learning protocol.

1. Let w be a random global model parameter vector

2. for i := 1 to rounds do

3. Encode w and send it from the central server to each federated learning agent

4. for j := 1 to num_agents do

5. Receive and decode model w from the central server in the j-th agent

6. Train a model initialized by w to obtain the local model wj

7. Encode model wj using the encode function to obtain qj

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 59 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

8. Send qj to the central server

9. end for

10. for j := 1 to num_agents do

11. Receive quantized local model qj from the j-th agent in the central server

12. Decode local model qj using the decode function to obtain rj

13. end for

14. Aggregate local models rj and update global model w in the central server

15. end for

16. Output global model w

Algorithm 1 starts by randomly initializing the vector with the parameters of the global model.

In step (2), a given number of federated learning rounds is performed. For each round, the

server first encodes the global model as defined by QSGD and broadcasts it to all the agents

(3). Each agent decodes the model (5), trains it locally (6), encodes the result (7) and sends it

back to the central server (8). The server then receives, decodes, and aggregates the

quantized local models, in steps (10-14), before the next federated learning round starts again.

Quantisation function

To understand the compression mechanism behind QSGD, first the hyper-parameter s needs

to be defined, which is an integer larger than zero that represents the number of quantisation

intervals used to encode and decode the information. In other words, s controls the granularity

in which a continuous interval is divided in discrete chunks. Figure 18 exemplifies how a value

in an interval is quantized for s=5.

Figure 18: An illustration of QSGD encoding schema. A real number between 0.5 and 0.75

represented in red is quantized in the discrete level 0.5 or 0.75 depending on the stochastic

quantisation schema defined by QSGD.

Given a vector 𝑣 ∈ 𝑅 𝑛 different than the zero vector, the encoding function 𝑄(𝑣) is defined

as follows:

where 𝑒(𝑣𝑖, 𝑠) is an independent random variable following a distribution with support on the

set of quantisation levels defined by s. Let 0 ≤ 𝑙 ≤ 𝑠 be an integer such that:

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 60 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

Any vector v can be expressed by using a triplet consisting of the Euclidean norm of the vector,

a vector of signs of v and the vector of integer values given by the quantisation operator defined

above. Since 𝑒(𝑣𝑖, 𝑠) contains values that are not equally likely (larger integers are less

frequent than smaller ones), a specialized Elias integer encoding is proposed to further reduce

the number of bytes required to represent the encoded vector v.

Elias encoding and decoding

QSGD proposes using the Elias Omega coding schema, which is a universal code for integers.

This is a recursive algorithm takes advantage of the cases in which small values are more

frequent than larger ones, allowing higher compression rates than other generic coding

strategies.

Algorithm 2 describes the steps required to encode the vector of real numbers represented by

the triplet defined in the previous section.

Algorithm 2. Encoding function used by the QSGD algorithm.

1. Let w be a random global model parameter vector with n entries

2. Obtain the Euclidean norm of the vector d = || w||_2

3. Obtain the vector of signs of w denoted by 𝛿 = {0, 1}𝑛such as 𝛿𝑖 = 𝑠𝑖𝑔𝑛(𝑤𝑖)

4. Obtain the quantisation vector of w denoted by 𝑞 = {1, … , 𝑠}𝑛such as 𝑞𝑖 = 𝑒 (𝑤𝑖, 𝑠)

5. Initialize 𝜔 as an empty binary string

6. Encode d as a 32-bit float and add it to the code 𝜔

7. Let i := 0

8.for j := 1 ton do

9. if 𝑞𝑗 ! = 0 then

10. 𝜔 :=𝜔 + elias(j - i)

11. 𝜔:=𝜔+𝛿𝑗

12. 𝜔:=𝜔 + elias(𝑞𝑗)

13. i := j

14. end if

15.end for

16. Output code 𝜔

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 61 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

Algorithm 2 provides the original vector of real number in step 1 and compute the Euclidean

norm, the vector of signs of each component and the quantisation vector in steps 2-4

respectively. The output code of the vector 𝜔 is initialized in step 5 as an empty string and is

constructed in the next steps. The first 32 bits correspond to the Euclidean distance (step 6).

In steps 7-9, the quantized input vector is scanned to find the next non-zero entry and then

add the Elias encoding of the integer representing the position of such entry (10), the bit for

the sign (11), and the quantized value (12). Finally, step 16 returns the encoded vector.

Algorithm 3 provides additional details on the Elias Omega Encoding procedure for positive

integers represented by the elias(num) function in Algorithm 2.

Algorithm 3. Elias Omega encoding.

1. Let m be a positive integer and code := “0”

2. if m == 0 or m == 1 then

3. Output code and exit

4.end if

5. code := to_binary(m) + code

6. m := |to_binary(m)| - 1

7. GOTO step 2

Step 1 provides a positive integer and initialize the Elias Omega Encoding representation of

that integer as a binary string with a zero in the end. Step 2 checks that the integer to be

encoded is not 1, in which case the procedure stops and return whatever has been encoded

in the variable in step 3. Otherwise, step 5 prepends a binary representation of the integer in

m to the output code represented by the to_binary(num)function and step 6 assumes m to be

the value of the length of that binary representation. In step 7, the code goes to step 2 to start

the encoding procedure again.

The decoding of a quantized vector is performed in a similar way that the encoding phase. For

completeness, Algorithm 4 describes the QSGD decoding phase to retrieve a real vector from

its quantized and encoded binary string. It is important to emphasize that QSGD quantisation

is not lossless, hence, it will not be possible to retrieve the original vector entirely.

Algorithm 4. Decoding function used by the QSGD algorithm.

1. Let code be the encoded string of a real vector with s quantisation levels

2. Decode the Euclidean norm of the vector from the first 32-bits of code

3. while |code| > 1 do

4. pos := delias(code)

5. code := substr(code, |elias(pos)|)

6. sign := -1 if code[0] == 0 else 1

7. code := substr(code, 1)

8. value := delias(code)

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 62 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

9. code := substr(code, |elias(value)|)

10. for i := 0 to pos – 1 do

11. decoded := decoded + [0.0]

12. end for

13. decoded := decoded + [sign * d * value / s]

14.end while

15. Output decoded

Step 1 of Algorithm 4 provides the encoded string of a real vector and the number of

quantisation levels. The first thing is to decode the Euclidean norm from the first 32-bits (step

2). Step 4 scans the bit string until no more bits are to be read. The following steps decode the

position of the next non-zero entry in steps 4-5, the sign of such entry in steps 6-7 and the

actual quantized value in steps 8-9. Steps 10-11 add zero padding to reach the next position

to be included in step 13. The final output of the algorithm is the decoded vector of real

numbers. The substr(str, start, [end]) function retrieves a substring from the str that begins at

the specified position given in start all the way up to the specified optional end position.

The function delias(str) provides the corresponding integer of an Elias-encoded number.

Algorithm 5 provides additional details on this function.

Algorithm 5. Elias Omega decoding.

1. Let code be the encoded string of a positive integer and num := 1

2. if code[0] == 0 then

3. Output num and exit

4.end if

5. head := substr(code, 0, num + 1)

6. code := substr(code, num + 1)

7. num := from_binary(head)

8.GOTO step 2

Step 1 provides an Elias encoded initialize the resulting decoded number to 1. Step 2 checks

if the encoded string starts with zero, in which case it means that the string has been

completely decoded and the code can return the number in step 3. Otherwise, it obtains the

head of the code in step 5 and the tail in step 6, letting the decoded number to assume the

value of the integer represented by the bits of the head of the string in step 7 to later restart

the process in step 8.

4.3.1.5 The Fleviden quantisation solution

The Fleviden framework is a Python library for federated learning (see SEDIMARK_D3.3 [4]).

The primary design principle of Fleviden falls back to the pipes and filters architectural pattern.

At its essence, federated learning involves the optimization of a neural network's parameters

that are communicated among federated learning agents. These evolving parameters are

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 63 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

exchanged in varied forms among the different federated agents, for example, using HTTP or

a Kafka broker. This setup aligns with the idea of pipes, as the channels connecting these

federated entities, and filters, as either the entities themselves or, more narrowly, the

transformations they execute on the parameters (such as optimization, secure-sum, differential

privacy, and others).

The fundamental building block of Fleviden is the fleviden.core.Pod class. When implementing

a Pod in Fleviden, the distributed aspects of federated learning processes can be ignored and

the focus can be put on specific functionalities, like the internal aggregation within the server

or the obfuscation steps present in certain secure-sum protocols.

The design of the Fleviden quantisation solution is started extending the core Pod class to

implement QSGD algorithm in the quantisation package responsible of assigning the floats to

their corresponding quantisation levels and decoding back from that representation. The

implementation of the Elias encoding schema is decoupled in a different pod class named

elias, in a package named encoding. This is done following the high cohesion and low coupling

design principles. Figure 19 shows the class diagram representing the Fleviden quantisation

solution.

Figure 19: The class diagram for the Fleviden quantisation solution.

 The different classes in the solution behave as follows:

• The Pod class: is the realization of the filters in the pipes and filters architecture. A Pod

utilizes 'wires' for external interactions, which is a sophisticated term for the

listener/observer design pattern. The wires of a Pod act as a binding interface with other

pods. There are two wire categories: input and output. Both are created identically using

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 64 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

the Pod.register() function. The key distinction between input and output wires is that, for

input wires, the pod itself offers a default function to handle and modify messages received

via the input wire before possibly relaying them through an output wire.

o The qsgd class: represents the quantisation of a vector of real numbers according to

the description provided in Algorithm 2, without the Elias encoding part. The class

contains the following methods:

o The qsgd constructor takes as arguments the number of quantisation levels, the

entries in the incoming messages that are to be quantized and the replace flag. The

entries argument is a list of strings that represents the keys in the request dictionary

that is passed in the _encode wire. The replace flag is a Boolean or a list of Boolean

values with the same size of entries. If replace is true, that indicates the corresponding

entry in the incoming request is to be replaced by the corresponding quantized list,

otherwise, the new quantized list is just added to the dictionary, increasing its size.

o The _encode method takes as argument an input message that is being sent through

the /encode wire. In other words, this function is the handler for the /encode wire. The

function should examine the incoming message, look for the keys in that dictionary and

check whether any of those keys is listed in the specified entries list. The method

transforms the provided values into their quantized counterparts, triggering the

/encoded wire when the process is completed.

o The _decode method takes as argument an input message that is being sent through

the /decode wire. In other words, this function is the handler for the /decode wire. The

function should examine the incoming message, look for the keys in that dictionary and

check whether any of those keys is listed in the specified entries list. The method

transforms the provided values into their real number counterparts, triggering the

/decoded wire when the process is completed.

• The elias class: represents the encoding step described in Algorithm 3. The class

contains the following methods:

o The elias constructor takes as arguments the entries in the incoming messages that

are to be quantized and the replace flag. The entries argument is a list of strings that

represents the keys in the request dictionary that is passed in the _encode wire. The

replace flag is a Boolean or a list of Boolean values with the same size of entries. If

replace is true, that indicates the corresponding entry in the incoming request is to be

replaced by the corresponding quantized list, otherwise, the new encoded list is just

added to the dictionary, increasing its size.

o The _encode method takes as argument an input message that is being sent through

the /encode wire. In other words, this function is the handler for the /encode wire. The

function should examine the incoming message, look for the keys in that dictionary and

check whether any of those keys is listed in the specified entries list. The method

transforms the provided values into their Elias encoded counterparts, triggering the

/encoded wire when the process is completed.

o The _decode method takes as argument an input message that is being sent through

the /decode wire. In other words, this function is the handler for the /decode wire. The

function should examine the incoming message, look for the keys in that dictionary and

check whether any of those keys is listed in the specified entries list. The method

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 65 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

transforms the provided values into their integer number counterparts, triggering the

/decoded wire when the process is completed.

Figure 20 shows a diagram of a fully-fledged federated learning server that integrates the

proposed qsgd and elias pods. When the Server pod receives a parameter update from an

agent, it triggers the /updated wire, which is connected to the /decode wire of the elias pod.

Then, the elias pod decodes the incoming binary string into a list of integers. The qsgd pod

retrieves the vector of parameters from the list of integers and sends it through the /decoded

wire all the way to the /aggregate wire of the Aggregator pod. The reverse process is performed

when the aggregation is ready to be sent back to the agents.

Figure 20: Diagram illustrating how the qsgd and elias pods are to be integrated in a federated

learning server.

4.3.2 Pruning

The goal of pruning techniques is similar to the goal of quantisation and that is to produce more

compact models with a reduced memory footprint. However, in this case, rather than

compressing the model weights, pruning removes the redundant parameters or neurons. This

happens when the weight coefficient is replicated or close to 0 or 0. The pruning techniques

can be categorised in various ways [87]:

• Based on the symmetry of the pruned network into symmetric and asymmetric methods

• Based on whether the pruning is performed after or during training into static or dynamic

pruning

Various elements can be pruned in deep neural networks [88] as follows:

• Weights - refers to removing the network weights based on some condition, such as for

example weights below some pre-defined threshold. This requires traversing weights

one by one, which can affect the running time.

• Neurons - different from removing weights, this method refers to removing the

redundant neurons.

• Filters - when removing filters, these are first ranked according to their importance

based on a pre-defined metric and then the least important filters can be removed.

• Layers - another pruning approach looks at removing entire layers from deep networks.

SEDIMARK will provide a suite of pruning approaches based on the user needs. For example,

for users who wish to save energy during the training process, SEDIMARK will offer dynamic

pruning methods. On the other hand, for users who wish to reduce the memory and inference

cost of an existing model, a static pruning strategy might be more suitable. Similarly,

SEDIMARK will allow the user to choose the specific model elements they wish to prune and

will suggest suitable pruning approaches accordingly.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 66 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

4.3.3 Knowledge distillation

Knowledge distillation consists of two models, the large original model, which is also referred

to as the teacher model and a smaller representation of this larger model called the student

model. The goal of this approach is for the student model to learn the generalisation of the

teacher model [89]. Previous research showed that shallow student models are capable of

learning complex functions of the teacher models while maintaining nearly the same accuracy.

Summarising a recent survey on knowledge distillation [90], there are three main components

in this approach:

• Knowledge types: the types of knowledge used to learn the student model can be

further classified into (i) response-based, (ii) feature-based and (iii) relation based. The

goal of (i) is to directly mimic the final prediction of the teacher model. This is achieved

by feeding the response of the last output of the teacher model into the student model.

One of the disadvantages of this approach is that it can only handle supervised learning.

(ii) is an extension of (i) in so far as rather than just learning the output of the final layer,

the student model also learns the outputs of the intermediate layers, also called the

feature maps. Finally (iii) rather than using the outputs of some specific layers, the focus

of this approach is on the relationships between the feature maps.

• Distillation strategies: this refers to the training approaches for teacher and student

models. Based on whether the student and teacher models are updated simultaneously

the distillation strategies can be divided into three categories: (i) offline, (ii) online and

(iii) self-distillation. The offline distillation approach is done in two steps, first, the teacher

model is built based on the training data and then the student model is built based on

the knowledge from the teacher model. On the other hand, the online distillation strategy

learns both teacher and student models simultaneously. This approach often takes

advantage of parallel high-performance computing. Finally, self-distillation uses the

same networks for both teacher and student models. To better distinguish the three

approaches a good analogy is used in [90], where in method (i) the teacher teaches the

student, in method (ii) both teacher and student learn together and in the final method

(iii) the student learns by themself.

• Teacher-student architectures: this refers to the problem of the right design of

structures in teacher and student models. The general idea of knowledge distillation is

to transform the wider and deeper teacher model into a smaller and shallower student

model. Therefore, a student model can become one of the following options: (i) a model

with fewer layers and channels, (ii) preserved structure of the teacher model in quantised

version, (iii) keeping efficient basic operations, (iv) minimised model optimising global

structures and (v) same as the teacher.

4.3.4 Low-rank Factorisation

In neural networks, the weights being shared among working nodes are represented as weight

matrices. Hence, the size of such weight matrices can be effectively reduced by low rank

factorisation methods. The goal of low rank factorisation is to represent the target matrix with

two or more smaller matrices. One of the most common low rank factorisation techniques is

Singular Value Decomposition (SVD). Two aspects of neural networks could be decomposed

into their low rank alternatives, (i) linear layers, and (ii) embeddings [91]. Some approaches

aim to decompose both aspects of neural networks. Model optimisation techniques utilising

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 67 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

low rank factorisation can become twice as fast in the learning process as their uncompressed

counterparts while showing only a 1% drop in the model accuracy [92],[93]. Low rank

factorisation methods can be used to speed-up tasks such as for example text character

recognition models, object detection and image retrieval [92]. SEDIMARK will provide

approaches such as SVD to the end user, and SEDIMARK will allow the user to choose

whether to apply the low-rank decomposition to the convolutional layer or the fully connected

layer, similar to the approach studied in [94].

4.4 Reducing energy on data sharing

Dimensionality reduction, as previously discussed in Section 3.9 and Section 4.2.1.3, can also

be used to reduce the cost of data sharing, by reducing high dimensional data to its most

essential components. In this context, the SEDIMARK Dimensionality Reduction Module

stands as an innovative and advanced tool designed for the efficient handling of time series

datasets, particularly in contexts marked by high-dimensional data. This module is a

cornerstone in data processing, leveraging a number of cutting-edge dimensionality reduction

techniques, such as PCA (Principal Component Analysis), t-SNE (t-Distributed Stochastic

Neighbour Embedding), and UMAP (Uniform Manifold Approximation and Projection). Each

technique is uniquely suited to specific types of data structures and requirements.

PCA offers a linear transformation approach, adept at capturing the maximal variance in the

data within a reduced number of dimensions. This makes PCA an excellent choice for

simplifying datasets while retaining critical variance-related information. On the other hand, t-

SNE and UMAP provide powerful non-linear manifold learning capabilities. t-SNE excels in

preserving the local structures within the data, making it ideal for datasets where such local

relationships are paramount. UMAP extends this further by not only maintaining local data

structures but also respecting the global data layout, thus providing a more holistic view of the

data’s manifold structure.

By reducing data redundancy and streamlining data processing, the module significantly

reduces the computational load and energy consumption associated with data sharing and

analysis. This not only leads to faster processing times but also contributes to more sustainable

and energy-efficient data management practices. As such, the Dimensionality Reduction

Module is a versatile, robust, and environmentally conscious tool, essential for modern data

processing tasks, particularly in handling complex, high-dimensional time series datasets. Its

integration into data processing workflows promises not only enhanced efficiency and speed

but also a reduction in energy consumption, aligning with the growing need for sustainable

technology solutions in the field of data science and machine learning.

4.5 Reducing energy on data storage

As the SEDIMARK frameworks primarily a decentralised approach to data management at the

edge, it is necessary to take into consideration energy consumption as a result of data storage,

which in cases of some providers will be crucial for maintaining reasonable costs. Increasing

energy efficiency in relation to data storage on the data level, mainly involves reducing the

storage footprint of artefacts produced during the data processing pipeline, and the storage of

the final data assets that will serve as part of the providers offerings.

In addition to data reduction methods such as deduplication as defined Section 3.7.3,

compression techniques can also be used, in addition to aggregation methods where data

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 68 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

assets sources are co-located. Single-instance approaches can also be used at a higher level

in comparison to deduplication, whereby similar chunks within data assets can be removed

and linked to instead. Caching techniques can also be applied to data assets in cases where

access to them is frequent. The granularity of annotations for data assets has a significant

impact on the storage footprint, i.e. whether annotations are done on the atomic level of data

points or on the level of windows or batches of time-series data points.

4.5.1 Compression for Data Processing Pipeline Artefacts

For intermediate artefacts generated as a by-product of a data processing pipeline as

illustrated in Section 3.3, “downcasting” can be used is to reduce the primitive datatypes used

from one of a higher magnitude to a lower, such as float64 to float16, as long as the

corresponding value is within the bounds of the smaller datatype.

More efficient datatypes can be adopted for data columns with a small number of unique

values, such as the case for labels. In the case of Pandas, function such as “Categorical” and

“to_numeric”.

For certain types of dataset serializations, several compression formats can be applied to

significantly reduce the size footprint, such as in the case with pickle which supports gzip, bz2,

zip, xz, and zstd.

4.5.2 Broker Storage Configuration

Data Brokerage implementations are normally built upon well-established open-source

databases. How these databases are configured can have a significant impact on the storage

footprint. Data Providers are expected to produce data assets at different velocities and

volumes, and hence how their data assets are evolving need to be monitored to continuously

re-configure as per need and compute resource constraints of the hosting server.

In the case of the Stellio Context Broker (Section 3.3), the PostgreSQL database serves as

the underlying data store. Performance tuning tools can be used, which focus on configuration

settings for a set of application scenarios, in relation to storage requirements, especially for

shared_buffers which acts as the cache.

4.6 Pushing data processing to the edge

Some processing algorithms for data cleaning or augmentation may take advantage of running

as close as possible to the place where the data are produced. This may lead to them being

included “on the sensor”, directly on the microcontroller unit (MCU) that reads the probe and

controls the sending of the data to the network. One can think of various ways to integrate

such capabilities into a dynamic data platform such as SEDIMARK. The current choice is to

explore the possibility of pushing processing algorithms from the platform to the MCU in the

sensor by using a bytecode language (WebAssembly) via some Edge Cloud orchestration

services (see SEDIMARK_D4.3). This allows the simplification of DevOPs operations by

setting up a single compilation chain on the cloud side, at the price of providing an

implementation of the SEDIMARK WebAssembly platform API for each MCU one wants to

support. This brings the main advantage of being able to integrate any kind of sensor, by any

vendor, without requiring them to set up a full compilation chain for their device on the Cloud

side. The vendor will only need to work on their device, making them compatible with the

SEDIMARK API and protocols.

https://webassembly.org/

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 69 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

The choice of WebAssembly bytecode is driven by its fast adoption and support by major

vendors, its very compact size when compiled, the availability of bytecode interpreters and

compilers on all kind of platforms (including microcontrollers), and the availability of compilation

chains for various languages (including C++ or javascript for example).

The next steps on this topic will be to:

• Setup a compilation chain for the processing hooks.

• Define the far edge WebAssembly API.

• Implement this API on a first target MCU platform (STM32).

• Implement some processing capabilities using this API.

• Include them in the edge-cloud orchestration services (see SEDIMARK_D4.3)

4.7 Grey energy / embodied energy

Grey energy is the amount of energy that is consumed during the life cycle of a product,

excluding the energy used during its operation. It includes the energy required for extraction,

processing, manufacturing, transportation, installation, maintenance, and disposal. It is often

hidden from the consumer's view, and it can have a significant impact on the environment and

the economy.

By considering the grey energy of the devices, components, and services involved in the edge-

cloud continuum, one can have a more accurate and holistic view of the energy efficiency and

environmental impact of the system, as well as a more precise idea of the impacts of the

possible energy savings on the whole system.

Some possible ways to reduce the grey energy of the edge-cloud continuum are to optimize

the resource allocation and orchestration, for example by applying frugal and explainable AI

techniques or by wisely balancing where the processing are taking place.

At this stage, the influence of the grey energy on the energy savings made in the edge-cloud

continuum will not be assessed, since it is not where the R&D of the project aims to contribute.

However, it is acknowledged that grey energy is an important factor to be considered for a

whole deployment of a decentralized platform, as it can affect the environmental, economic,

and social aspects of the system.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 70 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

5 Trade-offs between performance, communication

cost and energy efficiency

5.1 Overview

Data processing may require significant computing resources to analyse the datasets,

depending both on the size of the dataset and the type of processing to be done or the selection

of the processing algorithm. Similarly, training machine learning models also require significant

resources, both when training data locally and in a distributed way. The previous section

presented techniques to reduce the energy consumption when training machine learning

models or when sharing data. However, these methods normally use less energy with the cost

of performance or accuracy. It is therefore critical to assess the trade-offs between energy

consumption, performance and communication cost in a way that data providers of consumers

can know the effects of targeting for (i) maximum energy efficiency against performance and

vice versa or (ii) minimum communication cost against performance. This subsection presents

a first analysis of the trade-off results. This analysis will be ongoing for the duration of the

project and more thorough results will be provided in the next version of the deliverable.

5.2 Communication cost analysis for distributed learning

This section investigates the trade-offs between communication efficiency and the overall

model accuracy. The focus is on federated learning and gossip learning approaches already

implemented in SEDIMARK using Shamrock, a tool developed within SEDIMARK and is

presented in SEDIMARK_D3.3 [4].

Experimental Setup:

• Dataset: A small subset of the MNIST dataset is used [68]. This is a labelled dataset of

handwritten digits and the goal of an ML model is to correctly recognise such digits. To

mimic a real-world data distribution in decentralised systems, the dataset is divided

between the worker nodes in a non-IID fashion. In particular, each working node is

assigned 50% of the images attached to one label and the other 50% attached to another

label. A small portion of IID data distribution in the form of 100 IID images per working

node is also added.

• Shamrock setup: The nodes passively receive model weights from other participating

working nodes (in Gossip learning) or from the server (in Federated learning).

Communication percentage values C are set to [0.25,0.5,0.75,1.0]. In the context of

Federated learning this corresponds to the percentage of worker nodes participating in

the model aggregation step by the server and in the context of gossip learning this

corresponds to the percentage of communication peers for each worker node. A record

of the overall number of bits exchanged between participating nodes/server during the

learning process is also kept. The goal is to keep high accuracy while maintaining the

smallest possible communication cost (i.e. the number of bits exchanged).

5.2.1 Federated Learning

The federated learning module for each communication setup is run over 10 runs and reports

the average across those runs. Figure 21 illustrates that the model has a smooth convergence

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 71 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

curve achieving high model accuracy when the level of communication is set to 100%. On the

other hand, the convergence curve is not so smooth with the communication level of 25% also

resulting in a significant final performance drop of 0.23. However, note that by decreasing the

level of communication from 100% to 50% the drop in final model accuracy is just 0.05, while

being able to decrease the number of bits being sent around (at that point in time) by 5.8 billion

which equals significant energy savings, as shown in Figure 22.

Figure 21: Accuracy for different percentages of selected nodes for communication in

federated learning.

Figure 22: Communication cost (in bits) for different percentages of selected nodes for

communication in federated learning.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 72 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

5.2.2 Gossip Learning

This experiment is averaged over 4 runs and the results are plotted in Figure 23. As expected,

the model achieves the best accuracy when the worker nodes are set to 100% communication.

However, by decreasing the level of communication to 50% a drop in accuracy from 0.98 to

0.97 is noted, while decreasing the level of communication by half, which in this case equals

to a whopping 276 billion bits saved from communicating (shown in Figure 24). This illustrates

how massive savings in energy consumption through communication volume can be achieved

with minimal impact on final model accuracy.

Figure 23: Accuracy for different percentages of selected nodes for communication in gossip

learning.

Figure 24: Communication cost (in bits) for different percentages of selected nodes for

communication in gossip learning.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 73 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

5.3 Analysis of trade-offs in performance vs computational cost

This section investigates the energy efficiency trade-offs for a number of modules that are

already implemented within SEDIMARK. The performance of three modules is considered: (i)

the Shamrock distributed learning module (described in SEDIMARK_D3.3), (ii) the Data

Deduplication and (iii) Anomaly Detection modules within the data pipeline, and. All three of

these modules offer a number of parameters or different methods for which the trade-off

between their computational efficiency and performance on a dataset can be examined. In the

following experiments, the popular python package eco2ai [67] is employed to estimate the

CO2 consumption of the target algorithms.

5.3.1 CO2 consumption of Federated Learning in Shamrock.

This section considers the CO2 efficiency of the federated learning scenario implemented with

the Shamrock distributed learning component of SEDIMARK as the amount of client-server

communication is adjusted. Following the protocol described in greater detail in section 5.2,

ten non-IID training subsets of the MNIST dataset are created, and small convolutional neural

networks at each node are trained. Each scenario is run for 100 iterations and both the

accuracy attained and the CO2 output as measured by eco2ai are compared.

Figure 25: CO2 cost per 100 iterations of FL given communication percentage.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 74 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 26: Final accuracy for 100 iterations of FL given communication percentage.

Figure 27: Comparison of CO2 cost to reach given accuracy levels for different communication

percentage in FL.

In Figure 25, the CO2 cost of running a full 100 rounds is observed to increase with the amount

of communication but in Figure 26 there is a trade-off here in the final accuracy attained.

However, Figure 27 shows that for any given target accuracy, running with higher

communication is actually more CO2 efficient. With greater communication, the algorithm

converges much faster, which is demonstrated further in section 5.2. However, full or even

high communication can be quite unlikely in real world settings. As such, going forward the

Shamrock SEDIMARK module might target a) more efficient sampling of nodes and b) non-IID

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 75 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

robust aggregation and distributed model training techniques such as e.g. FedProx [69], in

order to decrease the CO2 consumption in low communication non-IID settings.

5.3.2 Performance of data deduplication module as the indexing method is varied.

As described in section 3.7.3, the deduplication module includes an indexing component with

a significant effect on the computational cost of reaching a deduplication solution. Naively

indexing the dataset results in comparisons taking place between all pairs of records and thus

an O(n2) runtime complexity. However, there are two supplemental methods included - Block

and SortedNeighbourhood Index, which greatly reduce the number of comparisons made. The

Block method only compares records that agree on a specific variable - for instance in a

dataset of restaurant records, it might only compare restaurants within the same city. The

SortedNeighbourhood indexing method extends this by also including records within their

neighbourhood - e.g. perhaps if there are likely to be small spelling mistakes in the city name,

these will be compared to. The three methods are run on the Fodor/Zagat restaurant dataset,

which has ground truth duplicate labels [102]. For the indexing methods, the ‘city’ feature in

the dataset is used as an efficient way to draw out blocks of the data. Precision, recall and CO2

consumption are recorded and compared for the three indexing methods.

Figure 28: Comparison of CO2 cost of different indexing methods for deduplication.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 76 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 29: Comparison of precision of different indexing methods for deduplication.

Figure 30: Comparison of recall of different indexing methods for deduplication.

In Figure 28 the high CO2 cost of full indexing can be immediately observed. While ‘Block’

based indexing has a greatly reduced CO2 cost, this increases somewhat for the

Neighbourhood method which also searches through neighbouring strings. In Figure 29,

negligible drops in precision for both of the block based indexing methods are observed. On

the other hand, in Figure 30 it can be observed that recall is much higher for the full indexing

method, with a small drop for Neighbourhood, indicating that pure Block based indexing

causes us to miss comparing many records that would have been valid duplicates. Going

forward, the project’s intention is to explore further indexing methods that do not necessarily

sacrifice recall while still greatly reducing energy consumption compared to full indexing of the

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 77 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

provided dataset. Smart data models might also be exploited to automatically select

performant features on which to index the data.

5.3.3 Performance of Anomaly Detection module on ground truth, employing different

models.

The SEDIMARK Anomaly Detection module contains a large number of different models,

which might be suited to different kinds of datasets. This section compares a large number of

algorithms on a generic tabular anomaly detection task. This work considers the tabular

anomaly detection task for which PYOD is built and experiments are run on the thyroid dataset

introduced by [71]. 11 models are considered: ABOD, AutoEncoder, Feature Bagging, HBOS,

Isolation Forest, KNN, LOF, MCD, OCSVM, PCA and DeepSVDD (discussed in section 3.7.1).

As the focus of this experiment is to show how a naive user might interact with these modules,

they are deployed using their default parameters from the PYOD library. As a performance

metric, the Receiver Operating Characteristic Area Under the Curve (ROC AUC) score is used,

measured against the true labels provided in the dataset.

Figure 31: CO2 cost for the various anomaly detection methods available in the SEDIMARK

pipeline.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 78 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 32: ROC AUC score for the various anomaly detection method available in the

SEDIMARK pipeline.

Comparing the results in Figure 31 and Figure 32, one can see that unlike the algorithms in

the previous sections, anomaly detection does not appear to show a clear trend between the

energy consumption produced and performance on the given task, with one of the lowest cost

models (HBOS) actually attaining the best performance. Furthermore, one of the most energy

consuming methods (DeepSVDD) has the lowest performance overall. This signals towards a

problem in the deployment of unsupervised methods - as the methods do not optimise directly

against a ground truth, it is hard to know a priori that e.g. a model with more parameters might

better fit the data. Indeed, this is in line with the problem of unsupervised model selection

discussed in section 3.7.1. As such, going forward, SEDIMARK seeks to further understand

the series of trade-offs implicit in fitting unsupervised methods in the absence of ground truth

data. SEDIMARK plans to employ some of the AutoML methods referenced earlier in the

deliverable (sections 3.7.1 and 3.10) to optimise both for energy consumption and accuracy.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 79 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

6 Conclusions
One of the main goals of SEDIMARK is to provide easy to use tools for developers to

understand their datasets, process them and improve their quality before sharing them to the

marketplace, aiming to increase their value. As described in this document, SEDIMARK has

already made significant steps towards the twin aims of improving data quality while managing

trade-offs with energy efficiency and environmental impact.

In Section 3, the current work on the SEDIMARK data pipeline was outlined, showing how a

set of data quality metrics has been implemented, alongside a number of data cleaning tools

and modules for orchestrating the pipeline and visualising its results. Work on implementing

the data pipeline has already progressed significantly, with modules existing for data profiling,

data cleaning (anomaly detection, missing value imputation, deduplication), and data

orchestration, as well as data augmentation (data synthesis) and feature engineering

(dimension reduction and feature selection). As such, going forward SEDIMARK is optimistic

to continue to progress rapidly towards a second version of the tools.

In Section 4, future work for reducing the environmental impact of SEDIMARK was outlined,

with approaches discussed for carbon friendly model training, inference, as well as reducing

the impact of data sharing, communication and data storage. These approaches included

dimension reduction, data distillation and core set selection for reducing training cost.

Quantisation, model pruning, model distillation and low rank factorization have also been

investigated for further optimising machine learning models. Furthermore, it was analysed that

there are viable methods for optimising communication cost, as well as that of data sharing

and storage. Thus, going forward, SEDIMARK is hopeful that energy efficiency can be greatly

improved with regards to these specific components.

In the final section, a number of experiments showed the trade-offs between accuracy and

environmental cost that are implicit in naively running the tools in the SEDIMARK toolbox.

These experiments emphasised that often the results can be counter intuitive, for instance with

full communication federated learning being more carbon efficient than low communication, or

worse performance coming from highly parameterised anomaly detection algorithms. As such,

SEDIMARK should emphasise the need for user guidance, and automation, in their use of the

pipeline.

To this end one conclusion is that SEDIMARK needs to bring further automation to the data

cleaning process, while emphasising energy efficiency in the choices that it makes. Both

carbon and human hours are rapidly expended via naïve approaches to data cleaning, with

results that might still be suboptimal. Thus, going forward, a key aim of the work in tasks 3.1

and 3.5 is to further elucidate the trade-offs implicit in using the pipeline, and to design better

more holistic AutoML methods for optimising data pipelines, so as to reduce both the human

and energy costs associated with it.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 80 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

7 References

[1] https://www.marklogic.com/blog/the-staggering-impact-of-dirty-data/

[2] SEDIMARK Deliverable D2.1 Use Cases Definition and Initial Requirement Analysis, June 2023

[3] SEDIMARK Deliverable D2.2, SEDIMARK Architecture and Interfaces – First Version, September

2023

[4] SEDIMARK Deliverable D3.3, Enabling tools for data interoperability, distributed data storage and

training distributed AI models. First version, December 2023.

[5] SEDIMARK Deliverable D4.3, Edge data processing and service certification. First version,

December 2023

[6] SEDIMARK Deliverable D4.5, Data sharing platform and incentives. First version, December

2023

[7] Ilyas, I. F., & Chu, X. (2019). Data cleaning. Morgan & Claypool.

[8] Chu, X., Ilyas, I. F., Krishnan, S., & Wang, J. (2016, June). Data cleaning: Overview and emerging

challenges. In Proceedings of the 2016 international conference on management of data (pp.

2201-2206).

[9] Batini, C., Cappiello, C., Francalanci, C., & Maurino, A. (2009). Methodologies for data quality

assessment and improvement. ACM computing surveys (CSUR), 41(3), 1-52.

[10] Zha, D., Bhat, Z. P., Lai, K. H., Yang, F., Jiang, Z., Zhong, S., & Hu, X. (2023). Data-centric

artificial intelligence: A survey. arXiv preprint arXiv:2303.10158.

[11] Ng, A. Data-centric ai resource hub. Snorkel AI. Available online: https://snorkel.ai/(accessed on

8 February 2023) (2021).

[12] https://stellio.readthedocs.io/en/latest/

[13] Figma web application https://www.figma.com/

[14] Panahy, P. H. S., Sidi, F., Affendey, L. S., Jabar, M. A., Ibrahim, H., & Mustapha, A. (2013). A

framework to construct data quality dimensions relationships. Indian Journal of Science and

Technology, 6(5), 4422-4431.

[15] Ortigosa-Hernández, J., Inza, I., & Lozano, J. A. (2017). Measuring the class-imbalance extent of

multi-class problems. Pattern Recognition Letters, 98, 32-38.

[16] Kuemper, D., Iggena, T., Toenjes, R., & Pulvermueller, E. (2018, June). Valid. IoT: A framework

for sensor data quality analysis and interpolation. In Proceedings of the 9th ACM Multimedia

Systems Conference (pp. 294-303).

[17] Mushtaq, R. (2011). Augmented dickey fuller test.

[18] Liu, X. (2015). Chapter 3 - Linear mixed-effects models. Methods and applications of longitudinal

data analysis. Elsevier.

[19] Tirunagari, S., Kouchaki, S., Poh, N., Bober, M., & Windridge, D. (2017). Dynamic mode

decomposition for univariate time series: analysing trends and forecasting.

[20] Rostaghi, M., & Azami, H. (2016). Dispersion entropy: A measure for time-series analysis. IEEE

Signal Processing Letters, 23(5), 610-614.

[21] Vu, D. H., Muttaqi, K. M., & Agalgaonkar, A. P. (2015). A variance inflation factor and backward

elimination based robust regression model for forecasting monthly electricity demand using

climatic variables. Applied Energy, 140, 385-394.

[22] Kalousis, A., Gama, J., & Hilario, M. (2004). On data and algorithms: Understanding inductive

performance. Machine learning, 54, 275-312.

[23] Lorena, A. C., Costa, I. G., Spolaôr, N., & De Souto, M. C. (2012). Analysis of complexity indices

for classification problems: Cancer gene expression data. Neurocomputing, 75(1), 33-42.

[24] Zhu, R., Wang, Z., Ma, Z., Wang, G., & Xue, J. H. (2018). LRID: A new metric of multi-class

imbalance degree based on likelihood-ratio test. Pattern Recognition Letters, 116, 36-42.

[25] Lorena, A. C., Garcia, L. P., Lehmann, J., Souto, M. C., & Ho, T. K. (2019). How complex is your

classification problem? a survey on measuring classification complexity. ACM Computing

Surveys (CSUR), 52(5), 1-34.

https://www.marklogic.com/blog/the-staggering-impact-of-dirty-data/

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 81 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

[26] Orriols-Puig, A., Macià, N., Bernadó-Mansilla, E., & Ho, T. K. (2009). Documentation for the data

complexity library in C++ (Tech. Rep. 2009001). La Salle, Universitat Ramon Llull.

[27] Agencia Estatal de Meteorología www.aemet.es

[28] Kader, G. D., & Perry, M. (2007). Variability for categorical variables. Journal of statistics

education, 15(2).

[29] ydata-profiling (https://docs.profiling.ydata.ai/4.6/)

[30] IBM data quality API https://www.ibm.com/products/dqaiapi

[31] Samariya, D., & Thakkar, A. (2023). A comprehensive survey of anomaly detection algorithms.

Annals of Data Science, 10(3), 829-850.

[32] Alrawashdeh, M. J. (2021). An adjusted Grubbs' and generalized extreme studentized deviation.

Demonstratio Mathematica, 54(1), 548-557.

[33] Chen, Y., Miao, D., & Zhang, H. (2010). Neighborhood outlier detection. Expert Systems with

Applications, 37(12), 8745-8749.

[34] Amer, M., Goldstein, M., & Abdennadher, S. (2013, August). Enhancing one-class support vector

machines for unsupervised anomaly detection. In Proceedings of the ACM SIGKDD workshop on

outlier detection and description (pp. 8-15).

[35] Louni, H. (2008). Outlier detection in ARMA models. Journal of time series analysis, 29(6), 1057-

1065.

[36] Zhu, G., Zhao, H., Liu, H., & Sun, H. (2019, October). A novel LSTM-GAN algorithm for time

series anomaly detection. In 2019 prognostics and system health management conference (PHM-

Qingdao) (pp. 1-6). IEEE.

[37] An, J., & Cho, S. (2015). Variational autoencoder based anomaly detection using reconstruction

probability. Special lecture on IE, 2(1), 1-18.

[38] Lai, K. H., Zha, D., Wang, G., Xu, J., Zhao, Y., Kumar, D., ... & Hu, X. (2021, May). Tods: An

automated time series outlier detection system. In Proceedings of the aaai conference on artificial

intelligence (Vol. 35, No. 18, pp. 16060-16062).

[39] Perini, L., Bürkner, P. C., & Klami, A. (2023, July). Estimating the contamination factor’s

distribution in unsupervised anomaly detection. In International Conference on Machine Learning

(pp. 27668-27679). PMLR.

[40] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S. A., Binder, A., ... & Kloft, M.

(2018, July). Deep one-class classification. In International conference on machine learning (pp.

4393-4402). PMLR.

[41] Ren, K., Yang, H., Zhao, Y., Chen, W., Xue, M., Miao, H., ... & Liu, J. (2018). A robust AUC

maximization framework with simultaneous outlier detection and feature selection for positive-

unlabeled classification. IEEE transactions on neural networks and learning systems, 30(10),

3072-3083.

[42] Blázquez-García, A., Conde, A., Mori, U., & Lozano, J. A. (2021). A review on outlier/anomaly

detection in time series data. ACM Computing Surveys (CSUR), 54(3), 1-33.

[43] Gutowska, M., Little, S., & McCarren, A. (2023). Constructing a meta-learner for unsupervised

anomaly detection. IEEE Access.

[44] Zha, D., Bhat, Z. P., Lai, K. H., Yang, F., Jiang, Z., Zhong, S., & Hu, X. (2023). Data-centric

artificial intelligence: A survey. arXiv preprint arXiv:2303.10158.

[45] Zhao, Y., Rossi, R., & Akoglu, L. (2021). Automatic unsupervised outlier model selection.

Advances in Neural Information Processing Systems, 34, 4489-4502.

[46] Goswami, M., Challu, C., Callot, L., Minorics, L., & Kan, A. (2022). Unsupervised model selection

for time-series anomaly detection. arXiv preprint arXiv:2210.01078.

[47] Putina, A., Bahri, M., Salutari, F., & Sozio, M. (2022, October). AutoAD: an Automated Framework

for Unsupervised Anomaly Detectio. In 2022 IEEE 9th International Conference on Data Science

and Advanced Analytics (DSAA) (pp. 1-10). IEEE.

[48] Kulik, D., Schmidl, S. & Perini, L. (2023). KulikDM/pythresh: v0.3.5 (v0.3.5). Zenodo.

https://doi.org/10.5281/zenodo.10072727

http://www.aemet.es/
https://docs.profiling.ydata.ai/4.6/
https://doi.org/10.5281/zenodo.10072727

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 82 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

[49] Zhao, Y., Nasrullah, Z., & Li, Z. (2019). Pyod: A python toolbox for scalable outlier detection. arXiv

preprint arXiv:1901.01588.

[50] Montiel, J., Halford, M., Mastelini, S. M., Bolmier, G., Sourty, R., Vaysse, R., ... & Bifet, A. (2021).

River: machine learning for streaming data in python. The Journal of Machine Learning Research,

22(1), 4945-4952.

[51] Mehmood, H. S., Ahmad, R. Z., & Yousuf, M. J. (2019, July). A comprehensive review of adaptive

noise cancellation techniques in the internet of things. In Proceedings of the 3rd international

conference on future networks and distributed systems (pp. 1-8).

[52] Taneja, T., Jatain, A., & Bajaj, S. B. (2017, May). Predictive analytics on IoT. In 2017 International

Conference on Computing, Communication and Automation (ICCCA) (pp. 1312-1317). IEEE.

[53] Porr, B., Daryanavard, S., Bohollo, L. M., Cowan, H., & Dahiya, R. (2022). Real-time noise

cancellation with deep learning. Plos one, 17(11), e0277974.

[54] Abdel-Kader, R. F., El-Sayad, N. E., & Rizk, R. Y. (2021, November). Efficient Noise Reduction

System in Industrial IoT Data Streams. In International Conference on Advanced Intelligent

Systems and Informatics (pp. 219-232). Cham: Springer International Publishing.

[55] Krishnan, S., Wang, J., Wu, E., Franklin, M. J., & Goldberg, K. (2016). Activeclean: Interactive

data cleaning for statistical modelling. Proceedings of the VLDB Endowment, 9(12), 948-959.

[56] De Bruin, J. (2019). Python Record Linkage Toolkit: A toolkit for record linkage and duplicate

detection in Python. Zenodo DOI, 10.

[57] Lin, W. C., & Tsai, C. F. (2020). Missing value imputation: a review and analysis of the literature

(2006–2017). Artificial Intelligence Review, 53, 1487-1509.

[58] Jarrett, D., Cebere, B. C., Liu, T., Curth, A., & van der Schaar, M. (2022, June). Hyperimpute:

Generalized iterative imputation with automatic model selection. In International Conference on

Machine Learning (pp. 9916-9937). PMLR.

[59] Yoon, J., Jarrett, D., & Van der Schaar, M. (2019). Time-series generative adversarial networks.

Advances in neural information processing systems, 32.

[60] Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114.

[61] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y.

(2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144.

[62] Xu, L., Skoularidou, M., Cuesta-Infante, A., & Veeramachaneni, K. (2019). Modeling tabular data

using conditional gan. Advances in neural information processing systems, 32.

[63] Qian, Z., Cebere, B. C., & van der Schaar, M. (2023). Synthcity: facilitating innovative use cases

of synthetic data in different data modalities. arXiv preprint arXiv:2301.07573.

[64] Rajabi, A., & Garibay, O. O. (2022). Tabfairgan: Fair tabular data generation with generative

adversarial networks. Machine Learning and Knowledge Extraction, 4(2), 488-501.

[65] Xu, D., Yuan, S., Zhang, L., & Wu, X. (2019, December). Fairgan+: Achieving fair data generation

and classification through generative adversarial nets. In 2019 IEEE International Conference on

Big Data (Big Data) (pp. 1401-1406). IEEE.

[66] Open-source data pipeline tool for transforming and integrating data. https://www.mage.ai/

[67] Budennyy, S. A., Lazarev, V. D., Zakharenko, N. N., Korovin, A. N., Plosskaya, O. A., Dimitrov,

D. V. E., ... & Zhukov, L. E. E. (2022, December). Eco2ai: carbon emissions tracking of machine

learning models as the first step towards sustainable ai. In Doklady Mathematics (Vol. 106, No.

Suppl 1, pp. S118-S128). Moscow: Pleiades Publishing.

[68] Deng, L. (2012). The mnist database of handwritten digit images for machine learning research.

IEEE Signal Processing Magazine, 29(6), 141–142.

[69] Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith, V. (2020). Federated

optimization in heterogeneous networks. Proceedings of Machine learning and systems, 2, 429-

450.

[70] Gregg, F., & Eder, D. (2022). dedupe (Version 2.0.11) [Computer software].

https://github.com/dedupeio/dedupe

https://www.mage.ai/
https://github.com/dedupeio/dedupe

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 83 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

[71] Pang, G., Shen, C., & van den Hengel, A. (2019, July). Deep anomaly detection with deviation

networks. In Proceedings of the 25th ACM SIGKDD international conference on knowledge

discovery & data mining (pp. 353-362).

[72] Feldman, D. "Core-sets: Updated survey." Sampling techniques for supervised or unsupervised

tasks (2020): 23-44.

[73] Jubran, I., Maalouf, A. and Feldman, D.. "Introduction to coresets: Accurate coresets." arXiv

preprint arXiv:1910.08707 (2019).

[74] Sachdeva, N., and McAuley, J. "Data distillation: A survey." arXiv preprint arXiv:2301.04272

(2023).

[75] Wang, T., et al. "Dataset distillation." arXiv preprint arXiv:1811.10959 (2018).

[76] Zebari, R., et al. "A comprehensive review of dimensionality reduction techniques for feature

selection and feature extraction." Journal of Applied Science and Technology Trends 1.2 (2020):

56-70.

[77] Chao, G., Luo, Y., and Ding, W. "Recent advances in supervised dimension reduction: A survey."

Machine learning and knowledge extraction 1.1 (2019): 341-358.

[78] Duriakova, E., Tragos, E., Lawlor, A., Smyth, B. and Hurley, N., “Boosting the Training Time of

Weakly Coordinated Distributed Machine Learning,” in IEEE International Conference on Big

Data, 2021

[79] Gholami, A., “A survey of quantization methods for efficient neural network inference,” in Low-

Power Computer Vision, Chapman and Hall/CRC, 2022, pp. 291-326.

[80] Cheng, Y., Wang, D., Zhou, P., and Zhang, T. “Model compression and acceleration for deep

neural networks: The principles, progress, and challenges,” IEEE Signal Processing Magazine,

vol. 35, no. 1, pp. 126-136, 2018

[81] Shah, S. M. and V. K. Lau, “Model compression for communication efficient federated learning,”

IEEE Transactions on Neural Networks and Learning Systems, 2021.

[82] Lim, H., Andersen, D. G., and Kaminsky, M., “3lc: Lightweight and effective traffic compression

for distributed machine learning,” in Proceedings of Machine Learning and Systems, 2019.

[83] Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic, M., “Communication-efficient SGD via

gradient quantisation and encoding,” in Advances in neural information processing systems,

2017.

[84] Elias, P. “Universal codeword sets and representations of the integers,” IEEE Transactions on

Information Theory, vol. 21, no. 2, pp. 194-203, 1975.

[85] Reisizadeh, A. M. A. , Hassani, H. and Jadbabaie, A. P. R., “Fedpaq: A communication-efficient

federated learning method with periodic averaging and quantization,” in nternational Conference

on Artificial Intelligence and Statistics, 2020.

[86] Hönig, R., Zhaom Y. and Mullins, R., “DAdaQuant: Doubly-adaptive quantisation for

communication-efficient Federated Learning,” in International Conference on Machine Learning,

2022.

[87] Liang, T., Glossner, J., Wang, L., Shi, S. and Zhang, X.,, “Pruning and quantization for deep

neural network acceleration: A survey,” Neurocomputing, no. 461, pp. 370-403, 2021.

[88] Vadera S., and Ameen, S., “Methods for pruning deep neural networks,” IEEE Access,, vol. 10,

pp. 63280-63300, 2022.

[89] Choudhary, T., Mishra, V., Goswami, A., and Sarangapani, J., “A comprehensive survey on model

compression and acceleration,” Artificial Intelligence Review, vol. 53, pp. 5113-5155, 2020.

[90] Gou, J., Yu, B., Maybank, S. J., and Tao, D., “Knowledge distillation: A survey,” International

Journal of Computer Vision, no. 129, pp. 1789-1819, 2021.

[91] Xu, C., and McAuley, J. “A survery on model compression and acceleration for pretrained

language models.,” in AAAI, 2023.

[92] Swaminathan, S., Garg, D., Kannan, R., and Andres, F., “Sparse low rank factorization for deep

neural network compression.,” no. 398, pp. 185-196, 2020.

Document name: D3.1 Energy efficient AI-based toolset for improving data quality. Page: 84 of 84

Reference: SEDIMARK_D3.1 Dissemination: PU Version: 1.0 Status: Final

[93] Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., and Fergus, R., “Exploiting linear structurre

within convolutional networks for efficient evaluation.,” in Advances in neural information

processing systems, 2014.

[94] Yu, X., Liu, T., Wang, X., and Tao, D., “On compressing deep models by low rank and sparse

decomposition.,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2017.

[95] https://huggingface.co/blog/large-language-models

[96] Padasip python library, https://pypi.org/project/padasip/

[97] Adaptfilt python library, https://pypi.org/project/adaptfilt/

[98] Casebeer, J., Bryan, N. J., and Smaragdis, P. "Meta-af: Meta-learning for adaptive filters."

IEEE/ACM Transactions on Audio, Speech, and Language Processing 31 (2022): 355-370.

https://github.com/adobe-research/MetaAF

[99] Noisereduce python library, https://pypi.org/project/noisereduce/

[100] PyWavelets python library https://github.com/PyWavelets/pywt

[101] Chawla, N. V., et al. "SMOTE: synthetic minority over-sampling technique." Journal of artificial

intelligence research 16 (2002): 321-357.

[102] https://www.cs.utexas.edu/users/ml/riddle/data.html

https://huggingface.co/blog/large-language-models
https://pypi.org/project/padasip/
https://pypi.org/project/adaptfilt/
https://github.com/adobe-research/MetaAF
https://pypi.org/project/noisereduce/
https://github.com/PyWavelets/pywt

	Document Information
	Table of Contents
	List of Figures
	List of Acronyms
	Executive Summary
	1 Introduction
	1.1 Purpose of the document
	1.2 Relation to another project work
	1.3 Structure of the document
	1.4 Glossary adopted in this document

	2 Position within the project
	3 Data Processing Pipeline
	3.1 Overview
	3.2 Offline dataset processing vs data streaming
	3.3 Data Processing Orchestration
	3.4 Data Processing Dashboard
	3.5 Data quality metrics
	3.5.1 Generic data quality metrics
	3.5.1.1 Accuracy
	3.5.1.2 Completeness
	3.5.1.3 Precision
	3.5.1.4 Consistency
	3.5.1.5 Timeliness (Recency)

	3.5.2 ML-based data quality metrics
	3.5.2.1 Uniqueness
	3.5.2.2 Consistency
	3.5.2.3 Class parity
	3.5.2.4 Regularity
	3.5.2.5 Time Completeness
	3.5.2.6 Feature Correlation
	3.5.2.7 Collinearity
	3.5.2.8 Class Overlap
	3.5.2.9 Unalikeability
	3.5.2.10 Number of outliers
	3.5.2.11 Artificiality

	3.5.3 Future contributions

	3.6 Data Profiling and Data Quality Evaluation
	3.7 Data Curation
	3.7.1 Outlier Detection
	3.7.1.1 Outlier detection for offline datasets
	3.7.1.2 Outlier detection for data streams

	3.7.2 Noise removal
	3.7.3 Deduplication
	3.7.4 Missing Value Imputation
	3.7.4.1 Offline
	3.7.4.2 Streaming

	3.8 Data Augmentation
	3.8.1 Overview
	3.8.2 Synthetic Data
	3.8.3 Augmentation for balancing and debiasing datasets
	3.8.4 Data Augmentation for Time series

	3.9 Feature Engineering
	3.10 Auto-ML in the data processing pipeline

	4 Techniques for reducing energy consumption of data technologies
	4.1 Overview
	4.2 Reducing energy consumption during ML training
	4.2.1 Optimising Data Efficiency in ML Training
	4.2.1.1 Coreset Selection
	4.2.1.2 Data Distillation
	4.2.1.3 Dimension Reduction

	4.2.2 Balancing the model training cost and the communication overhead

	4.3 AI Model Optimisation
	4.3.1 Quantisation in federated learning
	4.3.1.1 Summary
	4.3.1.2 Introduction
	4.3.1.3 Related work
	4.3.1.4 The Quantized Stochastic Gradient Descent algorithm
	4.3.1.5 The Fleviden quantisation solution

	4.3.2 Pruning
	4.3.3 Knowledge distillation
	4.3.4 Low-rank Factorisation

	4.4 Reducing energy on data sharing
	4.5 Reducing energy on data storage
	4.5.1 Compression for Data Processing Pipeline Artefacts
	4.5.2 Broker Storage Configuration

	4.6 Pushing data processing to the edge
	4.7 Grey energy / embodied energy

	5 Trade-offs between performance, communication cost and energy efficiency
	5.1 Overview
	5.2 Communication cost analysis for distributed learning
	5.2.1 Federated Learning
	5.2.2 Gossip Learning

	5.3 Analysis of trade-offs in performance vs computational cost
	5.3.1 CO2 consumption of Federated Learning in Shamrock.
	5.3.2 Performance of data deduplication module as the indexing method is varied.
	5.3.3 Performance of Anomaly Detection module on ground truth, employing different models.

	6 Conclusions
	7 References

